Properties

Label 2352.2.q.a
Level 2352
Weight 2
Character orbit 2352.q
Analytic conductor 18.781
Analytic rank 0
Dimension 2
CM no
Inner twists 2

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 2352 = 2^{4} \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2352.q (of order \(3\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(18.7808145554\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
Defining polynomial: \(x^{2} - x + 1\)
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 294)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( -1 + \zeta_{6} ) q^{3} -4 \zeta_{6} q^{5} -\zeta_{6} q^{9} +O(q^{10})\) \( q + ( -1 + \zeta_{6} ) q^{3} -4 \zeta_{6} q^{5} -\zeta_{6} q^{9} + ( -4 + 4 \zeta_{6} ) q^{11} + 4 q^{13} + 4 q^{15} + 4 \zeta_{6} q^{19} + ( -11 + 11 \zeta_{6} ) q^{25} + q^{27} + 2 q^{29} + ( 8 - 8 \zeta_{6} ) q^{31} -4 \zeta_{6} q^{33} + 6 \zeta_{6} q^{37} + ( -4 + 4 \zeta_{6} ) q^{39} -4 q^{43} + ( -4 + 4 \zeta_{6} ) q^{45} -8 \zeta_{6} q^{47} + ( 10 - 10 \zeta_{6} ) q^{53} + 16 q^{55} -4 q^{57} + ( 4 - 4 \zeta_{6} ) q^{59} + 4 \zeta_{6} q^{61} -16 \zeta_{6} q^{65} + ( 4 - 4 \zeta_{6} ) q^{67} -8 q^{71} + ( 16 - 16 \zeta_{6} ) q^{73} -11 \zeta_{6} q^{75} -8 \zeta_{6} q^{79} + ( -1 + \zeta_{6} ) q^{81} + 12 q^{83} + ( -2 + 2 \zeta_{6} ) q^{87} -8 \zeta_{6} q^{89} + 8 \zeta_{6} q^{93} + ( 16 - 16 \zeta_{6} ) q^{95} + 8 q^{97} + 4 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q - q^{3} - 4q^{5} - q^{9} + O(q^{10}) \) \( 2q - q^{3} - 4q^{5} - q^{9} - 4q^{11} + 8q^{13} + 8q^{15} + 4q^{19} - 11q^{25} + 2q^{27} + 4q^{29} + 8q^{31} - 4q^{33} + 6q^{37} - 4q^{39} - 8q^{43} - 4q^{45} - 8q^{47} + 10q^{53} + 32q^{55} - 8q^{57} + 4q^{59} + 4q^{61} - 16q^{65} + 4q^{67} - 16q^{71} + 16q^{73} - 11q^{75} - 8q^{79} - q^{81} + 24q^{83} - 2q^{87} - 8q^{89} + 8q^{93} + 16q^{95} + 16q^{97} + 8q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2352\mathbb{Z}\right)^\times\).

\(n\) \(785\) \(1471\) \(1765\) \(2257\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(-\zeta_{6}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
961.1
0.500000 0.866025i
0.500000 + 0.866025i
0 −0.500000 0.866025i 0 −2.00000 + 3.46410i 0 0 0 −0.500000 + 0.866025i 0
1537.1 0 −0.500000 + 0.866025i 0 −2.00000 3.46410i 0 0 0 −0.500000 0.866025i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2352.2.q.a 2
4.b odd 2 1 294.2.e.e 2
7.b odd 2 1 2352.2.q.y 2
7.c even 3 1 2352.2.a.y 1
7.c even 3 1 inner 2352.2.q.a 2
7.d odd 6 1 2352.2.a.b 1
7.d odd 6 1 2352.2.q.y 2
12.b even 2 1 882.2.g.f 2
21.g even 6 1 7056.2.a.ca 1
21.h odd 6 1 7056.2.a.a 1
28.d even 2 1 294.2.e.d 2
28.f even 6 1 294.2.a.c yes 1
28.f even 6 1 294.2.e.d 2
28.g odd 6 1 294.2.a.b 1
28.g odd 6 1 294.2.e.e 2
56.j odd 6 1 9408.2.a.de 1
56.k odd 6 1 9408.2.a.br 1
56.m even 6 1 9408.2.a.bo 1
56.p even 6 1 9408.2.a.b 1
84.h odd 2 1 882.2.g.a 2
84.j odd 6 1 882.2.a.l 1
84.j odd 6 1 882.2.g.a 2
84.n even 6 1 882.2.a.f 1
84.n even 6 1 882.2.g.f 2
140.p odd 6 1 7350.2.a.cj 1
140.s even 6 1 7350.2.a.br 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
294.2.a.b 1 28.g odd 6 1
294.2.a.c yes 1 28.f even 6 1
294.2.e.d 2 28.d even 2 1
294.2.e.d 2 28.f even 6 1
294.2.e.e 2 4.b odd 2 1
294.2.e.e 2 28.g odd 6 1
882.2.a.f 1 84.n even 6 1
882.2.a.l 1 84.j odd 6 1
882.2.g.a 2 84.h odd 2 1
882.2.g.a 2 84.j odd 6 1
882.2.g.f 2 12.b even 2 1
882.2.g.f 2 84.n even 6 1
2352.2.a.b 1 7.d odd 6 1
2352.2.a.y 1 7.c even 3 1
2352.2.q.a 2 1.a even 1 1 trivial
2352.2.q.a 2 7.c even 3 1 inner
2352.2.q.y 2 7.b odd 2 1
2352.2.q.y 2 7.d odd 6 1
7056.2.a.a 1 21.h odd 6 1
7056.2.a.ca 1 21.g even 6 1
7350.2.a.br 1 140.s even 6 1
7350.2.a.cj 1 140.p odd 6 1
9408.2.a.b 1 56.p even 6 1
9408.2.a.bo 1 56.m even 6 1
9408.2.a.br 1 56.k odd 6 1
9408.2.a.de 1 56.j odd 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(2352, [\chi])\):

\( T_{5}^{2} + 4 T_{5} + 16 \)
\( T_{11}^{2} + 4 T_{11} + 16 \)
\( T_{13} - 4 \)
\( T_{17} \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ 1
$3$ \( 1 + T + T^{2} \)
$5$ \( 1 + 4 T + 11 T^{2} + 20 T^{3} + 25 T^{4} \)
$7$ 1
$11$ \( 1 + 4 T + 5 T^{2} + 44 T^{3} + 121 T^{4} \)
$13$ \( ( 1 - 4 T + 13 T^{2} )^{2} \)
$17$ \( 1 - 17 T^{2} + 289 T^{4} \)
$19$ \( 1 - 4 T - 3 T^{2} - 76 T^{3} + 361 T^{4} \)
$23$ \( 1 - 23 T^{2} + 529 T^{4} \)
$29$ \( ( 1 - 2 T + 29 T^{2} )^{2} \)
$31$ \( 1 - 8 T + 33 T^{2} - 248 T^{3} + 961 T^{4} \)
$37$ \( 1 - 6 T - T^{2} - 222 T^{3} + 1369 T^{4} \)
$41$ \( ( 1 + 41 T^{2} )^{2} \)
$43$ \( ( 1 + 4 T + 43 T^{2} )^{2} \)
$47$ \( 1 + 8 T + 17 T^{2} + 376 T^{3} + 2209 T^{4} \)
$53$ \( 1 - 10 T + 47 T^{2} - 530 T^{3} + 2809 T^{4} \)
$59$ \( 1 - 4 T - 43 T^{2} - 236 T^{3} + 3481 T^{4} \)
$61$ \( 1 - 4 T - 45 T^{2} - 244 T^{3} + 3721 T^{4} \)
$67$ \( 1 - 4 T - 51 T^{2} - 268 T^{3} + 4489 T^{4} \)
$71$ \( ( 1 + 8 T + 71 T^{2} )^{2} \)
$73$ \( 1 - 16 T + 183 T^{2} - 1168 T^{3} + 5329 T^{4} \)
$79$ \( 1 + 8 T - 15 T^{2} + 632 T^{3} + 6241 T^{4} \)
$83$ \( ( 1 - 12 T + 83 T^{2} )^{2} \)
$89$ \( 1 + 8 T - 25 T^{2} + 712 T^{3} + 7921 T^{4} \)
$97$ \( ( 1 - 8 T + 97 T^{2} )^{2} \)
show more
show less