Properties

Label 2352.2.q.c
Level $2352$
Weight $2$
Character orbit 2352.q
Analytic conductor $18.781$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 2352 = 2^{4} \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2352.q (of order \(3\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(18.7808145554\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
Defining polynomial: \(x^{2} - x + 1\)
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 21)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( -1 + \zeta_{6} ) q^{3} -2 \zeta_{6} q^{5} -\zeta_{6} q^{9} +O(q^{10})\) \( q + ( -1 + \zeta_{6} ) q^{3} -2 \zeta_{6} q^{5} -\zeta_{6} q^{9} + ( -2 + 2 \zeta_{6} ) q^{11} - q^{13} + 2 q^{15} -\zeta_{6} q^{19} + ( 1 - \zeta_{6} ) q^{25} + q^{27} + 4 q^{29} + ( -9 + 9 \zeta_{6} ) q^{31} -2 \zeta_{6} q^{33} -3 \zeta_{6} q^{37} + ( 1 - \zeta_{6} ) q^{39} + 10 q^{41} -5 q^{43} + ( -2 + 2 \zeta_{6} ) q^{45} + 6 \zeta_{6} q^{47} + ( -12 + 12 \zeta_{6} ) q^{53} + 4 q^{55} + q^{57} + ( 12 - 12 \zeta_{6} ) q^{59} + 10 \zeta_{6} q^{61} + 2 \zeta_{6} q^{65} + ( -5 + 5 \zeta_{6} ) q^{67} + 6 q^{71} + ( -3 + 3 \zeta_{6} ) q^{73} + \zeta_{6} q^{75} -\zeta_{6} q^{79} + ( -1 + \zeta_{6} ) q^{81} + 6 q^{83} + ( -4 + 4 \zeta_{6} ) q^{87} + 16 \zeta_{6} q^{89} -9 \zeta_{6} q^{93} + ( -2 + 2 \zeta_{6} ) q^{95} + 6 q^{97} + 2 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q - q^{3} - 2q^{5} - q^{9} + O(q^{10}) \) \( 2q - q^{3} - 2q^{5} - q^{9} - 2q^{11} - 2q^{13} + 4q^{15} - q^{19} + q^{25} + 2q^{27} + 8q^{29} - 9q^{31} - 2q^{33} - 3q^{37} + q^{39} + 20q^{41} - 10q^{43} - 2q^{45} + 6q^{47} - 12q^{53} + 8q^{55} + 2q^{57} + 12q^{59} + 10q^{61} + 2q^{65} - 5q^{67} + 12q^{71} - 3q^{73} + q^{75} - q^{79} - q^{81} + 12q^{83} - 4q^{87} + 16q^{89} - 9q^{93} - 2q^{95} + 12q^{97} + 4q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2352\mathbb{Z}\right)^\times\).

\(n\) \(785\) \(1471\) \(1765\) \(2257\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(-\zeta_{6}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
961.1
0.500000 0.866025i
0.500000 + 0.866025i
0 −0.500000 0.866025i 0 −1.00000 + 1.73205i 0 0 0 −0.500000 + 0.866025i 0
1537.1 0 −0.500000 + 0.866025i 0 −1.00000 1.73205i 0 0 0 −0.500000 0.866025i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2352.2.q.c 2
4.b odd 2 1 147.2.e.a 2
7.b odd 2 1 336.2.q.f 2
7.c even 3 1 2352.2.a.w 1
7.c even 3 1 inner 2352.2.q.c 2
7.d odd 6 1 336.2.q.f 2
7.d odd 6 1 2352.2.a.d 1
12.b even 2 1 441.2.e.e 2
21.c even 2 1 1008.2.s.d 2
21.g even 6 1 1008.2.s.d 2
21.g even 6 1 7056.2.a.bp 1
21.h odd 6 1 7056.2.a.m 1
28.d even 2 1 21.2.e.a 2
28.f even 6 1 21.2.e.a 2
28.f even 6 1 147.2.a.c 1
28.g odd 6 1 147.2.a.b 1
28.g odd 6 1 147.2.e.a 2
56.e even 2 1 1344.2.q.m 2
56.h odd 2 1 1344.2.q.c 2
56.j odd 6 1 1344.2.q.c 2
56.j odd 6 1 9408.2.a.cv 1
56.k odd 6 1 9408.2.a.bz 1
56.m even 6 1 1344.2.q.m 2
56.m even 6 1 9408.2.a.bg 1
56.p even 6 1 9408.2.a.k 1
84.h odd 2 1 63.2.e.b 2
84.j odd 6 1 63.2.e.b 2
84.j odd 6 1 441.2.a.b 1
84.n even 6 1 441.2.a.a 1
84.n even 6 1 441.2.e.e 2
140.c even 2 1 525.2.i.e 2
140.j odd 4 2 525.2.r.e 4
140.p odd 6 1 3675.2.a.c 1
140.s even 6 1 525.2.i.e 2
140.s even 6 1 3675.2.a.a 1
140.x odd 12 2 525.2.r.e 4
252.n even 6 1 567.2.h.f 2
252.r odd 6 1 567.2.g.f 2
252.s odd 6 1 567.2.g.f 2
252.s odd 6 1 567.2.h.a 2
252.bi even 6 1 567.2.g.a 2
252.bi even 6 1 567.2.h.f 2
252.bj even 6 1 567.2.g.a 2
252.bn odd 6 1 567.2.h.a 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
21.2.e.a 2 28.d even 2 1
21.2.e.a 2 28.f even 6 1
63.2.e.b 2 84.h odd 2 1
63.2.e.b 2 84.j odd 6 1
147.2.a.b 1 28.g odd 6 1
147.2.a.c 1 28.f even 6 1
147.2.e.a 2 4.b odd 2 1
147.2.e.a 2 28.g odd 6 1
336.2.q.f 2 7.b odd 2 1
336.2.q.f 2 7.d odd 6 1
441.2.a.a 1 84.n even 6 1
441.2.a.b 1 84.j odd 6 1
441.2.e.e 2 12.b even 2 1
441.2.e.e 2 84.n even 6 1
525.2.i.e 2 140.c even 2 1
525.2.i.e 2 140.s even 6 1
525.2.r.e 4 140.j odd 4 2
525.2.r.e 4 140.x odd 12 2
567.2.g.a 2 252.bi even 6 1
567.2.g.a 2 252.bj even 6 1
567.2.g.f 2 252.r odd 6 1
567.2.g.f 2 252.s odd 6 1
567.2.h.a 2 252.s odd 6 1
567.2.h.a 2 252.bn odd 6 1
567.2.h.f 2 252.n even 6 1
567.2.h.f 2 252.bi even 6 1
1008.2.s.d 2 21.c even 2 1
1008.2.s.d 2 21.g even 6 1
1344.2.q.c 2 56.h odd 2 1
1344.2.q.c 2 56.j odd 6 1
1344.2.q.m 2 56.e even 2 1
1344.2.q.m 2 56.m even 6 1
2352.2.a.d 1 7.d odd 6 1
2352.2.a.w 1 7.c even 3 1
2352.2.q.c 2 1.a even 1 1 trivial
2352.2.q.c 2 7.c even 3 1 inner
3675.2.a.a 1 140.s even 6 1
3675.2.a.c 1 140.p odd 6 1
7056.2.a.m 1 21.h odd 6 1
7056.2.a.bp 1 21.g even 6 1
9408.2.a.k 1 56.p even 6 1
9408.2.a.bg 1 56.m even 6 1
9408.2.a.bz 1 56.k odd 6 1
9408.2.a.cv 1 56.j odd 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(2352, [\chi])\):

\( T_{5}^{2} + 2 T_{5} + 4 \)
\( T_{11}^{2} + 2 T_{11} + 4 \)
\( T_{13} + 1 \)
\( T_{17} \)