Properties

Label 2352.2.q.f
Level $2352$
Weight $2$
Character orbit 2352.q
Analytic conductor $18.781$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 2352 = 2^{4} \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2352.q (of order \(3\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(18.7808145554\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
Defining polynomial: \(x^{2} - x + 1\)
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 168)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( -1 + \zeta_{6} ) q^{3} -\zeta_{6} q^{5} -\zeta_{6} q^{9} +O(q^{10})\) \( q + ( -1 + \zeta_{6} ) q^{3} -\zeta_{6} q^{5} -\zeta_{6} q^{9} + ( 3 - 3 \zeta_{6} ) q^{11} -4 q^{13} + q^{15} + 4 \zeta_{6} q^{19} + 8 \zeta_{6} q^{23} + ( 4 - 4 \zeta_{6} ) q^{25} + q^{27} -3 q^{29} + ( 5 - 5 \zeta_{6} ) q^{31} + 3 \zeta_{6} q^{33} -8 \zeta_{6} q^{37} + ( 4 - 4 \zeta_{6} ) q^{39} -8 q^{41} -6 q^{43} + ( -1 + \zeta_{6} ) q^{45} -10 \zeta_{6} q^{47} + ( -9 + 9 \zeta_{6} ) q^{53} -3 q^{55} -4 q^{57} + ( 5 - 5 \zeta_{6} ) q^{59} -10 \zeta_{6} q^{61} + 4 \zeta_{6} q^{65} + ( 6 - 6 \zeta_{6} ) q^{67} -8 q^{69} -10 q^{71} + ( 2 - 2 \zeta_{6} ) q^{73} + 4 \zeta_{6} q^{75} + 11 \zeta_{6} q^{79} + ( -1 + \zeta_{6} ) q^{81} + 7 q^{83} + ( 3 - 3 \zeta_{6} ) q^{87} -18 \zeta_{6} q^{89} + 5 \zeta_{6} q^{93} + ( 4 - 4 \zeta_{6} ) q^{95} + 17 q^{97} -3 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q - q^{3} - q^{5} - q^{9} + O(q^{10}) \) \( 2q - q^{3} - q^{5} - q^{9} + 3q^{11} - 8q^{13} + 2q^{15} + 4q^{19} + 8q^{23} + 4q^{25} + 2q^{27} - 6q^{29} + 5q^{31} + 3q^{33} - 8q^{37} + 4q^{39} - 16q^{41} - 12q^{43} - q^{45} - 10q^{47} - 9q^{53} - 6q^{55} - 8q^{57} + 5q^{59} - 10q^{61} + 4q^{65} + 6q^{67} - 16q^{69} - 20q^{71} + 2q^{73} + 4q^{75} + 11q^{79} - q^{81} + 14q^{83} + 3q^{87} - 18q^{89} + 5q^{93} + 4q^{95} + 34q^{97} - 6q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2352\mathbb{Z}\right)^\times\).

\(n\) \(785\) \(1471\) \(1765\) \(2257\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(-\zeta_{6}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
961.1
0.500000 0.866025i
0.500000 + 0.866025i
0 −0.500000 0.866025i 0 −0.500000 + 0.866025i 0 0 0 −0.500000 + 0.866025i 0
1537.1 0 −0.500000 + 0.866025i 0 −0.500000 0.866025i 0 0 0 −0.500000 0.866025i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2352.2.q.f 2
4.b odd 2 1 1176.2.q.g 2
7.b odd 2 1 336.2.q.e 2
7.c even 3 1 2352.2.a.u 1
7.c even 3 1 inner 2352.2.q.f 2
7.d odd 6 1 336.2.q.e 2
7.d odd 6 1 2352.2.a.g 1
12.b even 2 1 3528.2.s.p 2
21.c even 2 1 1008.2.s.f 2
21.g even 6 1 1008.2.s.f 2
21.g even 6 1 7056.2.a.bk 1
21.h odd 6 1 7056.2.a.t 1
28.d even 2 1 168.2.q.a 2
28.f even 6 1 168.2.q.a 2
28.f even 6 1 1176.2.a.g 1
28.g odd 6 1 1176.2.a.c 1
28.g odd 6 1 1176.2.q.g 2
56.e even 2 1 1344.2.q.o 2
56.h odd 2 1 1344.2.q.d 2
56.j odd 6 1 1344.2.q.d 2
56.j odd 6 1 9408.2.a.cq 1
56.k odd 6 1 9408.2.a.cf 1
56.m even 6 1 1344.2.q.o 2
56.m even 6 1 9408.2.a.ba 1
56.p even 6 1 9408.2.a.p 1
84.h odd 2 1 504.2.s.d 2
84.j odd 6 1 504.2.s.d 2
84.j odd 6 1 3528.2.a.q 1
84.n even 6 1 3528.2.a.i 1
84.n even 6 1 3528.2.s.p 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
168.2.q.a 2 28.d even 2 1
168.2.q.a 2 28.f even 6 1
336.2.q.e 2 7.b odd 2 1
336.2.q.e 2 7.d odd 6 1
504.2.s.d 2 84.h odd 2 1
504.2.s.d 2 84.j odd 6 1
1008.2.s.f 2 21.c even 2 1
1008.2.s.f 2 21.g even 6 1
1176.2.a.c 1 28.g odd 6 1
1176.2.a.g 1 28.f even 6 1
1176.2.q.g 2 4.b odd 2 1
1176.2.q.g 2 28.g odd 6 1
1344.2.q.d 2 56.h odd 2 1
1344.2.q.d 2 56.j odd 6 1
1344.2.q.o 2 56.e even 2 1
1344.2.q.o 2 56.m even 6 1
2352.2.a.g 1 7.d odd 6 1
2352.2.a.u 1 7.c even 3 1
2352.2.q.f 2 1.a even 1 1 trivial
2352.2.q.f 2 7.c even 3 1 inner
3528.2.a.i 1 84.n even 6 1
3528.2.a.q 1 84.j odd 6 1
3528.2.s.p 2 12.b even 2 1
3528.2.s.p 2 84.n even 6 1
7056.2.a.t 1 21.h odd 6 1
7056.2.a.bk 1 21.g even 6 1
9408.2.a.p 1 56.p even 6 1
9408.2.a.ba 1 56.m even 6 1
9408.2.a.cf 1 56.k odd 6 1
9408.2.a.cq 1 56.j odd 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(2352, [\chi])\):

\( T_{5}^{2} + T_{5} + 1 \)
\( T_{11}^{2} - 3 T_{11} + 9 \)
\( T_{13} + 4 \)
\( T_{17} \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ 1
$3$ \( 1 + T + T^{2} \)
$5$ \( 1 + T - 4 T^{2} + 5 T^{3} + 25 T^{4} \)
$7$ 1
$11$ \( 1 - 3 T - 2 T^{2} - 33 T^{3} + 121 T^{4} \)
$13$ \( ( 1 + 4 T + 13 T^{2} )^{2} \)
$17$ \( 1 - 17 T^{2} + 289 T^{4} \)
$19$ \( 1 - 4 T - 3 T^{2} - 76 T^{3} + 361 T^{4} \)
$23$ \( 1 - 8 T + 41 T^{2} - 184 T^{3} + 529 T^{4} \)
$29$ \( ( 1 + 3 T + 29 T^{2} )^{2} \)
$31$ \( 1 - 5 T - 6 T^{2} - 155 T^{3} + 961 T^{4} \)
$37$ \( 1 + 8 T + 27 T^{2} + 296 T^{3} + 1369 T^{4} \)
$41$ \( ( 1 + 8 T + 41 T^{2} )^{2} \)
$43$ \( ( 1 + 6 T + 43 T^{2} )^{2} \)
$47$ \( 1 + 10 T + 53 T^{2} + 470 T^{3} + 2209 T^{4} \)
$53$ \( 1 + 9 T + 28 T^{2} + 477 T^{3} + 2809 T^{4} \)
$59$ \( 1 - 5 T - 34 T^{2} - 295 T^{3} + 3481 T^{4} \)
$61$ \( 1 + 10 T + 39 T^{2} + 610 T^{3} + 3721 T^{4} \)
$67$ \( 1 - 6 T - 31 T^{2} - 402 T^{3} + 4489 T^{4} \)
$71$ \( ( 1 + 10 T + 71 T^{2} )^{2} \)
$73$ \( 1 - 2 T - 69 T^{2} - 146 T^{3} + 5329 T^{4} \)
$79$ \( 1 - 11 T + 42 T^{2} - 869 T^{3} + 6241 T^{4} \)
$83$ \( ( 1 - 7 T + 83 T^{2} )^{2} \)
$89$ \( 1 + 18 T + 235 T^{2} + 1602 T^{3} + 7921 T^{4} \)
$97$ \( ( 1 - 17 T + 97 T^{2} )^{2} \)
show more
show less