Properties

Label 2352.2.k.j.881.16
Level $2352$
Weight $2$
Character 2352.881
Analytic conductor $18.781$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2352,2,Mod(881,2352)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2352, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2352.881"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2352 = 2^{4} \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2352.k (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,0,0,0,0,0,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,0,8,0,0,0,0, 0,0,0,0,0,0,0,16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(37)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.7808145554\)
Analytic rank: \(0\)
Dimension: \(24\)
Twist minimal: no (minimal twist has level 1176)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 881.16
Character \(\chi\) \(=\) 2352.881
Dual form 2352.2.k.j.881.15

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.615077 + 1.61916i) q^{3} +1.31193 q^{5} +(-2.24336 + 1.99182i) q^{9} -4.97953i q^{11} -0.733252i q^{13} +(0.806939 + 2.12423i) q^{15} +0.728350 q^{17} -6.94457i q^{19} -7.92926i q^{23} -3.27884 q^{25} +(-4.60491 - 2.40724i) q^{27} -4.62960i q^{29} -1.80300i q^{31} +(8.06265 - 3.06280i) q^{33} -5.22423 q^{37} +(1.18725 - 0.451007i) q^{39} +7.83857 q^{41} +1.27217 q^{43} +(-2.94313 + 2.61313i) q^{45} +4.24163 q^{47} +(0.447992 + 1.17932i) q^{51} +14.4166i q^{53} -6.53279i q^{55} +(11.2444 - 4.27145i) q^{57} -9.35318 q^{59} -13.5881i q^{61} -0.961975i q^{65} +7.54811 q^{67} +(12.8387 - 4.87711i) q^{69} +6.92721i q^{71} -3.79913i q^{73} +(-2.01674 - 5.30897i) q^{75} -13.5928 q^{79} +(1.06532 - 8.93673i) q^{81} -6.58972 q^{83} +0.955545 q^{85} +(7.49607 - 2.84757i) q^{87} -4.37845 q^{89} +(2.91935 - 1.10898i) q^{93} -9.11079i q^{95} +15.1510i q^{97} +(9.91831 + 11.1709i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 16 q^{15} + 8 q^{25} + 16 q^{37} + 64 q^{39} - 16 q^{43} - 48 q^{51} + 48 q^{57} - 16 q^{67} + 80 q^{81} - 64 q^{85} - 32 q^{93} + 56 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2352\mathbb{Z}\right)^\times\).

\(n\) \(785\) \(1471\) \(1765\) \(2257\)
\(\chi(n)\) \(-1\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.615077 + 1.61916i 0.355115 + 0.934823i
\(4\) 0 0
\(5\) 1.31193 0.586713 0.293356 0.956003i \(-0.405228\pi\)
0.293356 + 0.956003i \(0.405228\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) −2.24336 + 1.99182i −0.747786 + 0.663939i
\(10\) 0 0
\(11\) 4.97953i 1.50138i −0.660652 0.750692i \(-0.729720\pi\)
0.660652 0.750692i \(-0.270280\pi\)
\(12\) 0 0
\(13\) 0.733252i 0.203367i −0.994817 0.101684i \(-0.967577\pi\)
0.994817 0.101684i \(-0.0324230\pi\)
\(14\) 0 0
\(15\) 0.806939 + 2.12423i 0.208351 + 0.548473i
\(16\) 0 0
\(17\) 0.728350 0.176651 0.0883255 0.996092i \(-0.471848\pi\)
0.0883255 + 0.996092i \(0.471848\pi\)
\(18\) 0 0
\(19\) 6.94457i 1.59319i −0.604511 0.796597i \(-0.706631\pi\)
0.604511 0.796597i \(-0.293369\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 7.92926i 1.65337i −0.562668 0.826683i \(-0.690225\pi\)
0.562668 0.826683i \(-0.309775\pi\)
\(24\) 0 0
\(25\) −3.27884 −0.655768
\(26\) 0 0
\(27\) −4.60491 2.40724i −0.886216 0.463273i
\(28\) 0 0
\(29\) 4.62960i 0.859696i −0.902901 0.429848i \(-0.858567\pi\)
0.902901 0.429848i \(-0.141433\pi\)
\(30\) 0 0
\(31\) 1.80300i 0.323828i −0.986805 0.161914i \(-0.948233\pi\)
0.986805 0.161914i \(-0.0517668\pi\)
\(32\) 0 0
\(33\) 8.06265 3.06280i 1.40353 0.533164i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −5.22423 −0.858858 −0.429429 0.903101i \(-0.641285\pi\)
−0.429429 + 0.903101i \(0.641285\pi\)
\(38\) 0 0
\(39\) 1.18725 0.451007i 0.190112 0.0722189i
\(40\) 0 0
\(41\) 7.83857 1.22418 0.612089 0.790789i \(-0.290329\pi\)
0.612089 + 0.790789i \(0.290329\pi\)
\(42\) 0 0
\(43\) 1.27217 0.194004 0.0970020 0.995284i \(-0.469075\pi\)
0.0970020 + 0.995284i \(0.469075\pi\)
\(44\) 0 0
\(45\) −2.94313 + 2.61313i −0.438736 + 0.389542i
\(46\) 0 0
\(47\) 4.24163 0.618705 0.309352 0.950947i \(-0.399888\pi\)
0.309352 + 0.950947i \(0.399888\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 0.447992 + 1.17932i 0.0627314 + 0.165137i
\(52\) 0 0
\(53\) 14.4166i 1.98027i 0.140107 + 0.990136i \(0.455255\pi\)
−0.140107 + 0.990136i \(0.544745\pi\)
\(54\) 0 0
\(55\) 6.53279i 0.880882i
\(56\) 0 0
\(57\) 11.2444 4.27145i 1.48935 0.565767i
\(58\) 0 0
\(59\) −9.35318 −1.21768 −0.608840 0.793293i \(-0.708365\pi\)
−0.608840 + 0.793293i \(0.708365\pi\)
\(60\) 0 0
\(61\) 13.5881i 1.73978i −0.493245 0.869890i \(-0.664189\pi\)
0.493245 0.869890i \(-0.335811\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0.961975i 0.119318i
\(66\) 0 0
\(67\) 7.54811 0.922148 0.461074 0.887362i \(-0.347464\pi\)
0.461074 + 0.887362i \(0.347464\pi\)
\(68\) 0 0
\(69\) 12.8387 4.87711i 1.54560 0.587135i
\(70\) 0 0
\(71\) 6.92721i 0.822109i 0.911611 + 0.411055i \(0.134839\pi\)
−0.911611 + 0.411055i \(0.865161\pi\)
\(72\) 0 0
\(73\) 3.79913i 0.444654i −0.974972 0.222327i \(-0.928635\pi\)
0.974972 0.222327i \(-0.0713653\pi\)
\(74\) 0 0
\(75\) −2.01674 5.30897i −0.232873 0.613027i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −13.5928 −1.52931 −0.764653 0.644442i \(-0.777090\pi\)
−0.764653 + 0.644442i \(0.777090\pi\)
\(80\) 0 0
\(81\) 1.06532 8.93673i 0.118369 0.992970i
\(82\) 0 0
\(83\) −6.58972 −0.723316 −0.361658 0.932311i \(-0.617789\pi\)
−0.361658 + 0.932311i \(0.617789\pi\)
\(84\) 0 0
\(85\) 0.955545 0.103643
\(86\) 0 0
\(87\) 7.49607 2.84757i 0.803663 0.305291i
\(88\) 0 0
\(89\) −4.37845 −0.464115 −0.232057 0.972702i \(-0.574546\pi\)
−0.232057 + 0.972702i \(0.574546\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 2.91935 1.10898i 0.302722 0.114996i
\(94\) 0 0
\(95\) 9.11079i 0.934748i
\(96\) 0 0
\(97\) 15.1510i 1.53835i 0.639039 + 0.769174i \(0.279332\pi\)
−0.639039 + 0.769174i \(0.720668\pi\)
\(98\) 0 0
\(99\) 9.91831 + 11.1709i 0.996828 + 1.12271i
\(100\) 0 0
\(101\) 10.9959 1.09414 0.547068 0.837088i \(-0.315744\pi\)
0.547068 + 0.837088i \(0.315744\pi\)
\(102\) 0 0
\(103\) 10.4292i 1.02762i −0.857903 0.513812i \(-0.828233\pi\)
0.857903 0.513812i \(-0.171767\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 3.08012i 0.297767i 0.988855 + 0.148883i \(0.0475679\pi\)
−0.988855 + 0.148883i \(0.952432\pi\)
\(108\) 0 0
\(109\) 13.7512 1.31713 0.658565 0.752524i \(-0.271164\pi\)
0.658565 + 0.752524i \(0.271164\pi\)
\(110\) 0 0
\(111\) −3.21330 8.45886i −0.304993 0.802879i
\(112\) 0 0
\(113\) 12.6414i 1.18920i 0.804022 + 0.594599i \(0.202689\pi\)
−0.804022 + 0.594599i \(0.797311\pi\)
\(114\) 0 0
\(115\) 10.4026i 0.970051i
\(116\) 0 0
\(117\) 1.46050 + 1.64495i 0.135024 + 0.152075i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −13.7957 −1.25415
\(122\) 0 0
\(123\) 4.82133 + 12.6919i 0.434724 + 1.14439i
\(124\) 0 0
\(125\) −10.8613 −0.971461
\(126\) 0 0
\(127\) −3.31989 −0.294593 −0.147296 0.989092i \(-0.547057\pi\)
−0.147296 + 0.989092i \(0.547057\pi\)
\(128\) 0 0
\(129\) 0.782483 + 2.05985i 0.0688937 + 0.181359i
\(130\) 0 0
\(131\) 16.0122 1.39899 0.699497 0.714635i \(-0.253407\pi\)
0.699497 + 0.714635i \(0.253407\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) −6.04132 3.15813i −0.519954 0.271808i
\(136\) 0 0
\(137\) 10.7533i 0.918720i 0.888250 + 0.459360i \(0.151921\pi\)
−0.888250 + 0.459360i \(0.848079\pi\)
\(138\) 0 0
\(139\) 18.5535i 1.57369i 0.617152 + 0.786844i \(0.288286\pi\)
−0.617152 + 0.786844i \(0.711714\pi\)
\(140\) 0 0
\(141\) 2.60893 + 6.86787i 0.219711 + 0.578379i
\(142\) 0 0
\(143\) −3.65125 −0.305333
\(144\) 0 0
\(145\) 6.07372i 0.504395i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 4.86849i 0.398843i 0.979914 + 0.199421i \(0.0639062\pi\)
−0.979914 + 0.199421i \(0.936094\pi\)
\(150\) 0 0
\(151\) −1.70120 −0.138442 −0.0692209 0.997601i \(-0.522051\pi\)
−0.0692209 + 0.997601i \(0.522051\pi\)
\(152\) 0 0
\(153\) −1.63395 + 1.45074i −0.132097 + 0.117285i
\(154\) 0 0
\(155\) 2.36541i 0.189994i
\(156\) 0 0
\(157\) 18.1776i 1.45073i −0.688363 0.725366i \(-0.741670\pi\)
0.688363 0.725366i \(-0.258330\pi\)
\(158\) 0 0
\(159\) −23.3428 + 8.86733i −1.85120 + 0.703225i
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 5.02332 0.393457 0.196728 0.980458i \(-0.436968\pi\)
0.196728 + 0.980458i \(0.436968\pi\)
\(164\) 0 0
\(165\) 10.5776 4.01817i 0.823468 0.312814i
\(166\) 0 0
\(167\) 16.4374 1.27196 0.635982 0.771704i \(-0.280595\pi\)
0.635982 + 0.771704i \(0.280595\pi\)
\(168\) 0 0
\(169\) 12.4623 0.958642
\(170\) 0 0
\(171\) 13.8323 + 15.5792i 1.05778 + 1.19137i
\(172\) 0 0
\(173\) −4.20447 −0.319660 −0.159830 0.987145i \(-0.551095\pi\)
−0.159830 + 0.987145i \(0.551095\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −5.75293 15.1443i −0.432417 1.13831i
\(178\) 0 0
\(179\) 8.14004i 0.608415i 0.952606 + 0.304208i \(0.0983917\pi\)
−0.952606 + 0.304208i \(0.901608\pi\)
\(180\) 0 0
\(181\) 17.8884i 1.32963i −0.747007 0.664817i \(-0.768510\pi\)
0.747007 0.664817i \(-0.231490\pi\)
\(182\) 0 0
\(183\) 22.0013 8.35775i 1.62639 0.617823i
\(184\) 0 0
\(185\) −6.85382 −0.503903
\(186\) 0 0
\(187\) 3.62684i 0.265221i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 4.11041i 0.297418i −0.988881 0.148709i \(-0.952488\pi\)
0.988881 0.148709i \(-0.0475119\pi\)
\(192\) 0 0
\(193\) −3.22919 −0.232442 −0.116221 0.993223i \(-0.537078\pi\)
−0.116221 + 0.993223i \(0.537078\pi\)
\(194\) 0 0
\(195\) 1.55759 0.591689i 0.111541 0.0423717i
\(196\) 0 0
\(197\) 4.70768i 0.335408i 0.985837 + 0.167704i \(0.0536353\pi\)
−0.985837 + 0.167704i \(0.946365\pi\)
\(198\) 0 0
\(199\) 16.9835i 1.20393i −0.798523 0.601964i \(-0.794385\pi\)
0.798523 0.601964i \(-0.205615\pi\)
\(200\) 0 0
\(201\) 4.64267 + 12.2216i 0.327469 + 0.862045i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 10.2837 0.718241
\(206\) 0 0
\(207\) 15.7936 + 17.7882i 1.09773 + 1.23636i
\(208\) 0 0
\(209\) −34.5807 −2.39200
\(210\) 0 0
\(211\) 1.89126 0.130199 0.0650997 0.997879i \(-0.479263\pi\)
0.0650997 + 0.997879i \(0.479263\pi\)
\(212\) 0 0
\(213\) −11.2163 + 4.26077i −0.768526 + 0.291943i
\(214\) 0 0
\(215\) 1.66900 0.113825
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 6.15140 2.33676i 0.415673 0.157904i
\(220\) 0 0
\(221\) 0.534064i 0.0359250i
\(222\) 0 0
\(223\) 9.29671i 0.622554i 0.950319 + 0.311277i \(0.100757\pi\)
−0.950319 + 0.311277i \(0.899243\pi\)
\(224\) 0 0
\(225\) 7.35562 6.53085i 0.490374 0.435390i
\(226\) 0 0
\(227\) 4.96994 0.329867 0.164933 0.986305i \(-0.447259\pi\)
0.164933 + 0.986305i \(0.447259\pi\)
\(228\) 0 0
\(229\) 5.33157i 0.352320i −0.984362 0.176160i \(-0.943632\pi\)
0.984362 0.176160i \(-0.0563676\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 3.50235i 0.229447i −0.993397 0.114723i \(-0.963402\pi\)
0.993397 0.114723i \(-0.0365981\pi\)
\(234\) 0 0
\(235\) 5.56472 0.363002
\(236\) 0 0
\(237\) −8.36061 22.0089i −0.543080 1.42963i
\(238\) 0 0
\(239\) 23.4769i 1.51859i −0.650744 0.759297i \(-0.725543\pi\)
0.650744 0.759297i \(-0.274457\pi\)
\(240\) 0 0
\(241\) 10.0674i 0.648500i −0.945971 0.324250i \(-0.894888\pi\)
0.945971 0.324250i \(-0.105112\pi\)
\(242\) 0 0
\(243\) 15.1252 3.77185i 0.970285 0.241964i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −5.09212 −0.324004
\(248\) 0 0
\(249\) −4.05319 10.6698i −0.256860 0.676172i
\(250\) 0 0
\(251\) 19.7932 1.24933 0.624666 0.780892i \(-0.285235\pi\)
0.624666 + 0.780892i \(0.285235\pi\)
\(252\) 0 0
\(253\) −39.4840 −2.48234
\(254\) 0 0
\(255\) 0.587734 + 1.54718i 0.0368053 + 0.0968882i
\(256\) 0 0
\(257\) −12.6163 −0.786984 −0.393492 0.919328i \(-0.628733\pi\)
−0.393492 + 0.919328i \(0.628733\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 9.22133 + 10.3859i 0.570786 + 0.642869i
\(262\) 0 0
\(263\) 6.33199i 0.390447i 0.980759 + 0.195224i \(0.0625433\pi\)
−0.980759 + 0.195224i \(0.937457\pi\)
\(264\) 0 0
\(265\) 18.9136i 1.16185i
\(266\) 0 0
\(267\) −2.69309 7.08941i −0.164814 0.433865i
\(268\) 0 0
\(269\) 24.3839 1.48671 0.743356 0.668896i \(-0.233233\pi\)
0.743356 + 0.668896i \(0.233233\pi\)
\(270\) 0 0
\(271\) 0.344072i 0.0209009i 0.999945 + 0.0104504i \(0.00332654\pi\)
−0.999945 + 0.0104504i \(0.996673\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 16.3271i 0.984559i
\(276\) 0 0
\(277\) 12.2360 0.735187 0.367594 0.929987i \(-0.380182\pi\)
0.367594 + 0.929987i \(0.380182\pi\)
\(278\) 0 0
\(279\) 3.59125 + 4.04478i 0.215002 + 0.242155i
\(280\) 0 0
\(281\) 16.6761i 0.994810i 0.867519 + 0.497405i \(0.165714\pi\)
−0.867519 + 0.497405i \(0.834286\pi\)
\(282\) 0 0
\(283\) 3.10159i 0.184371i 0.995742 + 0.0921853i \(0.0293852\pi\)
−0.995742 + 0.0921853i \(0.970615\pi\)
\(284\) 0 0
\(285\) 14.7518 5.60384i 0.873823 0.331943i
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −16.4695 −0.968794
\(290\) 0 0
\(291\) −24.5319 + 9.31902i −1.43808 + 0.546291i
\(292\) 0 0
\(293\) 16.2490 0.949278 0.474639 0.880181i \(-0.342579\pi\)
0.474639 + 0.880181i \(0.342579\pi\)
\(294\) 0 0
\(295\) −12.2707 −0.714429
\(296\) 0 0
\(297\) −11.9869 + 22.9303i −0.695550 + 1.33055i
\(298\) 0 0
\(299\) −5.81415 −0.336241
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 6.76334 + 17.8042i 0.388544 + 1.02282i
\(304\) 0 0
\(305\) 17.8267i 1.02075i
\(306\) 0 0
\(307\) 2.82559i 0.161265i 0.996744 + 0.0806326i \(0.0256940\pi\)
−0.996744 + 0.0806326i \(0.974306\pi\)
\(308\) 0 0
\(309\) 16.8866 6.41479i 0.960646 0.364925i
\(310\) 0 0
\(311\) 16.4036 0.930163 0.465081 0.885268i \(-0.346025\pi\)
0.465081 + 0.885268i \(0.346025\pi\)
\(312\) 0 0
\(313\) 0.324800i 0.0183588i 0.999958 + 0.00917938i \(0.00292193\pi\)
−0.999958 + 0.00917938i \(0.997078\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 12.0488i 0.676726i −0.941016 0.338363i \(-0.890127\pi\)
0.941016 0.338363i \(-0.109873\pi\)
\(318\) 0 0
\(319\) −23.0532 −1.29073
\(320\) 0 0
\(321\) −4.98721 + 1.89451i −0.278359 + 0.105742i
\(322\) 0 0
\(323\) 5.05808i 0.281439i
\(324\) 0 0
\(325\) 2.40421i 0.133362i
\(326\) 0 0
\(327\) 8.45808 + 22.2655i 0.467733 + 1.23128i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −7.00005 −0.384758 −0.192379 0.981321i \(-0.561620\pi\)
−0.192379 + 0.981321i \(0.561620\pi\)
\(332\) 0 0
\(333\) 11.7198 10.4057i 0.642242 0.570229i
\(334\) 0 0
\(335\) 9.90259 0.541036
\(336\) 0 0
\(337\) −12.2829 −0.669094 −0.334547 0.942379i \(-0.608583\pi\)
−0.334547 + 0.942379i \(0.608583\pi\)
\(338\) 0 0
\(339\) −20.4684 + 7.77541i −1.11169 + 0.422302i
\(340\) 0 0
\(341\) −8.97809 −0.486191
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 16.8435 6.39843i 0.906826 0.344480i
\(346\) 0 0
\(347\) 20.7785i 1.11545i −0.830027 0.557724i \(-0.811675\pi\)
0.830027 0.557724i \(-0.188325\pi\)
\(348\) 0 0
\(349\) 1.72878i 0.0925396i −0.998929 0.0462698i \(-0.985267\pi\)
0.998929 0.0462698i \(-0.0147334\pi\)
\(350\) 0 0
\(351\) −1.76511 + 3.37656i −0.0942146 + 0.180227i
\(352\) 0 0
\(353\) 10.6311 0.565837 0.282919 0.959144i \(-0.408697\pi\)
0.282919 + 0.959144i \(0.408697\pi\)
\(354\) 0 0
\(355\) 9.08802i 0.482342i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 4.22497i 0.222985i 0.993765 + 0.111493i \(0.0355632\pi\)
−0.993765 + 0.111493i \(0.964437\pi\)
\(360\) 0 0
\(361\) −29.2271 −1.53827
\(362\) 0 0
\(363\) −8.48542 22.3374i −0.445369 1.17241i
\(364\) 0 0
\(365\) 4.98419i 0.260885i
\(366\) 0 0
\(367\) 24.0423i 1.25500i 0.778617 + 0.627499i \(0.215921\pi\)
−0.778617 + 0.627499i \(0.784079\pi\)
\(368\) 0 0
\(369\) −17.5847 + 15.6130i −0.915424 + 0.812780i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 32.5901 1.68745 0.843727 0.536773i \(-0.180357\pi\)
0.843727 + 0.536773i \(0.180357\pi\)
\(374\) 0 0
\(375\) −6.68052 17.5861i −0.344980 0.908143i
\(376\) 0 0
\(377\) −3.39466 −0.174834
\(378\) 0 0
\(379\) −19.2333 −0.987948 −0.493974 0.869477i \(-0.664456\pi\)
−0.493974 + 0.869477i \(0.664456\pi\)
\(380\) 0 0
\(381\) −2.04199 5.37544i −0.104614 0.275392i
\(382\) 0 0
\(383\) 25.9404 1.32549 0.662745 0.748845i \(-0.269391\pi\)
0.662745 + 0.748845i \(0.269391\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −2.85393 + 2.53393i −0.145074 + 0.128807i
\(388\) 0 0
\(389\) 22.5765i 1.14467i −0.820019 0.572336i \(-0.806037\pi\)
0.820019 0.572336i \(-0.193963\pi\)
\(390\) 0 0
\(391\) 5.77528i 0.292069i
\(392\) 0 0
\(393\) 9.84876 + 25.9264i 0.496804 + 1.30781i
\(394\) 0 0
\(395\) −17.8328 −0.897264
\(396\) 0 0
\(397\) 6.72959i 0.337748i 0.985638 + 0.168874i \(0.0540132\pi\)
−0.985638 + 0.168874i \(0.945987\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 6.54640i 0.326911i −0.986551 0.163456i \(-0.947736\pi\)
0.986551 0.163456i \(-0.0522641\pi\)
\(402\) 0 0
\(403\) −1.32205 −0.0658562
\(404\) 0 0
\(405\) 1.39763 11.7244i 0.0694487 0.582588i
\(406\) 0 0
\(407\) 26.0142i 1.28948i
\(408\) 0 0
\(409\) 20.2168i 0.999654i 0.866125 + 0.499827i \(0.166603\pi\)
−0.866125 + 0.499827i \(0.833397\pi\)
\(410\) 0 0
\(411\) −17.4114 + 6.61414i −0.858840 + 0.326251i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) −8.64525 −0.424379
\(416\) 0 0
\(417\) −30.0411 + 11.4118i −1.47112 + 0.558840i
\(418\) 0 0
\(419\) −13.0519 −0.637627 −0.318813 0.947817i \(-0.603284\pi\)
−0.318813 + 0.947817i \(0.603284\pi\)
\(420\) 0 0
\(421\) −33.1602 −1.61613 −0.808065 0.589093i \(-0.799485\pi\)
−0.808065 + 0.589093i \(0.799485\pi\)
\(422\) 0 0
\(423\) −9.51549 + 8.44855i −0.462659 + 0.410782i
\(424\) 0 0
\(425\) −2.38814 −0.115842
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) −2.24580 5.91195i −0.108428 0.285432i
\(430\) 0 0
\(431\) 1.12004i 0.0539506i 0.999636 + 0.0269753i \(0.00858755\pi\)
−0.999636 + 0.0269753i \(0.991412\pi\)
\(432\) 0 0
\(433\) 29.9594i 1.43976i 0.694100 + 0.719878i \(0.255802\pi\)
−0.694100 + 0.719878i \(0.744198\pi\)
\(434\) 0 0
\(435\) 9.83432 3.73581i 0.471520 0.179118i
\(436\) 0 0
\(437\) −55.0653 −2.63413
\(438\) 0 0
\(439\) 21.6375i 1.03270i −0.856378 0.516350i \(-0.827290\pi\)
0.856378 0.516350i \(-0.172710\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 7.88010i 0.374395i −0.982322 0.187198i \(-0.940060\pi\)
0.982322 0.187198i \(-0.0599404\pi\)
\(444\) 0 0
\(445\) −5.74422 −0.272302
\(446\) 0 0
\(447\) −7.88287 + 2.99450i −0.372847 + 0.141635i
\(448\) 0 0
\(449\) 29.5174i 1.39301i −0.717550 0.696507i \(-0.754737\pi\)
0.717550 0.696507i \(-0.245263\pi\)
\(450\) 0 0
\(451\) 39.0324i 1.83796i
\(452\) 0 0
\(453\) −1.04637 2.75452i −0.0491628 0.129419i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 2.57745 0.120568 0.0602839 0.998181i \(-0.480799\pi\)
0.0602839 + 0.998181i \(0.480799\pi\)
\(458\) 0 0
\(459\) −3.35399 1.75331i −0.156551 0.0818376i
\(460\) 0 0
\(461\) 30.8387 1.43630 0.718151 0.695888i \(-0.244989\pi\)
0.718151 + 0.695888i \(0.244989\pi\)
\(462\) 0 0
\(463\) −36.6548 −1.70349 −0.851745 0.523956i \(-0.824456\pi\)
−0.851745 + 0.523956i \(0.824456\pi\)
\(464\) 0 0
\(465\) 3.82998 1.45491i 0.177611 0.0674699i
\(466\) 0 0
\(467\) −35.0771 −1.62318 −0.811588 0.584231i \(-0.801396\pi\)
−0.811588 + 0.584231i \(0.801396\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 29.4325 11.1806i 1.35618 0.515177i
\(472\) 0 0
\(473\) 6.33480i 0.291274i
\(474\) 0 0
\(475\) 22.7701i 1.04477i
\(476\) 0 0
\(477\) −28.7152 32.3416i −1.31478 1.48082i
\(478\) 0 0
\(479\) −28.7683 −1.31446 −0.657228 0.753691i \(-0.728271\pi\)
−0.657228 + 0.753691i \(0.728271\pi\)
\(480\) 0 0
\(481\) 3.83067i 0.174664i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 19.8770i 0.902569i
\(486\) 0 0
\(487\) −36.0750 −1.63471 −0.817356 0.576133i \(-0.804561\pi\)
−0.817356 + 0.576133i \(0.804561\pi\)
\(488\) 0 0
\(489\) 3.08973 + 8.13356i 0.139723 + 0.367812i
\(490\) 0 0
\(491\) 26.0949i 1.17764i −0.808263 0.588822i \(-0.799592\pi\)
0.808263 0.588822i \(-0.200408\pi\)
\(492\) 0 0
\(493\) 3.37197i 0.151866i
\(494\) 0 0
\(495\) 13.0121 + 14.6554i 0.584852 + 0.658711i
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 18.5440 0.830143 0.415072 0.909789i \(-0.363757\pi\)
0.415072 + 0.909789i \(0.363757\pi\)
\(500\) 0 0
\(501\) 10.1103 + 26.6148i 0.451694 + 1.18906i
\(502\) 0 0
\(503\) −19.2682 −0.859126 −0.429563 0.903037i \(-0.641332\pi\)
−0.429563 + 0.903037i \(0.641332\pi\)
\(504\) 0 0
\(505\) 14.4259 0.641943
\(506\) 0 0
\(507\) 7.66531 + 20.1785i 0.340428 + 0.896160i
\(508\) 0 0
\(509\) 25.9311 1.14938 0.574688 0.818373i \(-0.305123\pi\)
0.574688 + 0.818373i \(0.305123\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) −16.7172 + 31.9791i −0.738084 + 1.41191i
\(514\) 0 0
\(515\) 13.6824i 0.602920i
\(516\) 0 0
\(517\) 21.1213i 0.928914i
\(518\) 0 0
\(519\) −2.58607 6.80771i −0.113516 0.298825i
\(520\) 0 0
\(521\) 11.0717 0.485059 0.242530 0.970144i \(-0.422023\pi\)
0.242530 + 0.970144i \(0.422023\pi\)
\(522\) 0 0
\(523\) 35.4586i 1.55050i 0.631656 + 0.775249i \(0.282376\pi\)
−0.631656 + 0.775249i \(0.717624\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 1.31322i 0.0572046i
\(528\) 0 0
\(529\) −39.8732 −1.73362
\(530\) 0 0
\(531\) 20.9825 18.6298i 0.910565 0.808466i
\(532\) 0 0
\(533\) 5.74764i 0.248958i
\(534\) 0 0
\(535\) 4.04091i 0.174704i
\(536\) 0 0
\(537\) −13.1800 + 5.00676i −0.568760 + 0.216057i
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −8.04913 −0.346059 −0.173029 0.984917i \(-0.555356\pi\)
−0.173029 + 0.984917i \(0.555356\pi\)
\(542\) 0 0
\(543\) 28.9642 11.0027i 1.24297 0.472173i
\(544\) 0 0
\(545\) 18.0407 0.772777
\(546\) 0 0
\(547\) −15.3821 −0.657690 −0.328845 0.944384i \(-0.606659\pi\)
−0.328845 + 0.944384i \(0.606659\pi\)
\(548\) 0 0
\(549\) 27.0651 + 30.4830i 1.15511 + 1.30098i
\(550\) 0 0
\(551\) −32.1506 −1.36966
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) −4.21563 11.0974i −0.178944 0.471060i
\(556\) 0 0
\(557\) 34.1048i 1.44507i 0.691336 + 0.722534i \(0.257023\pi\)
−0.691336 + 0.722534i \(0.742977\pi\)
\(558\) 0 0
\(559\) 0.932820i 0.0394541i
\(560\) 0 0
\(561\) 5.87244 2.23079i 0.247934 0.0941840i
\(562\) 0 0
\(563\) 32.6655 1.37669 0.688343 0.725385i \(-0.258338\pi\)
0.688343 + 0.725385i \(0.258338\pi\)
\(564\) 0 0
\(565\) 16.5846i 0.697718i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 23.9380i 1.00353i 0.865004 + 0.501766i \(0.167316\pi\)
−0.865004 + 0.501766i \(0.832684\pi\)
\(570\) 0 0
\(571\) 24.9501 1.04413 0.522065 0.852906i \(-0.325162\pi\)
0.522065 + 0.852906i \(0.325162\pi\)
\(572\) 0 0
\(573\) 6.65540 2.52822i 0.278034 0.105618i
\(574\) 0 0
\(575\) 25.9988i 1.08422i
\(576\) 0 0
\(577\) 20.7925i 0.865601i −0.901490 0.432801i \(-0.857525\pi\)
0.901490 0.432801i \(-0.142475\pi\)
\(578\) 0 0
\(579\) −1.98620 5.22858i −0.0825438 0.217292i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 71.7879 2.97315
\(584\) 0 0
\(585\) 1.91608 + 2.15806i 0.0792201 + 0.0892246i
\(586\) 0 0
\(587\) −11.7010 −0.482951 −0.241475 0.970407i \(-0.577631\pi\)
−0.241475 + 0.970407i \(0.577631\pi\)
\(588\) 0 0
\(589\) −12.5211 −0.515922
\(590\) 0 0
\(591\) −7.62249 + 2.89559i −0.313547 + 0.119109i
\(592\) 0 0
\(593\) 33.6454 1.38165 0.690826 0.723021i \(-0.257247\pi\)
0.690826 + 0.723021i \(0.257247\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 27.4990 10.4462i 1.12546 0.427533i
\(598\) 0 0
\(599\) 11.2044i 0.457800i 0.973450 + 0.228900i \(0.0735129\pi\)
−0.973450 + 0.228900i \(0.926487\pi\)
\(600\) 0 0
\(601\) 6.08245i 0.248108i 0.992275 + 0.124054i \(0.0395897\pi\)
−0.992275 + 0.124054i \(0.960410\pi\)
\(602\) 0 0
\(603\) −16.9331 + 15.0345i −0.689570 + 0.612251i
\(604\) 0 0
\(605\) −18.0990 −0.735829
\(606\) 0 0
\(607\) 6.92845i 0.281217i −0.990065 0.140608i \(-0.955094\pi\)
0.990065 0.140608i \(-0.0449059\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 3.11018i 0.125824i
\(612\) 0 0
\(613\) 13.5231 0.546194 0.273097 0.961987i \(-0.411952\pi\)
0.273097 + 0.961987i \(0.411952\pi\)
\(614\) 0 0
\(615\) 6.32524 + 16.6509i 0.255058 + 0.671428i
\(616\) 0 0
\(617\) 3.82786i 0.154104i −0.997027 0.0770519i \(-0.975449\pi\)
0.997027 0.0770519i \(-0.0245507\pi\)
\(618\) 0 0
\(619\) 5.89220i 0.236827i 0.992964 + 0.118414i \(0.0377809\pi\)
−0.992964 + 0.118414i \(0.962219\pi\)
\(620\) 0 0
\(621\) −19.0876 + 36.5136i −0.765959 + 1.46524i
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 2.14498 0.0857994
\(626\) 0 0
\(627\) −21.2698 55.9917i −0.849434 2.23609i
\(628\) 0 0
\(629\) −3.80507 −0.151718
\(630\) 0 0
\(631\) 3.83697 0.152747 0.0763737 0.997079i \(-0.475666\pi\)
0.0763737 + 0.997079i \(0.475666\pi\)
\(632\) 0 0
\(633\) 1.16327 + 3.06225i 0.0462358 + 0.121713i
\(634\) 0 0
\(635\) −4.35547 −0.172841
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) −13.7977 15.5402i −0.545830 0.614762i
\(640\) 0 0
\(641\) 3.98598i 0.157437i −0.996897 0.0787183i \(-0.974917\pi\)
0.996897 0.0787183i \(-0.0250828\pi\)
\(642\) 0 0
\(643\) 15.4887i 0.610814i −0.952222 0.305407i \(-0.901207\pi\)
0.952222 0.305407i \(-0.0987925\pi\)
\(644\) 0 0
\(645\) 1.02656 + 2.70237i 0.0404209 + 0.106406i
\(646\) 0 0
\(647\) 20.6256 0.810874 0.405437 0.914123i \(-0.367119\pi\)
0.405437 + 0.914123i \(0.367119\pi\)
\(648\) 0 0
\(649\) 46.5744i 1.82821i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 50.2427i 1.96615i 0.183203 + 0.983075i \(0.441354\pi\)
−0.183203 + 0.983075i \(0.558646\pi\)
\(654\) 0 0
\(655\) 21.0069 0.820808
\(656\) 0 0
\(657\) 7.56717 + 8.52281i 0.295224 + 0.332507i
\(658\) 0 0
\(659\) 34.6160i 1.34845i 0.738528 + 0.674223i \(0.235521\pi\)
−0.738528 + 0.674223i \(0.764479\pi\)
\(660\) 0 0
\(661\) 9.98831i 0.388500i −0.980952 0.194250i \(-0.937773\pi\)
0.980952 0.194250i \(-0.0622274\pi\)
\(662\) 0 0
\(663\) 0.864736 0.328491i 0.0335835 0.0127575i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −36.7093 −1.42139
\(668\) 0 0
\(669\) −15.0529 + 5.71819i −0.581977 + 0.221078i
\(670\) 0 0
\(671\) −67.6624 −2.61208
\(672\) 0 0
\(673\) −8.78901 −0.338791 −0.169396 0.985548i \(-0.554182\pi\)
−0.169396 + 0.985548i \(0.554182\pi\)
\(674\) 0 0
\(675\) 15.0988 + 7.89294i 0.581152 + 0.303799i
\(676\) 0 0
\(677\) −4.75875 −0.182894 −0.0914468 0.995810i \(-0.529149\pi\)
−0.0914468 + 0.995810i \(0.529149\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 3.05690 + 8.04714i 0.117141 + 0.308367i
\(682\) 0 0
\(683\) 26.0958i 0.998529i 0.866450 + 0.499265i \(0.166396\pi\)
−0.866450 + 0.499265i \(0.833604\pi\)
\(684\) 0 0
\(685\) 14.1076i 0.539025i
\(686\) 0 0
\(687\) 8.63267 3.27933i 0.329357 0.125114i
\(688\) 0 0
\(689\) 10.5710 0.402723
\(690\) 0 0
\(691\) 30.6050i 1.16427i 0.813093 + 0.582134i \(0.197782\pi\)
−0.813093 + 0.582134i \(0.802218\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 24.3409i 0.923303i
\(696\) 0 0
\(697\) 5.70922 0.216252
\(698\) 0 0
\(699\) 5.67087 2.15422i 0.214492 0.0814800i
\(700\) 0 0
\(701\) 45.8510i 1.73177i −0.500246 0.865884i \(-0.666757\pi\)
0.500246 0.865884i \(-0.333243\pi\)
\(702\) 0 0
\(703\) 36.2800i 1.36833i
\(704\) 0 0
\(705\) 3.42273 + 9.01017i 0.128908 + 0.339343i
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −7.32458 −0.275080 −0.137540 0.990496i \(-0.543920\pi\)
−0.137540 + 0.990496i \(0.543920\pi\)
\(710\) 0 0
\(711\) 30.4935 27.0743i 1.14359 1.01537i
\(712\) 0 0
\(713\) −14.2965 −0.535407
\(714\) 0 0
\(715\) −4.79018 −0.179143
\(716\) 0 0
\(717\) 38.0128 14.4401i 1.41962 0.539276i
\(718\) 0 0
\(719\) −18.6425 −0.695246 −0.347623 0.937634i \(-0.613011\pi\)
−0.347623 + 0.937634i \(0.613011\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 16.3008 6.19225i 0.606233 0.230292i
\(724\) 0 0
\(725\) 15.1797i 0.563761i
\(726\) 0 0
\(727\) 4.44113i 0.164712i 0.996603 + 0.0823562i \(0.0262445\pi\)
−0.996603 + 0.0823562i \(0.973755\pi\)
\(728\) 0 0
\(729\) 15.4104 + 22.1702i 0.570757 + 0.821119i
\(730\) 0 0
\(731\) 0.926585 0.0342710
\(732\) 0 0
\(733\) 37.3288i 1.37877i −0.724395 0.689385i \(-0.757881\pi\)
0.724395 0.689385i \(-0.242119\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 37.5860i 1.38450i
\(738\) 0 0
\(739\) −15.7067 −0.577780 −0.288890 0.957362i \(-0.593286\pi\)
−0.288890 + 0.957362i \(0.593286\pi\)
\(740\) 0 0
\(741\) −3.13205 8.24496i −0.115059 0.302886i
\(742\) 0 0
\(743\) 41.4427i 1.52039i −0.649697 0.760193i \(-0.725104\pi\)
0.649697 0.760193i \(-0.274896\pi\)
\(744\) 0 0
\(745\) 6.38712i 0.234006i
\(746\) 0 0
\(747\) 14.7831 13.1255i 0.540886 0.480238i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −11.9195 −0.434948 −0.217474 0.976066i \(-0.569782\pi\)
−0.217474 + 0.976066i \(0.569782\pi\)
\(752\) 0 0
\(753\) 12.1743 + 32.0483i 0.443657 + 1.16790i
\(754\) 0 0
\(755\) −2.23186 −0.0812256
\(756\) 0 0
\(757\) 20.9855 0.762731 0.381365 0.924424i \(-0.375454\pi\)
0.381365 + 0.924424i \(0.375454\pi\)
\(758\) 0 0
\(759\) −24.2857 63.9309i −0.881516 2.32054i
\(760\) 0 0
\(761\) −26.4963 −0.960489 −0.480245 0.877135i \(-0.659452\pi\)
−0.480245 + 0.877135i \(0.659452\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) −2.14363 + 1.90327i −0.0775031 + 0.0688129i
\(766\) 0 0
\(767\) 6.85823i 0.247636i
\(768\) 0 0
\(769\) 49.5271i 1.78599i 0.450062 + 0.892997i \(0.351402\pi\)
−0.450062 + 0.892997i \(0.648598\pi\)
\(770\) 0 0
\(771\) −7.76001 20.4278i −0.279470 0.735690i
\(772\) 0 0
\(773\) 7.37448 0.265242 0.132621 0.991167i \(-0.457661\pi\)
0.132621 + 0.991167i \(0.457661\pi\)
\(774\) 0 0
\(775\) 5.91175i 0.212356i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 54.4355i 1.95035i
\(780\) 0 0
\(781\) 34.4943 1.23430
\(782\) 0 0
\(783\) −11.1445 + 21.3189i −0.398274 + 0.761876i
\(784\) 0 0
\(785\) 23.8478i 0.851164i
\(786\) 0 0
\(787\) 36.1045i 1.28699i −0.765452 0.643493i \(-0.777484\pi\)
0.765452 0.643493i \(-0.222516\pi\)
\(788\) 0 0
\(789\) −10.2525 + 3.89467i −0.364999 + 0.138654i
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −9.96351 −0.353815
\(794\) 0 0
\(795\) −30.6241 + 11.6333i −1.08613 + 0.412591i
\(796\) 0 0
\(797\) 25.6502 0.908576 0.454288 0.890855i \(-0.349894\pi\)
0.454288 + 0.890855i \(0.349894\pi\)
\(798\) 0 0
\(799\) 3.08939 0.109295
\(800\) 0 0
\(801\) 9.82244 8.72108i 0.347059 0.308144i
\(802\) 0 0
\(803\) −18.9179 −0.667597
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 14.9980 + 39.4814i 0.527954 + 1.38981i
\(808\) 0 0
\(809\) 32.6220i 1.14693i −0.819230 0.573464i \(-0.805599\pi\)
0.819230 0.573464i \(-0.194401\pi\)
\(810\) 0 0
\(811\) 12.7234i 0.446779i −0.974729 0.223390i \(-0.928288\pi\)
0.974729 0.223390i \(-0.0717122\pi\)
\(812\) 0 0
\(813\) −0.557107 + 0.211631i −0.0195386 + 0.00742221i
\(814\) 0 0
\(815\) 6.59025 0.230846
\(816\) 0 0
\(817\) 8.83467i 0.309086i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 52.7965i 1.84261i −0.388842 0.921305i \(-0.627125\pi\)
0.388842 0.921305i \(-0.372875\pi\)
\(822\) 0 0
\(823\) −12.6738 −0.441783 −0.220891 0.975298i \(-0.570897\pi\)
−0.220891 + 0.975298i \(0.570897\pi\)
\(824\) 0 0
\(825\) −26.4361 + 10.0424i −0.920388 + 0.349632i
\(826\) 0 0
\(827\) 30.4839i 1.06003i 0.847988 + 0.530015i \(0.177814\pi\)
−0.847988 + 0.530015i \(0.822186\pi\)
\(828\) 0 0
\(829\) 7.95851i 0.276410i 0.990404 + 0.138205i \(0.0441334\pi\)
−0.990404 + 0.138205i \(0.955867\pi\)
\(830\) 0 0
\(831\) 7.52606 + 19.8120i 0.261076 + 0.687270i
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 21.5647 0.746278
\(836\) 0 0
\(837\) −4.34025 + 8.30266i −0.150021 + 0.286982i
\(838\) 0 0
\(839\) −15.9255 −0.549808 −0.274904 0.961472i \(-0.588646\pi\)
−0.274904 + 0.961472i \(0.588646\pi\)
\(840\) 0 0
\(841\) 7.56677 0.260923
\(842\) 0 0
\(843\) −27.0012 + 10.2571i −0.929971 + 0.353272i
\(844\) 0 0
\(845\) 16.3497 0.562448
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) −5.02198 + 1.90772i −0.172354 + 0.0654728i
\(850\) 0 0
\(851\) 41.4243i 1.42001i
\(852\) 0 0
\(853\) 24.3170i 0.832597i −0.909228 0.416298i \(-0.863327\pi\)
0.909228 0.416298i \(-0.136673\pi\)
\(854\) 0 0
\(855\) 18.1470 + 20.4388i 0.620616 + 0.698992i
\(856\) 0 0
\(857\) −44.2919 −1.51298 −0.756491 0.654005i \(-0.773088\pi\)
−0.756491 + 0.654005i \(0.773088\pi\)
\(858\) 0 0
\(859\) 22.8833i 0.780769i 0.920652 + 0.390385i \(0.127658\pi\)
−0.920652 + 0.390385i \(0.872342\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 23.6628i 0.805490i 0.915312 + 0.402745i \(0.131944\pi\)
−0.915312 + 0.402745i \(0.868056\pi\)
\(864\) 0 0
\(865\) −5.51597 −0.187549
\(866\) 0 0
\(867\) −10.1300 26.6668i −0.344034 0.905651i
\(868\) 0 0
\(869\) 67.6856i 2.29608i
\(870\) 0 0
\(871\) 5.53466i 0.187535i
\(872\) 0 0
\(873\) −30.1780 33.9891i −1.02137 1.15036i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 29.5159 0.996680 0.498340 0.866982i \(-0.333943\pi\)
0.498340 + 0.866982i \(0.333943\pi\)
\(878\) 0 0
\(879\) 9.99441 + 26.3098i 0.337103 + 0.887406i
\(880\) 0 0
\(881\) 12.0113 0.404673 0.202336 0.979316i \(-0.435147\pi\)
0.202336 + 0.979316i \(0.435147\pi\)
\(882\) 0 0
\(883\) 26.4428 0.889871 0.444935 0.895563i \(-0.353227\pi\)
0.444935 + 0.895563i \(0.353227\pi\)
\(884\) 0 0
\(885\) −7.54744 19.8683i −0.253704 0.667864i
\(886\) 0 0
\(887\) −3.12476 −0.104919 −0.0524596 0.998623i \(-0.516706\pi\)
−0.0524596 + 0.998623i \(0.516706\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) −44.5007 5.30480i −1.49083 0.177718i
\(892\) 0 0
\(893\) 29.4563i 0.985717i
\(894\) 0 0
\(895\) 10.6792i 0.356965i
\(896\) 0 0
\(897\) −3.57615 9.41403i −0.119404 0.314325i
\(898\) 0 0
\(899\) −8.34718 −0.278394
\(900\) 0 0
\(901\) 10.5003i 0.349817i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 23.4683i 0.780113i
\(906\) 0 0
\(907\) 57.9808 1.92522 0.962610 0.270890i \(-0.0873179\pi\)
0.962610 + 0.270890i \(0.0873179\pi\)
\(908\) 0 0
\(909\) −24.6678 + 21.9019i −0.818180 + 0.726439i
\(910\) 0 0
\(911\) 0.434872i 0.0144079i −0.999974 0.00720397i \(-0.997707\pi\)
0.999974 0.00720397i \(-0.00229312\pi\)
\(912\) 0 0
\(913\) 32.8137i 1.08597i
\(914\) 0 0
\(915\) 28.8642 10.9648i 0.954222 0.362485i
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) −40.1535 −1.32454 −0.662271 0.749264i \(-0.730407\pi\)
−0.662271 + 0.749264i \(0.730407\pi\)
\(920\) 0 0
\(921\) −4.57509 + 1.73796i −0.150754 + 0.0572677i
\(922\) 0 0
\(923\) 5.07939 0.167190
\(924\) 0 0
\(925\) 17.1294 0.563211
\(926\) 0 0
\(927\) 20.7732 + 23.3965i 0.682280 + 0.768443i
\(928\) 0 0
\(929\) 28.1366 0.923132 0.461566 0.887106i \(-0.347288\pi\)
0.461566 + 0.887106i \(0.347288\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 10.0895 + 26.5600i 0.330315 + 0.869537i
\(934\) 0 0
\(935\) 4.75816i 0.155609i
\(936\) 0 0
\(937\) 57.1209i 1.86606i −0.359801 0.933029i \(-0.617156\pi\)
0.359801 0.933029i \(-0.382844\pi\)
\(938\) 0 0
\(939\) −0.525902 + 0.199777i −0.0171622 + 0.00651947i
\(940\) 0 0
\(941\) 10.0352 0.327138 0.163569 0.986532i \(-0.447699\pi\)
0.163569 + 0.986532i \(0.447699\pi\)
\(942\) 0 0
\(943\) 62.1541i 2.02401i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 17.9443i 0.583110i 0.956554 + 0.291555i \(0.0941726\pi\)
−0.956554 + 0.291555i \(0.905827\pi\)
\(948\) 0 0
\(949\) −2.78572 −0.0904282
\(950\) 0 0
\(951\) 19.5089 7.41092i 0.632618 0.240316i
\(952\) 0 0
\(953\) 1.76188i 0.0570730i −0.999593 0.0285365i \(-0.990915\pi\)
0.999593 0.0285365i \(-0.00908469\pi\)
\(954\) 0 0
\(955\) 5.39256i 0.174499i
\(956\) 0 0
\(957\) −14.1795 37.3269i −0.458359 1.20661i
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 27.7492 0.895135
\(962\) 0 0
\(963\) −6.13505 6.90983i −0.197699 0.222666i
\(964\) 0 0
\(965\) −4.23647 −0.136377
\(966\) 0 0
\(967\) 20.8379 0.670102 0.335051 0.942200i \(-0.391246\pi\)
0.335051 + 0.942200i \(0.391246\pi\)
\(968\) 0 0
\(969\) 8.18985 3.11111i 0.263096 0.0999433i
\(970\) 0 0
\(971\) 22.7633 0.730509 0.365254 0.930908i \(-0.380982\pi\)
0.365254 + 0.930908i \(0.380982\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) −3.89281 + 1.47878i −0.124670 + 0.0473588i
\(976\) 0 0
\(977\) 0.531619i 0.0170080i 0.999964 + 0.00850401i \(0.00270694\pi\)
−0.999964 + 0.00850401i \(0.997293\pi\)
\(978\) 0 0
\(979\) 21.8026i 0.696815i
\(980\) 0 0
\(981\) −30.8490 + 27.3900i −0.984932 + 0.874495i
\(982\) 0 0
\(983\) −9.67319 −0.308527 −0.154263 0.988030i \(-0.549300\pi\)
−0.154263 + 0.988030i \(0.549300\pi\)
\(984\) 0 0
\(985\) 6.17615i 0.196788i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 10.0874i 0.320759i
\(990\) 0 0
\(991\) −4.14717 −0.131739 −0.0658695 0.997828i \(-0.520982\pi\)
−0.0658695 + 0.997828i \(0.520982\pi\)
\(992\) 0 0
\(993\) −4.30557 11.3342i −0.136633 0.359680i
\(994\) 0 0
\(995\) 22.2812i 0.706361i
\(996\) 0 0
\(997\) 4.38581i 0.138900i 0.997585 + 0.0694500i \(0.0221244\pi\)
−0.997585 + 0.0694500i \(0.977876\pi\)
\(998\) 0 0
\(999\) 24.0571 + 12.5759i 0.761133 + 0.397885i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2352.2.k.j.881.16 24
3.2 odd 2 inner 2352.2.k.j.881.10 24
4.3 odd 2 1176.2.k.b.881.9 24
7.6 odd 2 inner 2352.2.k.j.881.9 24
12.11 even 2 1176.2.k.b.881.15 yes 24
21.20 even 2 inner 2352.2.k.j.881.15 24
28.3 even 6 1176.2.u.c.1097.19 48
28.11 odd 6 1176.2.u.c.1097.6 48
28.19 even 6 1176.2.u.c.521.2 48
28.23 odd 6 1176.2.u.c.521.23 48
28.27 even 2 1176.2.k.b.881.16 yes 24
84.11 even 6 1176.2.u.c.1097.2 48
84.23 even 6 1176.2.u.c.521.19 48
84.47 odd 6 1176.2.u.c.521.6 48
84.59 odd 6 1176.2.u.c.1097.23 48
84.83 odd 2 1176.2.k.b.881.10 yes 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1176.2.k.b.881.9 24 4.3 odd 2
1176.2.k.b.881.10 yes 24 84.83 odd 2
1176.2.k.b.881.15 yes 24 12.11 even 2
1176.2.k.b.881.16 yes 24 28.27 even 2
1176.2.u.c.521.2 48 28.19 even 6
1176.2.u.c.521.6 48 84.47 odd 6
1176.2.u.c.521.19 48 84.23 even 6
1176.2.u.c.521.23 48 28.23 odd 6
1176.2.u.c.1097.2 48 84.11 even 6
1176.2.u.c.1097.6 48 28.11 odd 6
1176.2.u.c.1097.19 48 28.3 even 6
1176.2.u.c.1097.23 48 84.59 odd 6
2352.2.k.j.881.9 24 7.6 odd 2 inner
2352.2.k.j.881.10 24 3.2 odd 2 inner
2352.2.k.j.881.15 24 21.20 even 2 inner
2352.2.k.j.881.16 24 1.1 even 1 trivial