Properties

Label 2352.2.h.j
Level $2352$
Weight $2$
Character orbit 2352.h
Analytic conductor $18.781$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 2352 = 2^{4} \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2352.h (of order \(2\), degree \(1\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(18.7808145554\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{11})\)
Defining polynomial: \( x^{4} - 5x^{2} + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 336)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_1 q^{3} + ( - 2 \beta_{3} - 1) q^{5} + (\beta_{3} + 3) q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q - \beta_1 q^{3} + ( - 2 \beta_{3} - 1) q^{5} + (\beta_{3} + 3) q^{9} + (\beta_{2} - 2 \beta_1) q^{11} + 4 q^{13} + (6 \beta_{2} - \beta_1) q^{15} + (2 \beta_{3} + 1) q^{17} - 7 \beta_{2} q^{19} + (\beta_{2} - 2 \beta_1) q^{23} - 6 q^{25} + ( - 3 \beta_{2} - 2 \beta_1) q^{27} + ( - 4 \beta_{3} - 2) q^{29} - 3 \beta_{2} q^{31} + (\beta_{3} + 6) q^{33} - q^{37} - 4 \beta_1 q^{39} + ( - 4 \beta_{3} - 2) q^{41} - 2 \beta_{2} q^{43} + ( - 5 \beta_{3} + 3) q^{45} + ( - 3 \beta_{2} + 6 \beta_1) q^{47} + ( - 6 \beta_{2} + \beta_1) q^{51} + (2 \beta_{3} + 1) q^{53} + 11 \beta_{2} q^{55} + 7 \beta_{3} q^{57} + (\beta_{2} - 2 \beta_1) q^{59} - 3 q^{61} + ( - 8 \beta_{3} - 4) q^{65} + 9 \beta_{2} q^{67} + (\beta_{3} + 6) q^{69} + (4 \beta_{2} - 8 \beta_1) q^{71} - 7 q^{73} + 6 \beta_1 q^{75} + 9 \beta_{2} q^{79} + (5 \beta_{3} + 6) q^{81} + (4 \beta_{2} - 8 \beta_1) q^{83} + 11 q^{85} + (12 \beta_{2} - 2 \beta_1) q^{87} + (2 \beta_{3} + 1) q^{89} + 3 \beta_{3} q^{93} + (7 \beta_{2} - 14 \beta_1) q^{95} - 8 q^{97} + ( - 3 \beta_{2} - 5 \beta_1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 10 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q + 10 q^{9} + 16 q^{13} - 24 q^{25} + 22 q^{33} - 4 q^{37} + 22 q^{45} - 14 q^{57} - 12 q^{61} + 22 q^{69} - 28 q^{73} + 14 q^{81} + 44 q^{85} - 6 q^{93} - 32 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - 5x^{2} + 9 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{3} - 2\nu ) / 3 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{2} - 3 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{3} + 3 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 3\beta_{2} + 2\beta_1 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2352\mathbb{Z}\right)^\times\).

\(n\) \(785\) \(1471\) \(1765\) \(2257\)
\(\chi(n)\) \(-1\) \(-1\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
2255.1
1.65831 + 0.500000i
1.65831 0.500000i
−1.65831 + 0.500000i
−1.65831 0.500000i
0 −1.65831 0.500000i 0 3.31662i 0 0 0 2.50000 + 1.65831i 0
2255.2 0 −1.65831 + 0.500000i 0 3.31662i 0 0 0 2.50000 1.65831i 0
2255.3 0 1.65831 0.500000i 0 3.31662i 0 0 0 2.50000 1.65831i 0
2255.4 0 1.65831 + 0.500000i 0 3.31662i 0 0 0 2.50000 + 1.65831i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
4.b odd 2 1 inner
12.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2352.2.h.j 4
3.b odd 2 1 inner 2352.2.h.j 4
4.b odd 2 1 inner 2352.2.h.j 4
7.b odd 2 1 2352.2.h.i 4
7.d odd 6 2 336.2.bj.f 8
12.b even 2 1 inner 2352.2.h.j 4
21.c even 2 1 2352.2.h.i 4
21.g even 6 2 336.2.bj.f 8
28.d even 2 1 2352.2.h.i 4
28.f even 6 2 336.2.bj.f 8
84.h odd 2 1 2352.2.h.i 4
84.j odd 6 2 336.2.bj.f 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
336.2.bj.f 8 7.d odd 6 2
336.2.bj.f 8 21.g even 6 2
336.2.bj.f 8 28.f even 6 2
336.2.bj.f 8 84.j odd 6 2
2352.2.h.i 4 7.b odd 2 1
2352.2.h.i 4 21.c even 2 1
2352.2.h.i 4 28.d even 2 1
2352.2.h.i 4 84.h odd 2 1
2352.2.h.j 4 1.a even 1 1 trivial
2352.2.h.j 4 3.b odd 2 1 inner
2352.2.h.j 4 4.b odd 2 1 inner
2352.2.h.j 4 12.b even 2 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(2352, [\chi])\):

\( T_{5}^{2} + 11 \) Copy content Toggle raw display
\( T_{11}^{2} - 11 \) Copy content Toggle raw display
\( T_{13} - 4 \) Copy content Toggle raw display
\( T_{47}^{2} - 99 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( T^{4} - 5T^{2} + 9 \) Copy content Toggle raw display
$5$ \( (T^{2} + 11)^{2} \) Copy content Toggle raw display
$7$ \( T^{4} \) Copy content Toggle raw display
$11$ \( (T^{2} - 11)^{2} \) Copy content Toggle raw display
$13$ \( (T - 4)^{4} \) Copy content Toggle raw display
$17$ \( (T^{2} + 11)^{2} \) Copy content Toggle raw display
$19$ \( (T^{2} + 49)^{2} \) Copy content Toggle raw display
$23$ \( (T^{2} - 11)^{2} \) Copy content Toggle raw display
$29$ \( (T^{2} + 44)^{2} \) Copy content Toggle raw display
$31$ \( (T^{2} + 9)^{2} \) Copy content Toggle raw display
$37$ \( (T + 1)^{4} \) Copy content Toggle raw display
$41$ \( (T^{2} + 44)^{2} \) Copy content Toggle raw display
$43$ \( (T^{2} + 4)^{2} \) Copy content Toggle raw display
$47$ \( (T^{2} - 99)^{2} \) Copy content Toggle raw display
$53$ \( (T^{2} + 11)^{2} \) Copy content Toggle raw display
$59$ \( (T^{2} - 11)^{2} \) Copy content Toggle raw display
$61$ \( (T + 3)^{4} \) Copy content Toggle raw display
$67$ \( (T^{2} + 81)^{2} \) Copy content Toggle raw display
$71$ \( (T^{2} - 176)^{2} \) Copy content Toggle raw display
$73$ \( (T + 7)^{4} \) Copy content Toggle raw display
$79$ \( (T^{2} + 81)^{2} \) Copy content Toggle raw display
$83$ \( (T^{2} - 176)^{2} \) Copy content Toggle raw display
$89$ \( (T^{2} + 11)^{2} \) Copy content Toggle raw display
$97$ \( (T + 8)^{4} \) Copy content Toggle raw display
show more
show less