Properties

Label 2352.2.k.j.881.8
Level $2352$
Weight $2$
Character 2352.881
Analytic conductor $18.781$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2352,2,Mod(881,2352)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2352, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2352.881"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2352 = 2^{4} \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2352.k (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,0,0,0,0,0,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,0,8,0,0,0,0, 0,0,0,0,0,0,0,16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(37)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.7808145554\)
Analytic rank: \(0\)
Dimension: \(24\)
Twist minimal: no (minimal twist has level 1176)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 881.8
Character \(\chi\) \(=\) 2352.881
Dual form 2352.2.k.j.881.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.698115 + 1.58513i) q^{3} -0.489061 q^{5} +(-2.02527 - 2.21321i) q^{9} +1.52274i q^{11} +0.652068i q^{13} +(0.341421 - 0.775225i) q^{15} +7.55538 q^{17} +0.420989i q^{19} +5.90997i q^{23} -4.76082 q^{25} +(4.92209 - 1.66524i) q^{27} -7.16356i q^{29} +7.38015i q^{31} +(-2.41375 - 1.06305i) q^{33} -8.09219 q^{37} +(-1.03361 - 0.455218i) q^{39} +2.53185 q^{41} +5.56181 q^{43} +(0.990481 + 1.08239i) q^{45} +9.31441 q^{47} +(-5.27452 + 11.9763i) q^{51} +1.46232i q^{53} -0.744715i q^{55} +(-0.667322 - 0.293899i) q^{57} -7.35687 q^{59} +11.1496i q^{61} -0.318901i q^{65} -14.6240 q^{67} +(-9.36807 - 4.12584i) q^{69} +12.8513i q^{71} +9.24519i q^{73} +(3.32360 - 7.54652i) q^{75} -1.21440 q^{79} +(-0.796558 + 8.96468i) q^{81} -9.03219 q^{83} -3.69504 q^{85} +(11.3552 + 5.00099i) q^{87} -9.55993 q^{89} +(-11.6985 - 5.15220i) q^{93} -0.205889i q^{95} -4.95430i q^{97} +(3.37015 - 3.08397i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 16 q^{15} + 8 q^{25} + 16 q^{37} + 64 q^{39} - 16 q^{43} - 48 q^{51} + 48 q^{57} - 16 q^{67} + 80 q^{81} - 64 q^{85} - 32 q^{93} + 56 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2352\mathbb{Z}\right)^\times\).

\(n\) \(785\) \(1471\) \(1765\) \(2257\)
\(\chi(n)\) \(-1\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.698115 + 1.58513i −0.403057 + 0.915175i
\(4\) 0 0
\(5\) −0.489061 −0.218715 −0.109357 0.994003i \(-0.534879\pi\)
−0.109357 + 0.994003i \(0.534879\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) −2.02527 2.21321i −0.675090 0.737735i
\(10\) 0 0
\(11\) 1.52274i 0.459125i 0.973294 + 0.229562i \(0.0737295\pi\)
−0.973294 + 0.229562i \(0.926271\pi\)
\(12\) 0 0
\(13\) 0.652068i 0.180851i 0.995903 + 0.0904255i \(0.0288227\pi\)
−0.995903 + 0.0904255i \(0.971177\pi\)
\(14\) 0 0
\(15\) 0.341421 0.775225i 0.0881545 0.200162i
\(16\) 0 0
\(17\) 7.55538 1.83245 0.916224 0.400666i \(-0.131221\pi\)
0.916224 + 0.400666i \(0.131221\pi\)
\(18\) 0 0
\(19\) 0.420989i 0.0965814i 0.998833 + 0.0482907i \(0.0153774\pi\)
−0.998833 + 0.0482907i \(0.984623\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 5.90997i 1.23231i 0.787623 + 0.616157i \(0.211312\pi\)
−0.787623 + 0.616157i \(0.788688\pi\)
\(24\) 0 0
\(25\) −4.76082 −0.952164
\(26\) 0 0
\(27\) 4.92209 1.66524i 0.947257 0.320476i
\(28\) 0 0
\(29\) 7.16356i 1.33024i −0.746737 0.665120i \(-0.768381\pi\)
0.746737 0.665120i \(-0.231619\pi\)
\(30\) 0 0
\(31\) 7.38015i 1.32551i 0.748834 + 0.662757i \(0.230614\pi\)
−0.748834 + 0.662757i \(0.769386\pi\)
\(32\) 0 0
\(33\) −2.41375 1.06305i −0.420179 0.185053i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −8.09219 −1.33035 −0.665174 0.746689i \(-0.731642\pi\)
−0.665174 + 0.746689i \(0.731642\pi\)
\(38\) 0 0
\(39\) −1.03361 0.455218i −0.165510 0.0728933i
\(40\) 0 0
\(41\) 2.53185 0.395409 0.197704 0.980262i \(-0.436651\pi\)
0.197704 + 0.980262i \(0.436651\pi\)
\(42\) 0 0
\(43\) 5.56181 0.848168 0.424084 0.905623i \(-0.360596\pi\)
0.424084 + 0.905623i \(0.360596\pi\)
\(44\) 0 0
\(45\) 0.990481 + 1.08239i 0.147652 + 0.161354i
\(46\) 0 0
\(47\) 9.31441 1.35865 0.679323 0.733839i \(-0.262273\pi\)
0.679323 + 0.733839i \(0.262273\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) −5.27452 + 11.9763i −0.738581 + 1.67701i
\(52\) 0 0
\(53\) 1.46232i 0.200864i 0.994944 + 0.100432i \(0.0320226\pi\)
−0.994944 + 0.100432i \(0.967977\pi\)
\(54\) 0 0
\(55\) 0.744715i 0.100417i
\(56\) 0 0
\(57\) −0.667322 0.293899i −0.0883889 0.0389278i
\(58\) 0 0
\(59\) −7.35687 −0.957783 −0.478892 0.877874i \(-0.658961\pi\)
−0.478892 + 0.877874i \(0.658961\pi\)
\(60\) 0 0
\(61\) 11.1496i 1.42757i 0.700367 + 0.713783i \(0.253020\pi\)
−0.700367 + 0.713783i \(0.746980\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0.318901i 0.0395548i
\(66\) 0 0
\(67\) −14.6240 −1.78660 −0.893302 0.449457i \(-0.851617\pi\)
−0.893302 + 0.449457i \(0.851617\pi\)
\(68\) 0 0
\(69\) −9.36807 4.12584i −1.12778 0.496693i
\(70\) 0 0
\(71\) 12.8513i 1.52516i 0.646891 + 0.762582i \(0.276069\pi\)
−0.646891 + 0.762582i \(0.723931\pi\)
\(72\) 0 0
\(73\) 9.24519i 1.08207i 0.841001 + 0.541034i \(0.181967\pi\)
−0.841001 + 0.541034i \(0.818033\pi\)
\(74\) 0 0
\(75\) 3.32360 7.54652i 0.383776 0.871397i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −1.21440 −0.136631 −0.0683154 0.997664i \(-0.521762\pi\)
−0.0683154 + 0.997664i \(0.521762\pi\)
\(80\) 0 0
\(81\) −0.796558 + 8.96468i −0.0885064 + 0.996076i
\(82\) 0 0
\(83\) −9.03219 −0.991412 −0.495706 0.868491i \(-0.665091\pi\)
−0.495706 + 0.868491i \(0.665091\pi\)
\(84\) 0 0
\(85\) −3.69504 −0.400783
\(86\) 0 0
\(87\) 11.3552 + 5.00099i 1.21740 + 0.536162i
\(88\) 0 0
\(89\) −9.55993 −1.01335 −0.506675 0.862137i \(-0.669126\pi\)
−0.506675 + 0.862137i \(0.669126\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) −11.6985 5.15220i −1.21308 0.534258i
\(94\) 0 0
\(95\) 0.205889i 0.0211238i
\(96\) 0 0
\(97\) 4.95430i 0.503033i −0.967853 0.251517i \(-0.919071\pi\)
0.967853 0.251517i \(-0.0809293\pi\)
\(98\) 0 0
\(99\) 3.37015 3.08397i 0.338712 0.309951i
\(100\) 0 0
\(101\) 5.51027 0.548292 0.274146 0.961688i \(-0.411605\pi\)
0.274146 + 0.961688i \(0.411605\pi\)
\(102\) 0 0
\(103\) 9.17989i 0.904522i 0.891886 + 0.452261i \(0.149382\pi\)
−0.891886 + 0.452261i \(0.850618\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 4.78936i 0.463005i −0.972834 0.231503i \(-0.925636\pi\)
0.972834 0.231503i \(-0.0743642\pi\)
\(108\) 0 0
\(109\) −13.3763 −1.28122 −0.640608 0.767868i \(-0.721318\pi\)
−0.640608 + 0.767868i \(0.721318\pi\)
\(110\) 0 0
\(111\) 5.64928 12.8272i 0.536206 1.21750i
\(112\) 0 0
\(113\) 12.5764i 1.18309i −0.806271 0.591546i \(-0.798518\pi\)
0.806271 0.591546i \(-0.201482\pi\)
\(114\) 0 0
\(115\) 2.89034i 0.269525i
\(116\) 0 0
\(117\) 1.44316 1.32061i 0.133420 0.122091i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 8.68125 0.789204
\(122\) 0 0
\(123\) −1.76752 + 4.01331i −0.159372 + 0.361868i
\(124\) 0 0
\(125\) 4.77363 0.426967
\(126\) 0 0
\(127\) −0.264143 −0.0234389 −0.0117194 0.999931i \(-0.503731\pi\)
−0.0117194 + 0.999931i \(0.503731\pi\)
\(128\) 0 0
\(129\) −3.88278 + 8.81619i −0.341860 + 0.776222i
\(130\) 0 0
\(131\) −7.51917 −0.656953 −0.328476 0.944512i \(-0.606535\pi\)
−0.328476 + 0.944512i \(0.606535\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) −2.40720 + 0.814406i −0.207179 + 0.0700929i
\(136\) 0 0
\(137\) 0.0198048i 0.00169204i −1.00000 0.000846019i \(-0.999731\pi\)
1.00000 0.000846019i \(-0.000269296\pi\)
\(138\) 0 0
\(139\) 10.1198i 0.858349i −0.903222 0.429174i \(-0.858805\pi\)
0.903222 0.429174i \(-0.141195\pi\)
\(140\) 0 0
\(141\) −6.50253 + 14.7645i −0.547612 + 1.24340i
\(142\) 0 0
\(143\) −0.992933 −0.0830332
\(144\) 0 0
\(145\) 3.50342i 0.290943i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 14.0863i 1.15399i 0.816746 + 0.576997i \(0.195776\pi\)
−0.816746 + 0.576997i \(0.804224\pi\)
\(150\) 0 0
\(151\) −12.5804 −1.02377 −0.511887 0.859053i \(-0.671053\pi\)
−0.511887 + 0.859053i \(0.671053\pi\)
\(152\) 0 0
\(153\) −15.3017 16.7216i −1.23707 1.35186i
\(154\) 0 0
\(155\) 3.60934i 0.289910i
\(156\) 0 0
\(157\) 8.67035i 0.691969i −0.938240 0.345984i \(-0.887545\pi\)
0.938240 0.345984i \(-0.112455\pi\)
\(158\) 0 0
\(159\) −2.31796 1.02086i −0.183826 0.0809598i
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 3.35163 0.262520 0.131260 0.991348i \(-0.458098\pi\)
0.131260 + 0.991348i \(0.458098\pi\)
\(164\) 0 0
\(165\) 1.18047 + 0.519897i 0.0918994 + 0.0404739i
\(166\) 0 0
\(167\) −23.4014 −1.81085 −0.905426 0.424505i \(-0.860448\pi\)
−0.905426 + 0.424505i \(0.860448\pi\)
\(168\) 0 0
\(169\) 12.5748 0.967293
\(170\) 0 0
\(171\) 0.931735 0.852616i 0.0712515 0.0652012i
\(172\) 0 0
\(173\) 14.2413 1.08274 0.541371 0.840784i \(-0.317905\pi\)
0.541371 + 0.840784i \(0.317905\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 5.13595 11.6616i 0.386041 0.876539i
\(178\) 0 0
\(179\) 20.3264i 1.51926i 0.650354 + 0.759632i \(0.274621\pi\)
−0.650354 + 0.759632i \(0.725379\pi\)
\(180\) 0 0
\(181\) 0.798480i 0.0593506i 0.999560 + 0.0296753i \(0.00944732\pi\)
−0.999560 + 0.0296753i \(0.990553\pi\)
\(182\) 0 0
\(183\) −17.6736 7.78374i −1.30647 0.575390i
\(184\) 0 0
\(185\) 3.95757 0.290966
\(186\) 0 0
\(187\) 11.5049i 0.841322i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 21.0641i 1.52414i −0.647493 0.762071i \(-0.724182\pi\)
0.647493 0.762071i \(-0.275818\pi\)
\(192\) 0 0
\(193\) −17.9015 −1.28858 −0.644289 0.764782i \(-0.722847\pi\)
−0.644289 + 0.764782i \(0.722847\pi\)
\(194\) 0 0
\(195\) 0.505499 + 0.222629i 0.0361995 + 0.0159428i
\(196\) 0 0
\(197\) 19.1354i 1.36334i 0.731658 + 0.681672i \(0.238747\pi\)
−0.731658 + 0.681672i \(0.761253\pi\)
\(198\) 0 0
\(199\) 12.5562i 0.890086i 0.895509 + 0.445043i \(0.146812\pi\)
−0.895509 + 0.445043i \(0.853188\pi\)
\(200\) 0 0
\(201\) 10.2092 23.1809i 0.720103 1.63505i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −1.23823 −0.0864817
\(206\) 0 0
\(207\) 13.0800 11.9693i 0.909122 0.831924i
\(208\) 0 0
\(209\) −0.641058 −0.0443429
\(210\) 0 0
\(211\) −8.96713 −0.617322 −0.308661 0.951172i \(-0.599881\pi\)
−0.308661 + 0.951172i \(0.599881\pi\)
\(212\) 0 0
\(213\) −20.3709 8.97166i −1.39579 0.614728i
\(214\) 0 0
\(215\) −2.72006 −0.185507
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) −14.6548 6.45421i −0.990281 0.436135i
\(220\) 0 0
\(221\) 4.92662i 0.331400i
\(222\) 0 0
\(223\) 10.9815i 0.735376i 0.929949 + 0.367688i \(0.119851\pi\)
−0.929949 + 0.367688i \(0.880149\pi\)
\(224\) 0 0
\(225\) 9.64195 + 10.5367i 0.642797 + 0.702445i
\(226\) 0 0
\(227\) −5.45063 −0.361771 −0.180886 0.983504i \(-0.557896\pi\)
−0.180886 + 0.983504i \(0.557896\pi\)
\(228\) 0 0
\(229\) 12.8004i 0.845874i 0.906159 + 0.422937i \(0.139001\pi\)
−0.906159 + 0.422937i \(0.860999\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 16.1543i 1.05830i 0.848528 + 0.529150i \(0.177489\pi\)
−0.848528 + 0.529150i \(0.822511\pi\)
\(234\) 0 0
\(235\) −4.55531 −0.297156
\(236\) 0 0
\(237\) 0.847792 1.92498i 0.0550700 0.125041i
\(238\) 0 0
\(239\) 1.09590i 0.0708882i −0.999372 0.0354441i \(-0.988715\pi\)
0.999372 0.0354441i \(-0.0112846\pi\)
\(240\) 0 0
\(241\) 8.56015i 0.551408i 0.961243 + 0.275704i \(0.0889109\pi\)
−0.961243 + 0.275704i \(0.911089\pi\)
\(242\) 0 0
\(243\) −13.6541 7.52103i −0.875910 0.482474i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −0.274513 −0.0174669
\(248\) 0 0
\(249\) 6.30551 14.3172i 0.399595 0.907315i
\(250\) 0 0
\(251\) −3.88353 −0.245127 −0.122563 0.992461i \(-0.539111\pi\)
−0.122563 + 0.992461i \(0.539111\pi\)
\(252\) 0 0
\(253\) −8.99938 −0.565786
\(254\) 0 0
\(255\) 2.57956 5.85712i 0.161538 0.366787i
\(256\) 0 0
\(257\) 17.8118 1.11107 0.555536 0.831492i \(-0.312513\pi\)
0.555536 + 0.831492i \(0.312513\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) −15.8544 + 14.5081i −0.981364 + 0.898031i
\(262\) 0 0
\(263\) 5.47585i 0.337655i 0.985646 + 0.168828i \(0.0539982\pi\)
−0.985646 + 0.168828i \(0.946002\pi\)
\(264\) 0 0
\(265\) 0.715161i 0.0439320i
\(266\) 0 0
\(267\) 6.67393 15.1537i 0.408438 0.927393i
\(268\) 0 0
\(269\) −12.1544 −0.741068 −0.370534 0.928819i \(-0.620825\pi\)
−0.370534 + 0.928819i \(0.620825\pi\)
\(270\) 0 0
\(271\) 24.1732i 1.46842i 0.678925 + 0.734208i \(0.262446\pi\)
−0.678925 + 0.734208i \(0.737554\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 7.24951i 0.437162i
\(276\) 0 0
\(277\) 2.93440 0.176311 0.0881556 0.996107i \(-0.471903\pi\)
0.0881556 + 0.996107i \(0.471903\pi\)
\(278\) 0 0
\(279\) 16.3338 14.9468i 0.977879 0.894842i
\(280\) 0 0
\(281\) 1.97450i 0.117789i 0.998264 + 0.0588944i \(0.0187575\pi\)
−0.998264 + 0.0588944i \(0.981242\pi\)
\(282\) 0 0
\(283\) 24.1545i 1.43584i −0.696127 0.717919i \(-0.745095\pi\)
0.696127 0.717919i \(-0.254905\pi\)
\(284\) 0 0
\(285\) 0.326361 + 0.143734i 0.0193320 + 0.00851409i
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 40.0837 2.35787
\(290\) 0 0
\(291\) 7.85321 + 3.45867i 0.460363 + 0.202751i
\(292\) 0 0
\(293\) 22.8829 1.33683 0.668417 0.743787i \(-0.266972\pi\)
0.668417 + 0.743787i \(0.266972\pi\)
\(294\) 0 0
\(295\) 3.59796 0.209481
\(296\) 0 0
\(297\) 2.53574 + 7.49508i 0.147139 + 0.434909i
\(298\) 0 0
\(299\) −3.85370 −0.222865
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) −3.84680 + 8.73449i −0.220993 + 0.501783i
\(304\) 0 0
\(305\) 5.45286i 0.312230i
\(306\) 0 0
\(307\) 9.74121i 0.555961i 0.960587 + 0.277980i \(0.0896650\pi\)
−0.960587 + 0.277980i \(0.910335\pi\)
\(308\) 0 0
\(309\) −14.5513 6.40862i −0.827796 0.364574i
\(310\) 0 0
\(311\) 22.0678 1.25135 0.625676 0.780083i \(-0.284823\pi\)
0.625676 + 0.780083i \(0.284823\pi\)
\(312\) 0 0
\(313\) 15.5962i 0.881551i −0.897617 0.440776i \(-0.854703\pi\)
0.897617 0.440776i \(-0.145297\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 17.6841i 0.993238i 0.867969 + 0.496619i \(0.165425\pi\)
−0.867969 + 0.496619i \(0.834575\pi\)
\(318\) 0 0
\(319\) 10.9083 0.610746
\(320\) 0 0
\(321\) 7.59176 + 3.34353i 0.423731 + 0.186617i
\(322\) 0 0
\(323\) 3.18073i 0.176980i
\(324\) 0 0
\(325\) 3.10438i 0.172200i
\(326\) 0 0
\(327\) 9.33819 21.2031i 0.516403 1.17254i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 12.6650 0.696133 0.348066 0.937470i \(-0.386838\pi\)
0.348066 + 0.937470i \(0.386838\pi\)
\(332\) 0 0
\(333\) 16.3889 + 17.9097i 0.898104 + 0.981444i
\(334\) 0 0
\(335\) 7.15202 0.390756
\(336\) 0 0
\(337\) 25.7617 1.40333 0.701663 0.712509i \(-0.252441\pi\)
0.701663 + 0.712509i \(0.252441\pi\)
\(338\) 0 0
\(339\) 19.9353 + 8.77981i 1.08274 + 0.476854i
\(340\) 0 0
\(341\) −11.2381 −0.608577
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 4.58156 + 2.01779i 0.246663 + 0.108634i
\(346\) 0 0
\(347\) 33.0043i 1.77177i −0.463909 0.885883i \(-0.653554\pi\)
0.463909 0.885883i \(-0.346446\pi\)
\(348\) 0 0
\(349\) 29.1507i 1.56040i 0.625528 + 0.780202i \(0.284884\pi\)
−0.625528 + 0.780202i \(0.715116\pi\)
\(350\) 0 0
\(351\) 1.08585 + 3.20954i 0.0579585 + 0.171312i
\(352\) 0 0
\(353\) −4.58114 −0.243829 −0.121915 0.992541i \(-0.538903\pi\)
−0.121915 + 0.992541i \(0.538903\pi\)
\(354\) 0 0
\(355\) 6.28505i 0.333576i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 18.4776i 0.975213i −0.873064 0.487606i \(-0.837870\pi\)
0.873064 0.487606i \(-0.162130\pi\)
\(360\) 0 0
\(361\) 18.8228 0.990672
\(362\) 0 0
\(363\) −6.06051 + 13.7609i −0.318094 + 0.722260i
\(364\) 0 0
\(365\) 4.52146i 0.236664i
\(366\) 0 0
\(367\) 11.2971i 0.589706i −0.955543 0.294853i \(-0.904729\pi\)
0.955543 0.294853i \(-0.0952707\pi\)
\(368\) 0 0
\(369\) −5.12768 5.60351i −0.266937 0.291707i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −18.6299 −0.964622 −0.482311 0.876000i \(-0.660202\pi\)
−0.482311 + 0.876000i \(0.660202\pi\)
\(374\) 0 0
\(375\) −3.33255 + 7.56683i −0.172092 + 0.390749i
\(376\) 0 0
\(377\) 4.67113 0.240575
\(378\) 0 0
\(379\) 5.62097 0.288730 0.144365 0.989525i \(-0.453886\pi\)
0.144365 + 0.989525i \(0.453886\pi\)
\(380\) 0 0
\(381\) 0.184402 0.418701i 0.00944721 0.0214507i
\(382\) 0 0
\(383\) −20.1071 −1.02743 −0.513713 0.857962i \(-0.671730\pi\)
−0.513713 + 0.857962i \(0.671730\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −11.2642 12.3094i −0.572590 0.625723i
\(388\) 0 0
\(389\) 23.3657i 1.18469i −0.805685 0.592345i \(-0.798202\pi\)
0.805685 0.592345i \(-0.201798\pi\)
\(390\) 0 0
\(391\) 44.6521i 2.25815i
\(392\) 0 0
\(393\) 5.24924 11.9188i 0.264789 0.601226i
\(394\) 0 0
\(395\) 0.593916 0.0298832
\(396\) 0 0
\(397\) 32.8394i 1.64816i 0.566470 + 0.824082i \(0.308309\pi\)
−0.566470 + 0.824082i \(0.691691\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 32.9812i 1.64700i −0.567315 0.823501i \(-0.692018\pi\)
0.567315 0.823501i \(-0.307982\pi\)
\(402\) 0 0
\(403\) −4.81236 −0.239721
\(404\) 0 0
\(405\) 0.389565 4.38427i 0.0193576 0.217856i
\(406\) 0 0
\(407\) 12.3223i 0.610795i
\(408\) 0 0
\(409\) 16.7483i 0.828149i 0.910243 + 0.414075i \(0.135895\pi\)
−0.910243 + 0.414075i \(0.864105\pi\)
\(410\) 0 0
\(411\) 0.0313932 + 0.0138260i 0.00154851 + 0.000681987i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 4.41729 0.216836
\(416\) 0 0
\(417\) 16.0412 + 7.06477i 0.785539 + 0.345963i
\(418\) 0 0
\(419\) 22.5610 1.10218 0.551089 0.834446i \(-0.314212\pi\)
0.551089 + 0.834446i \(0.314212\pi\)
\(420\) 0 0
\(421\) −13.7973 −0.672441 −0.336220 0.941783i \(-0.609149\pi\)
−0.336220 + 0.941783i \(0.609149\pi\)
\(422\) 0 0
\(423\) −18.8642 20.6147i −0.917209 1.00232i
\(424\) 0 0
\(425\) −35.9698 −1.74479
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0.693181 1.57393i 0.0334671 0.0759899i
\(430\) 0 0
\(431\) 7.86848i 0.379011i −0.981880 0.189506i \(-0.939311\pi\)
0.981880 0.189506i \(-0.0606885\pi\)
\(432\) 0 0
\(433\) 23.7844i 1.14300i 0.820601 + 0.571502i \(0.193639\pi\)
−0.820601 + 0.571502i \(0.806361\pi\)
\(434\) 0 0
\(435\) −5.55337 2.44579i −0.266264 0.117267i
\(436\) 0 0
\(437\) −2.48803 −0.119019
\(438\) 0 0
\(439\) 22.9160i 1.09372i −0.837224 0.546860i \(-0.815823\pi\)
0.837224 0.546860i \(-0.184177\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 15.1481i 0.719709i 0.933008 + 0.359855i \(0.117174\pi\)
−0.933008 + 0.359855i \(0.882826\pi\)
\(444\) 0 0
\(445\) 4.67539 0.221635
\(446\) 0 0
\(447\) −22.3286 9.83386i −1.05611 0.465125i
\(448\) 0 0
\(449\) 15.2140i 0.717993i −0.933339 0.358997i \(-0.883119\pi\)
0.933339 0.358997i \(-0.116881\pi\)
\(450\) 0 0
\(451\) 3.85536i 0.181542i
\(452\) 0 0
\(453\) 8.78253 19.9415i 0.412639 0.936933i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 23.1398 1.08243 0.541216 0.840883i \(-0.317964\pi\)
0.541216 + 0.840883i \(0.317964\pi\)
\(458\) 0 0
\(459\) 37.1882 12.5815i 1.73580 0.587256i
\(460\) 0 0
\(461\) −2.52672 −0.117681 −0.0588405 0.998267i \(-0.518740\pi\)
−0.0588405 + 0.998267i \(0.518740\pi\)
\(462\) 0 0
\(463\) 37.3811 1.73725 0.868624 0.495472i \(-0.165005\pi\)
0.868624 + 0.495472i \(0.165005\pi\)
\(464\) 0 0
\(465\) 5.72128 + 2.51974i 0.265318 + 0.116850i
\(466\) 0 0
\(467\) 26.2777 1.21599 0.607994 0.793942i \(-0.291975\pi\)
0.607994 + 0.793942i \(0.291975\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 13.7436 + 6.05290i 0.633273 + 0.278903i
\(472\) 0 0
\(473\) 8.46922i 0.389415i
\(474\) 0 0
\(475\) 2.00425i 0.0919614i
\(476\) 0 0
\(477\) 3.23640 2.96158i 0.148185 0.135602i
\(478\) 0 0
\(479\) −10.4953 −0.479543 −0.239772 0.970829i \(-0.577073\pi\)
−0.239772 + 0.970829i \(0.577073\pi\)
\(480\) 0 0
\(481\) 5.27665i 0.240595i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 2.42296i 0.110021i
\(486\) 0 0
\(487\) 14.8614 0.673435 0.336718 0.941606i \(-0.390683\pi\)
0.336718 + 0.941606i \(0.390683\pi\)
\(488\) 0 0
\(489\) −2.33983 + 5.31277i −0.105811 + 0.240252i
\(490\) 0 0
\(491\) 13.2061i 0.595981i 0.954569 + 0.297990i \(0.0963164\pi\)
−0.954569 + 0.297990i \(0.903684\pi\)
\(492\) 0 0
\(493\) 54.1234i 2.43759i
\(494\) 0 0
\(495\) −1.64821 + 1.50825i −0.0740814 + 0.0677907i
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 32.2745 1.44481 0.722404 0.691472i \(-0.243037\pi\)
0.722404 + 0.691472i \(0.243037\pi\)
\(500\) 0 0
\(501\) 16.3368 37.0942i 0.729876 1.65725i
\(502\) 0 0
\(503\) 35.5206 1.58379 0.791894 0.610659i \(-0.209095\pi\)
0.791894 + 0.610659i \(0.209095\pi\)
\(504\) 0 0
\(505\) −2.69486 −0.119919
\(506\) 0 0
\(507\) −8.77866 + 19.9327i −0.389874 + 0.885242i
\(508\) 0 0
\(509\) 31.7393 1.40682 0.703411 0.710784i \(-0.251660\pi\)
0.703411 + 0.710784i \(0.251660\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 0.701049 + 2.07214i 0.0309521 + 0.0914874i
\(514\) 0 0
\(515\) 4.48953i 0.197832i
\(516\) 0 0
\(517\) 14.1835i 0.623788i
\(518\) 0 0
\(519\) −9.94204 + 22.5742i −0.436407 + 0.990899i
\(520\) 0 0
\(521\) 12.8629 0.563532 0.281766 0.959483i \(-0.409080\pi\)
0.281766 + 0.959483i \(0.409080\pi\)
\(522\) 0 0
\(523\) 29.6046i 1.29452i 0.762270 + 0.647260i \(0.224085\pi\)
−0.762270 + 0.647260i \(0.775915\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 55.7598i 2.42894i
\(528\) 0 0
\(529\) −11.9278 −0.518600
\(530\) 0 0
\(531\) 14.8997 + 16.2823i 0.646590 + 0.706591i
\(532\) 0 0
\(533\) 1.65094i 0.0715101i
\(534\) 0 0
\(535\) 2.34229i 0.101266i
\(536\) 0 0
\(537\) −32.2199 14.1901i −1.39039 0.612350i
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −9.99026 −0.429515 −0.214757 0.976667i \(-0.568896\pi\)
−0.214757 + 0.976667i \(0.568896\pi\)
\(542\) 0 0
\(543\) −1.26569 0.557431i −0.0543162 0.0239217i
\(544\) 0 0
\(545\) 6.54182 0.280221
\(546\) 0 0
\(547\) −36.1746 −1.54671 −0.773357 0.633970i \(-0.781424\pi\)
−0.773357 + 0.633970i \(0.781424\pi\)
\(548\) 0 0
\(549\) 24.6765 22.5811i 1.05317 0.963736i
\(550\) 0 0
\(551\) 3.01578 0.128476
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) −2.76284 + 6.27326i −0.117276 + 0.266285i
\(556\) 0 0
\(557\) 7.39255i 0.313233i −0.987660 0.156616i \(-0.949941\pi\)
0.987660 0.156616i \(-0.0500586\pi\)
\(558\) 0 0
\(559\) 3.62668i 0.153392i
\(560\) 0 0
\(561\) −18.2368 8.03175i −0.769957 0.339101i
\(562\) 0 0
\(563\) −13.4904 −0.568551 −0.284275 0.958743i \(-0.591753\pi\)
−0.284275 + 0.958743i \(0.591753\pi\)
\(564\) 0 0
\(565\) 6.15065i 0.258760i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 34.5088i 1.44668i −0.690490 0.723342i \(-0.742605\pi\)
0.690490 0.723342i \(-0.257395\pi\)
\(570\) 0 0
\(571\) 22.1255 0.925923 0.462962 0.886378i \(-0.346787\pi\)
0.462962 + 0.886378i \(0.346787\pi\)
\(572\) 0 0
\(573\) 33.3893 + 14.7051i 1.39486 + 0.614316i
\(574\) 0 0
\(575\) 28.1363i 1.17337i
\(576\) 0 0
\(577\) 2.50202i 0.104160i −0.998643 0.0520802i \(-0.983415\pi\)
0.998643 0.0520802i \(-0.0165852\pi\)
\(578\) 0 0
\(579\) 12.4973 28.3762i 0.519371 1.17927i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −2.22673 −0.0922218
\(584\) 0 0
\(585\) −0.705793 + 0.645861i −0.0291810 + 0.0267030i
\(586\) 0 0
\(587\) 4.36635 0.180219 0.0901093 0.995932i \(-0.471278\pi\)
0.0901093 + 0.995932i \(0.471278\pi\)
\(588\) 0 0
\(589\) −3.10696 −0.128020
\(590\) 0 0
\(591\) −30.3321 13.3587i −1.24770 0.549505i
\(592\) 0 0
\(593\) −6.55038 −0.268992 −0.134496 0.990914i \(-0.542942\pi\)
−0.134496 + 0.990914i \(0.542942\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −19.9032 8.76568i −0.814584 0.358755i
\(598\) 0 0
\(599\) 8.43233i 0.344536i 0.985050 + 0.172268i \(0.0551095\pi\)
−0.985050 + 0.172268i \(0.944891\pi\)
\(600\) 0 0
\(601\) 3.05803i 0.124740i −0.998053 0.0623699i \(-0.980134\pi\)
0.998053 0.0623699i \(-0.0198659\pi\)
\(602\) 0 0
\(603\) 29.6175 + 32.3659i 1.20612 + 1.31804i
\(604\) 0 0
\(605\) −4.24566 −0.172611
\(606\) 0 0
\(607\) 2.07026i 0.0840291i −0.999117 0.0420146i \(-0.986622\pi\)
0.999117 0.0420146i \(-0.0133776\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 6.07363i 0.245713i
\(612\) 0 0
\(613\) 28.1973 1.13888 0.569440 0.822033i \(-0.307160\pi\)
0.569440 + 0.822033i \(0.307160\pi\)
\(614\) 0 0
\(615\) 0.864427 1.96275i 0.0348570 0.0791459i
\(616\) 0 0
\(617\) 22.8152i 0.918505i 0.888306 + 0.459253i \(0.151883\pi\)
−0.888306 + 0.459253i \(0.848117\pi\)
\(618\) 0 0
\(619\) 3.59092i 0.144331i −0.997393 0.0721657i \(-0.977009\pi\)
0.997393 0.0721657i \(-0.0229911\pi\)
\(620\) 0 0
\(621\) 9.84155 + 29.0894i 0.394928 + 1.16732i
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 21.4695 0.858780
\(626\) 0 0
\(627\) 0.447532 1.01616i 0.0178727 0.0405815i
\(628\) 0 0
\(629\) −61.1395 −2.43779
\(630\) 0 0
\(631\) −14.4106 −0.573678 −0.286839 0.957979i \(-0.592605\pi\)
−0.286839 + 0.957979i \(0.592605\pi\)
\(632\) 0 0
\(633\) 6.26009 14.2141i 0.248816 0.564958i
\(634\) 0 0
\(635\) 0.129182 0.00512643
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 28.4425 26.0273i 1.12517 1.02962i
\(640\) 0 0
\(641\) 14.0910i 0.556562i 0.960500 + 0.278281i \(0.0897647\pi\)
−0.960500 + 0.278281i \(0.910235\pi\)
\(642\) 0 0
\(643\) 8.06888i 0.318205i −0.987262 0.159103i \(-0.949140\pi\)
0.987262 0.159103i \(-0.0508601\pi\)
\(644\) 0 0
\(645\) 1.89892 4.31165i 0.0747698 0.169771i
\(646\) 0 0
\(647\) −43.2431 −1.70006 −0.850031 0.526732i \(-0.823417\pi\)
−0.850031 + 0.526732i \(0.823417\pi\)
\(648\) 0 0
\(649\) 11.2026i 0.439742i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 43.9405i 1.71952i −0.510695 0.859762i \(-0.670612\pi\)
0.510695 0.859762i \(-0.329388\pi\)
\(654\) 0 0
\(655\) 3.67733 0.143685
\(656\) 0 0
\(657\) 20.4615 18.7240i 0.798279 0.730493i
\(658\) 0 0
\(659\) 24.6275i 0.959351i 0.877446 + 0.479676i \(0.159246\pi\)
−0.877446 + 0.479676i \(0.840754\pi\)
\(660\) 0 0
\(661\) 22.2931i 0.867103i −0.901129 0.433551i \(-0.857260\pi\)
0.901129 0.433551i \(-0.142740\pi\)
\(662\) 0 0
\(663\) −7.80933 3.43935i −0.303289 0.133573i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 42.3364 1.63927
\(668\) 0 0
\(669\) −17.4071 7.66635i −0.672997 0.296398i
\(670\) 0 0
\(671\) −16.9781 −0.655431
\(672\) 0 0
\(673\) 14.5042 0.559096 0.279548 0.960132i \(-0.409815\pi\)
0.279548 + 0.960132i \(0.409815\pi\)
\(674\) 0 0
\(675\) −23.4332 + 7.92793i −0.901943 + 0.305146i
\(676\) 0 0
\(677\) −41.5727 −1.59777 −0.798884 0.601486i \(-0.794576\pi\)
−0.798884 + 0.601486i \(0.794576\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 3.80517 8.63995i 0.145814 0.331084i
\(682\) 0 0
\(683\) 7.61022i 0.291197i 0.989344 + 0.145599i \(0.0465108\pi\)
−0.989344 + 0.145599i \(0.953489\pi\)
\(684\) 0 0
\(685\) 0.00968575i 0.000370073i
\(686\) 0 0
\(687\) −20.2903 8.93614i −0.774122 0.340935i
\(688\) 0 0
\(689\) −0.953529 −0.0363266
\(690\) 0 0
\(691\) 2.10683i 0.0801476i −0.999197 0.0400738i \(-0.987241\pi\)
0.999197 0.0400738i \(-0.0127593\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 4.94919i 0.187733i
\(696\) 0 0
\(697\) 19.1291 0.724566
\(698\) 0 0
\(699\) −25.6066 11.2775i −0.968530 0.426555i
\(700\) 0 0
\(701\) 0.0201617i 0.000761498i −1.00000 0.000380749i \(-0.999879\pi\)
1.00000 0.000380749i \(-0.000121196\pi\)
\(702\) 0 0
\(703\) 3.40672i 0.128487i
\(704\) 0 0
\(705\) 3.18013 7.22076i 0.119771 0.271950i
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −5.18331 −0.194663 −0.0973317 0.995252i \(-0.531031\pi\)
−0.0973317 + 0.995252i \(0.531031\pi\)
\(710\) 0 0
\(711\) 2.45949 + 2.68772i 0.0922382 + 0.100797i
\(712\) 0 0
\(713\) −43.6165 −1.63345
\(714\) 0 0
\(715\) 0.485605 0.0181606
\(716\) 0 0
\(717\) 1.73715 + 0.765068i 0.0648751 + 0.0285720i
\(718\) 0 0
\(719\) 26.1395 0.974838 0.487419 0.873168i \(-0.337938\pi\)
0.487419 + 0.873168i \(0.337938\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) −13.5689 5.97597i −0.504634 0.222249i
\(724\) 0 0
\(725\) 34.1044i 1.26661i
\(726\) 0 0
\(727\) 20.9197i 0.775867i 0.921687 + 0.387934i \(0.126811\pi\)
−0.921687 + 0.387934i \(0.873189\pi\)
\(728\) 0 0
\(729\) 21.4539 16.3930i 0.794590 0.607147i
\(730\) 0 0
\(731\) 42.0216 1.55422
\(732\) 0 0
\(733\) 1.64571i 0.0607858i 0.999538 + 0.0303929i \(0.00967585\pi\)
−0.999538 + 0.0303929i \(0.990324\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 22.2686i 0.820274i
\(738\) 0 0
\(739\) 3.65420 0.134422 0.0672109 0.997739i \(-0.478590\pi\)
0.0672109 + 0.997739i \(0.478590\pi\)
\(740\) 0 0
\(741\) 0.191642 0.435139i 0.00704014 0.0159852i
\(742\) 0 0
\(743\) 23.6421i 0.867346i 0.901070 + 0.433673i \(0.142783\pi\)
−0.901070 + 0.433673i \(0.857217\pi\)
\(744\) 0 0
\(745\) 6.88906i 0.252395i
\(746\) 0 0
\(747\) 18.2926 + 19.9901i 0.669292 + 0.731399i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −18.4859 −0.674561 −0.337280 0.941404i \(-0.609507\pi\)
−0.337280 + 0.941404i \(0.609507\pi\)
\(752\) 0 0
\(753\) 2.71115 6.15590i 0.0987999 0.224334i
\(754\) 0 0
\(755\) 6.15256 0.223914
\(756\) 0 0
\(757\) −39.2439 −1.42634 −0.713172 0.700989i \(-0.752742\pi\)
−0.713172 + 0.700989i \(0.752742\pi\)
\(758\) 0 0
\(759\) 6.28260 14.2652i 0.228044 0.517793i
\(760\) 0 0
\(761\) 24.3151 0.881423 0.440711 0.897649i \(-0.354726\pi\)
0.440711 + 0.897649i \(0.354726\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 7.48345 + 8.17788i 0.270565 + 0.295672i
\(766\) 0 0
\(767\) 4.79718i 0.173216i
\(768\) 0 0
\(769\) 2.38223i 0.0859053i 0.999077 + 0.0429526i \(0.0136765\pi\)
−0.999077 + 0.0429526i \(0.986324\pi\)
\(770\) 0 0
\(771\) −12.4347 + 28.2341i −0.447826 + 1.01683i
\(772\) 0 0
\(773\) −35.9401 −1.29267 −0.646337 0.763052i \(-0.723700\pi\)
−0.646337 + 0.763052i \(0.723700\pi\)
\(774\) 0 0
\(775\) 35.1356i 1.26211i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 1.06588i 0.0381891i
\(780\) 0 0
\(781\) −19.5692 −0.700241
\(782\) 0 0
\(783\) −11.9291 35.2597i −0.426310 1.26008i
\(784\) 0 0
\(785\) 4.24033i 0.151344i
\(786\) 0 0
\(787\) 8.45824i 0.301504i −0.988572 0.150752i \(-0.951831\pi\)
0.988572 0.150752i \(-0.0481694\pi\)
\(788\) 0 0
\(789\) −8.67993 3.82277i −0.309014 0.136094i
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −7.27033 −0.258177
\(794\) 0 0
\(795\) 1.13362 + 0.499265i 0.0402055 + 0.0177071i
\(796\) 0 0
\(797\) 22.7299 0.805134 0.402567 0.915390i \(-0.368118\pi\)
0.402567 + 0.915390i \(0.368118\pi\)
\(798\) 0 0
\(799\) 70.3739 2.48965
\(800\) 0 0
\(801\) 19.3615 + 21.1581i 0.684103 + 0.747585i
\(802\) 0 0
\(803\) −14.0781 −0.496804
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 8.48518 19.2663i 0.298693 0.678207i
\(808\) 0 0
\(809\) 40.2926i 1.41661i −0.705905 0.708307i \(-0.749459\pi\)
0.705905 0.708307i \(-0.250541\pi\)
\(810\) 0 0
\(811\) 47.7723i 1.67751i −0.544507 0.838756i \(-0.683283\pi\)
0.544507 0.838756i \(-0.316717\pi\)
\(812\) 0 0
\(813\) −38.3176 16.8757i −1.34386 0.591855i
\(814\) 0 0
\(815\) −1.63915 −0.0574170
\(816\) 0 0
\(817\) 2.34146i 0.0819173i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 2.95782i 0.103229i 0.998667 + 0.0516144i \(0.0164367\pi\)
−0.998667 + 0.0516144i \(0.983563\pi\)
\(822\) 0 0
\(823\) −48.7101 −1.69793 −0.848964 0.528451i \(-0.822773\pi\)
−0.848964 + 0.528451i \(0.822773\pi\)
\(824\) 0 0
\(825\) 11.4914 + 5.06099i 0.400080 + 0.176201i
\(826\) 0 0
\(827\) 53.0570i 1.84497i −0.386028 0.922487i \(-0.626153\pi\)
0.386028 0.922487i \(-0.373847\pi\)
\(828\) 0 0
\(829\) 41.1362i 1.42872i 0.699779 + 0.714360i \(0.253282\pi\)
−0.699779 + 0.714360i \(0.746718\pi\)
\(830\) 0 0
\(831\) −2.04855 + 4.65141i −0.0710635 + 0.161356i
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 11.4447 0.396060
\(836\) 0 0
\(837\) 12.2898 + 36.3258i 0.424796 + 1.25560i
\(838\) 0 0
\(839\) 42.0861 1.45297 0.726486 0.687181i \(-0.241152\pi\)
0.726486 + 0.687181i \(0.241152\pi\)
\(840\) 0 0
\(841\) −22.3166 −0.769536
\(842\) 0 0
\(843\) −3.12984 1.37843i −0.107797 0.0474756i
\(844\) 0 0
\(845\) −6.14985 −0.211561
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 38.2880 + 16.8626i 1.31404 + 0.578724i
\(850\) 0 0
\(851\) 47.8246i 1.63941i
\(852\) 0 0
\(853\) 21.7333i 0.744134i −0.928206 0.372067i \(-0.878649\pi\)
0.928206 0.372067i \(-0.121351\pi\)
\(854\) 0 0
\(855\) −0.455675 + 0.416981i −0.0155838 + 0.0142605i
\(856\) 0 0
\(857\) −5.42154 −0.185196 −0.0925982 0.995704i \(-0.529517\pi\)
−0.0925982 + 0.995704i \(0.529517\pi\)
\(858\) 0 0
\(859\) 2.76401i 0.0943069i −0.998888 0.0471535i \(-0.984985\pi\)
0.998888 0.0471535i \(-0.0150150\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 5.08854i 0.173216i −0.996242 0.0866080i \(-0.972397\pi\)
0.996242 0.0866080i \(-0.0276028\pi\)
\(864\) 0 0
\(865\) −6.96484 −0.236812
\(866\) 0 0
\(867\) −27.9830 + 63.5379i −0.950354 + 2.15786i
\(868\) 0 0
\(869\) 1.84922i 0.0627306i
\(870\) 0 0
\(871\) 9.53583i 0.323109i
\(872\) 0 0
\(873\) −10.9649 + 10.0338i −0.371105 + 0.339593i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 8.27933 0.279573 0.139787 0.990182i \(-0.455358\pi\)
0.139787 + 0.990182i \(0.455358\pi\)
\(878\) 0 0
\(879\) −15.9749 + 36.2724i −0.538820 + 1.22344i
\(880\) 0 0
\(881\) −14.3278 −0.482714 −0.241357 0.970436i \(-0.577593\pi\)
−0.241357 + 0.970436i \(0.577593\pi\)
\(882\) 0 0
\(883\) −55.7910 −1.87752 −0.938758 0.344576i \(-0.888023\pi\)
−0.938758 + 0.344576i \(0.888023\pi\)
\(884\) 0 0
\(885\) −2.51179 + 5.70323i −0.0844329 + 0.191712i
\(886\) 0 0
\(887\) −33.5247 −1.12565 −0.562824 0.826577i \(-0.690285\pi\)
−0.562824 + 0.826577i \(0.690285\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) −13.6509 1.21295i −0.457323 0.0406355i
\(892\) 0 0
\(893\) 3.92126i 0.131220i
\(894\) 0 0
\(895\) 9.94083i 0.332285i
\(896\) 0 0
\(897\) 2.69033 6.10862i 0.0898275 0.203961i
\(898\) 0 0
\(899\) 52.8682 1.76325
\(900\) 0 0
\(901\) 11.0483i 0.368074i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0.390505i 0.0129808i
\(906\) 0 0
\(907\) −6.78703 −0.225360 −0.112680 0.993631i \(-0.535943\pi\)
−0.112680 + 0.993631i \(0.535943\pi\)
\(908\) 0 0
\(909\) −11.1598 12.1954i −0.370147 0.404494i
\(910\) 0 0
\(911\) 5.62793i 0.186462i −0.995645 0.0932308i \(-0.970281\pi\)
0.995645 0.0932308i \(-0.0297194\pi\)
\(912\) 0 0
\(913\) 13.7537i 0.455182i
\(914\) 0 0
\(915\) 8.64348 + 3.80672i 0.285745 + 0.125846i
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) −28.7234 −0.947496 −0.473748 0.880660i \(-0.657099\pi\)
−0.473748 + 0.880660i \(0.657099\pi\)
\(920\) 0 0
\(921\) −15.4411 6.80049i −0.508801 0.224084i
\(922\) 0 0
\(923\) −8.37990 −0.275828
\(924\) 0 0
\(925\) 38.5254 1.26671
\(926\) 0 0
\(927\) 20.3170 18.5918i 0.667298 0.610634i
\(928\) 0 0
\(929\) 10.4848 0.343995 0.171998 0.985097i \(-0.444978\pi\)
0.171998 + 0.985097i \(0.444978\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) −15.4059 + 34.9804i −0.504366 + 1.14521i
\(934\) 0 0
\(935\) 5.62660i 0.184010i
\(936\) 0 0
\(937\) 45.3531i 1.48162i −0.671713 0.740811i \(-0.734441\pi\)
0.671713 0.740811i \(-0.265559\pi\)
\(938\) 0 0
\(939\) 24.7220 + 10.8880i 0.806773 + 0.355315i
\(940\) 0 0
\(941\) −29.4694 −0.960675 −0.480338 0.877084i \(-0.659486\pi\)
−0.480338 + 0.877084i \(0.659486\pi\)
\(942\) 0 0
\(943\) 14.9632i 0.487268i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 20.0605i 0.651877i −0.945391 0.325939i \(-0.894320\pi\)
0.945391 0.325939i \(-0.105680\pi\)
\(948\) 0 0
\(949\) −6.02849 −0.195693
\(950\) 0 0
\(951\) −28.0316 12.3455i −0.908986 0.400331i
\(952\) 0 0
\(953\) 4.51738i 0.146332i −0.997320 0.0731661i \(-0.976690\pi\)
0.997320 0.0731661i \(-0.0233103\pi\)
\(954\) 0 0
\(955\) 10.3016i 0.333352i
\(956\) 0 0
\(957\) −7.61523 + 17.2910i −0.246165 + 0.558939i
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −23.4667 −0.756989
\(962\) 0 0
\(963\) −10.5998 + 9.69975i −0.341575 + 0.312570i
\(964\) 0 0
\(965\) 8.75493 0.281831
\(966\) 0 0
\(967\) −28.2943 −0.909883 −0.454942 0.890521i \(-0.650340\pi\)
−0.454942 + 0.890521i \(0.650340\pi\)
\(968\) 0 0
\(969\) −5.04187 2.22051i −0.161968 0.0713332i
\(970\) 0 0
\(971\) 44.9316 1.44192 0.720962 0.692975i \(-0.243700\pi\)
0.720962 + 0.692975i \(0.243700\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 4.92084 + 2.16721i 0.157593 + 0.0694064i
\(976\) 0 0
\(977\) 39.6506i 1.26853i 0.773114 + 0.634267i \(0.218698\pi\)
−0.773114 + 0.634267i \(0.781302\pi\)
\(978\) 0 0
\(979\) 14.5573i 0.465254i
\(980\) 0 0
\(981\) 27.0906 + 29.6045i 0.864936 + 0.945198i
\(982\) 0 0
\(983\) 1.09263 0.0348494 0.0174247 0.999848i \(-0.494453\pi\)
0.0174247 + 0.999848i \(0.494453\pi\)
\(984\) 0 0
\(985\) 9.35839i 0.298183i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 32.8702i 1.04521i
\(990\) 0 0
\(991\) 48.6223 1.54454 0.772269 0.635296i \(-0.219122\pi\)
0.772269 + 0.635296i \(0.219122\pi\)
\(992\) 0 0
\(993\) −8.84164 + 20.0757i −0.280581 + 0.637083i
\(994\) 0 0
\(995\) 6.14075i 0.194675i
\(996\) 0 0
\(997\) 30.0811i 0.952677i 0.879262 + 0.476338i \(0.158036\pi\)
−0.879262 + 0.476338i \(0.841964\pi\)
\(998\) 0 0
\(999\) −39.8305 + 13.4755i −1.26018 + 0.426345i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2352.2.k.j.881.8 24
3.2 odd 2 inner 2352.2.k.j.881.18 24
4.3 odd 2 1176.2.k.b.881.17 yes 24
7.6 odd 2 inner 2352.2.k.j.881.17 24
12.11 even 2 1176.2.k.b.881.7 24
21.20 even 2 inner 2352.2.k.j.881.7 24
28.3 even 6 1176.2.u.c.1097.24 48
28.11 odd 6 1176.2.u.c.1097.1 48
28.19 even 6 1176.2.u.c.521.9 48
28.23 odd 6 1176.2.u.c.521.16 48
28.27 even 2 1176.2.k.b.881.8 yes 24
84.11 even 6 1176.2.u.c.1097.9 48
84.23 even 6 1176.2.u.c.521.24 48
84.47 odd 6 1176.2.u.c.521.1 48
84.59 odd 6 1176.2.u.c.1097.16 48
84.83 odd 2 1176.2.k.b.881.18 yes 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1176.2.k.b.881.7 24 12.11 even 2
1176.2.k.b.881.8 yes 24 28.27 even 2
1176.2.k.b.881.17 yes 24 4.3 odd 2
1176.2.k.b.881.18 yes 24 84.83 odd 2
1176.2.u.c.521.1 48 84.47 odd 6
1176.2.u.c.521.9 48 28.19 even 6
1176.2.u.c.521.16 48 28.23 odd 6
1176.2.u.c.521.24 48 84.23 even 6
1176.2.u.c.1097.1 48 28.11 odd 6
1176.2.u.c.1097.9 48 84.11 even 6
1176.2.u.c.1097.16 48 84.59 odd 6
1176.2.u.c.1097.24 48 28.3 even 6
2352.2.k.j.881.7 24 21.20 even 2 inner
2352.2.k.j.881.8 24 1.1 even 1 trivial
2352.2.k.j.881.17 24 7.6 odd 2 inner
2352.2.k.j.881.18 24 3.2 odd 2 inner