Properties

Label 2352.2.h.d.2255.2
Level $2352$
Weight $2$
Character 2352.2255
Analytic conductor $18.781$
Analytic rank $0$
Dimension $2$
CM discriminant -3
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2352,2,Mod(2255,2352)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2352, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2352.2255");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2352 = 2^{4} \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2352.h (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.7808145554\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 336)
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

Embedding invariants

Embedding label 2255.2
Root \(0.500000 + 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 2352.2255
Dual form 2352.2.h.d.2255.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.73205i q^{3} -3.00000 q^{9} +O(q^{10})\) \(q+1.73205i q^{3} -3.00000 q^{9} +5.00000 q^{13} -8.66025i q^{19} +5.00000 q^{25} -5.19615i q^{27} -1.73205i q^{31} +11.0000 q^{37} +8.66025i q^{39} +1.73205i q^{43} +15.0000 q^{57} -14.0000 q^{61} +15.5885i q^{67} +17.0000 q^{73} +8.66025i q^{75} -5.19615i q^{79} +9.00000 q^{81} +3.00000 q^{93} +14.0000 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 6 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 6 q^{9} + 10 q^{13} + 10 q^{25} + 22 q^{37} + 30 q^{57} - 28 q^{61} + 34 q^{73} + 18 q^{81} + 6 q^{93} + 28 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2352\mathbb{Z}\right)^\times\).

\(n\) \(785\) \(1471\) \(1765\) \(2257\)
\(\chi(n)\) \(-1\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.73205i 1.00000i
\(4\) 0 0
\(5\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) −3.00000 −1.00000
\(10\) 0 0
\(11\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(12\) 0 0
\(13\) 5.00000 1.38675 0.693375 0.720577i \(-0.256123\pi\)
0.693375 + 0.720577i \(0.256123\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(18\) 0 0
\(19\) − 8.66025i − 1.98680i −0.114708 0.993399i \(-0.536593\pi\)
0.114708 0.993399i \(-0.463407\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(24\) 0 0
\(25\) 5.00000 1.00000
\(26\) 0 0
\(27\) − 5.19615i − 1.00000i
\(28\) 0 0
\(29\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(30\) 0 0
\(31\) − 1.73205i − 0.311086i −0.987829 0.155543i \(-0.950287\pi\)
0.987829 0.155543i \(-0.0497126\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 11.0000 1.80839 0.904194 0.427121i \(-0.140472\pi\)
0.904194 + 0.427121i \(0.140472\pi\)
\(38\) 0 0
\(39\) 8.66025i 1.38675i
\(40\) 0 0
\(41\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(42\) 0 0
\(43\) 1.73205i 0.264135i 0.991241 + 0.132068i \(0.0421616\pi\)
−0.991241 + 0.132068i \(0.957838\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 15.0000 1.98680
\(58\) 0 0
\(59\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(60\) 0 0
\(61\) −14.0000 −1.79252 −0.896258 0.443533i \(-0.853725\pi\)
−0.896258 + 0.443533i \(0.853725\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 15.5885i 1.90443i 0.305424 + 0.952217i \(0.401202\pi\)
−0.305424 + 0.952217i \(0.598798\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(72\) 0 0
\(73\) 17.0000 1.98970 0.994850 0.101361i \(-0.0323196\pi\)
0.994850 + 0.101361i \(0.0323196\pi\)
\(74\) 0 0
\(75\) 8.66025i 1.00000i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) − 5.19615i − 0.584613i −0.956325 0.292306i \(-0.905577\pi\)
0.956325 0.292306i \(-0.0944227\pi\)
\(80\) 0 0
\(81\) 9.00000 1.00000
\(82\) 0 0
\(83\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 3.00000 0.311086
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 14.0000 1.42148 0.710742 0.703452i \(-0.248359\pi\)
0.710742 + 0.703452i \(0.248359\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(102\) 0 0
\(103\) − 15.5885i − 1.53598i −0.640464 0.767988i \(-0.721258\pi\)
0.640464 0.767988i \(-0.278742\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(108\) 0 0
\(109\) 19.0000 1.81987 0.909935 0.414751i \(-0.136131\pi\)
0.909935 + 0.414751i \(0.136131\pi\)
\(110\) 0 0
\(111\) 19.0526i 1.80839i
\(112\) 0 0
\(113\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −15.0000 −1.38675
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −11.0000 −1.00000
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 22.5167i 1.99803i 0.0443678 + 0.999015i \(0.485873\pi\)
−0.0443678 + 0.999015i \(0.514127\pi\)
\(128\) 0 0
\(129\) −3.00000 −0.264135
\(130\) 0 0
\(131\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(138\) 0 0
\(139\) 5.19615i 0.440732i 0.975417 + 0.220366i \(0.0707252\pi\)
−0.975417 + 0.220366i \(0.929275\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(150\) 0 0
\(151\) − 24.2487i − 1.97333i −0.162758 0.986666i \(-0.552039\pi\)
0.162758 0.986666i \(-0.447961\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −14.0000 −1.11732 −0.558661 0.829396i \(-0.688685\pi\)
−0.558661 + 0.829396i \(0.688685\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 24.2487i 1.89931i 0.313304 + 0.949653i \(0.398564\pi\)
−0.313304 + 0.949653i \(0.601436\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(168\) 0 0
\(169\) 12.0000 0.923077
\(170\) 0 0
\(171\) 25.9808i 1.98680i
\(172\) 0 0
\(173\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(180\) 0 0
\(181\) −19.0000 −1.41226 −0.706129 0.708083i \(-0.749560\pi\)
−0.706129 + 0.708083i \(0.749560\pi\)
\(182\) 0 0
\(183\) − 24.2487i − 1.79252i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(192\) 0 0
\(193\) 23.0000 1.65558 0.827788 0.561041i \(-0.189599\pi\)
0.827788 + 0.561041i \(0.189599\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(198\) 0 0
\(199\) − 3.46410i − 0.245564i −0.992434 0.122782i \(-0.960818\pi\)
0.992434 0.122782i \(-0.0391815\pi\)
\(200\) 0 0
\(201\) −27.0000 −1.90443
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 24.2487i 1.66935i 0.550743 + 0.834675i \(0.314345\pi\)
−0.550743 + 0.834675i \(0.685655\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 29.4449i 1.98970i
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 10.3923i 0.695920i 0.937509 + 0.347960i \(0.113126\pi\)
−0.937509 + 0.347960i \(0.886874\pi\)
\(224\) 0 0
\(225\) −15.0000 −1.00000
\(226\) 0 0
\(227\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(228\) 0 0
\(229\) 29.0000 1.91637 0.958187 0.286143i \(-0.0923732\pi\)
0.958187 + 0.286143i \(0.0923732\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 9.00000 0.584613
\(238\) 0 0
\(239\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(240\) 0 0
\(241\) 14.0000 0.901819 0.450910 0.892570i \(-0.351100\pi\)
0.450910 + 0.892570i \(0.351100\pi\)
\(242\) 0 0
\(243\) 15.5885i 1.00000i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) − 43.3013i − 2.75519i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(270\) 0 0
\(271\) − 17.3205i − 1.05215i −0.850439 0.526073i \(-0.823664\pi\)
0.850439 0.526073i \(-0.176336\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −5.00000 −0.300421 −0.150210 0.988654i \(-0.547995\pi\)
−0.150210 + 0.988654i \(0.547995\pi\)
\(278\) 0 0
\(279\) 5.19615i 0.311086i
\(280\) 0 0
\(281\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(282\) 0 0
\(283\) − 22.5167i − 1.33848i −0.743048 0.669238i \(-0.766621\pi\)
0.743048 0.669238i \(-0.233379\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 17.0000 1.00000
\(290\) 0 0
\(291\) 24.2487i 1.42148i
\(292\) 0 0
\(293\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) − 29.4449i − 1.68051i −0.542194 0.840254i \(-0.682406\pi\)
0.542194 0.840254i \(-0.317594\pi\)
\(308\) 0 0
\(309\) 27.0000 1.53598
\(310\) 0 0
\(311\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(312\) 0 0
\(313\) 13.0000 0.734803 0.367402 0.930062i \(-0.380247\pi\)
0.367402 + 0.930062i \(0.380247\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) 25.0000 1.38675
\(326\) 0 0
\(327\) 32.9090i 1.81987i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) − 19.0526i − 1.04722i −0.851957 0.523612i \(-0.824584\pi\)
0.851957 0.523612i \(-0.175416\pi\)
\(332\) 0 0
\(333\) −33.0000 −1.80839
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −29.0000 −1.57973 −0.789865 0.613280i \(-0.789850\pi\)
−0.789865 + 0.613280i \(0.789850\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(348\) 0 0
\(349\) −14.0000 −0.749403 −0.374701 0.927146i \(-0.622255\pi\)
−0.374701 + 0.927146i \(0.622255\pi\)
\(350\) 0 0
\(351\) − 25.9808i − 1.38675i
\(352\) 0 0
\(353\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(360\) 0 0
\(361\) −56.0000 −2.94737
\(362\) 0 0
\(363\) − 19.0526i − 1.00000i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) − 22.5167i − 1.17536i −0.809093 0.587680i \(-0.800041\pi\)
0.809093 0.587680i \(-0.199959\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −25.0000 −1.29445 −0.647225 0.762299i \(-0.724071\pi\)
−0.647225 + 0.762299i \(0.724071\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) − 25.9808i − 1.33454i −0.744815 0.667271i \(-0.767462\pi\)
0.744815 0.667271i \(-0.232538\pi\)
\(380\) 0 0
\(381\) −39.0000 −1.99803
\(382\) 0 0
\(383\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) − 5.19615i − 0.264135i
\(388\) 0 0
\(389\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 1.00000 0.0501886 0.0250943 0.999685i \(-0.492011\pi\)
0.0250943 + 0.999685i \(0.492011\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(402\) 0 0
\(403\) − 8.66025i − 0.431398i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) −31.0000 −1.53285 −0.766426 0.642333i \(-0.777967\pi\)
−0.766426 + 0.642333i \(0.777967\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) −9.00000 −0.440732
\(418\) 0 0
\(419\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(420\) 0 0
\(421\) −41.0000 −1.99822 −0.999109 0.0422075i \(-0.986561\pi\)
−0.999109 + 0.0422075i \(0.986561\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(432\) 0 0
\(433\) 37.0000 1.77811 0.889053 0.457804i \(-0.151364\pi\)
0.889053 + 0.457804i \(0.151364\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) − 31.1769i − 1.48799i −0.668184 0.743996i \(-0.732928\pi\)
0.668184 0.743996i \(-0.267072\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 42.0000 1.97333
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 31.0000 1.45012 0.725059 0.688686i \(-0.241812\pi\)
0.725059 + 0.688686i \(0.241812\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(462\) 0 0
\(463\) 1.73205i 0.0804952i 0.999190 + 0.0402476i \(0.0128147\pi\)
−0.999190 + 0.0402476i \(0.987185\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) − 24.2487i − 1.11732i
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) − 43.3013i − 1.98680i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(480\) 0 0
\(481\) 55.0000 2.50778
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) − 39.8372i − 1.80519i −0.430486 0.902597i \(-0.641658\pi\)
0.430486 0.902597i \(-0.358342\pi\)
\(488\) 0 0
\(489\) −42.0000 −1.89931
\(490\) 0 0
\(491\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 43.3013i 1.93843i 0.246214 + 0.969216i \(0.420813\pi\)
−0.246214 + 0.969216i \(0.579187\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 20.7846i 0.923077i
\(508\) 0 0
\(509\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) −45.0000 −1.98680
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(522\) 0 0
\(523\) − 15.5885i − 0.681636i −0.940129 0.340818i \(-0.889296\pi\)
0.940129 0.340818i \(-0.110704\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) −23.0000 −1.00000
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −17.0000 −0.730887 −0.365444 0.930834i \(-0.619083\pi\)
−0.365444 + 0.930834i \(0.619083\pi\)
\(542\) 0 0
\(543\) − 32.9090i − 1.41226i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 24.2487i 1.03680i 0.855138 + 0.518400i \(0.173472\pi\)
−0.855138 + 0.518400i \(0.826528\pi\)
\(548\) 0 0
\(549\) 42.0000 1.79252
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(558\) 0 0
\(559\) 8.66025i 0.366290i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(570\) 0 0
\(571\) 8.66025i 0.362420i 0.983444 + 0.181210i \(0.0580014\pi\)
−0.983444 + 0.181210i \(0.941999\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −11.0000 −0.457936 −0.228968 0.973434i \(-0.573535\pi\)
−0.228968 + 0.973434i \(0.573535\pi\)
\(578\) 0 0
\(579\) 39.8372i 1.65558i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(588\) 0 0
\(589\) −15.0000 −0.618064
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 6.00000 0.245564
\(598\) 0 0
\(599\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(600\) 0 0
\(601\) −23.0000 −0.938190 −0.469095 0.883148i \(-0.655420\pi\)
−0.469095 + 0.883148i \(0.655420\pi\)
\(602\) 0 0
\(603\) − 46.7654i − 1.90443i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 39.8372i 1.61694i 0.588537 + 0.808470i \(0.299704\pi\)
−0.588537 + 0.808470i \(0.700296\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) −10.0000 −0.403896 −0.201948 0.979396i \(-0.564727\pi\)
−0.201948 + 0.979396i \(0.564727\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(618\) 0 0
\(619\) 46.7654i 1.87966i 0.341644 + 0.939829i \(0.389016\pi\)
−0.341644 + 0.939829i \(0.610984\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 25.0000 1.00000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) − 24.2487i − 0.965326i −0.875806 0.482663i \(-0.839670\pi\)
0.875806 0.482663i \(-0.160330\pi\)
\(632\) 0 0
\(633\) −42.0000 −1.66935
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(642\) 0 0
\(643\) 19.0526i 0.751360i 0.926750 + 0.375680i \(0.122591\pi\)
−0.926750 + 0.375680i \(0.877409\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) −51.0000 −1.98970
\(658\) 0 0
\(659\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(660\) 0 0
\(661\) −11.0000 −0.427850 −0.213925 0.976850i \(-0.568625\pi\)
−0.213925 + 0.976850i \(0.568625\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) −18.0000 −0.695920
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) −13.0000 −0.501113 −0.250557 0.968102i \(-0.580614\pi\)
−0.250557 + 0.968102i \(0.580614\pi\)
\(674\) 0 0
\(675\) − 25.9808i − 1.00000i
\(676\) 0 0
\(677\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 50.2295i 1.91637i
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 32.9090i 1.25192i 0.779857 + 0.625958i \(0.215292\pi\)
−0.779857 + 0.625958i \(0.784708\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(702\) 0 0
\(703\) − 95.2628i − 3.59290i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 22.0000 0.826227 0.413114 0.910679i \(-0.364441\pi\)
0.413114 + 0.910679i \(0.364441\pi\)
\(710\) 0 0
\(711\) 15.5885i 0.584613i
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 24.2487i 0.901819i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 53.6936i 1.99138i 0.0927199 + 0.995692i \(0.470444\pi\)
−0.0927199 + 0.995692i \(0.529556\pi\)
\(728\) 0 0
\(729\) −27.0000 −1.00000
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) −43.0000 −1.58824 −0.794121 0.607760i \(-0.792068\pi\)
−0.794121 + 0.607760i \(0.792068\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) − 39.8372i − 1.46543i −0.680534 0.732717i \(-0.738252\pi\)
0.680534 0.732717i \(-0.261748\pi\)
\(740\) 0 0
\(741\) 75.0000 2.75519
\(742\) 0 0
\(743\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) − 53.6936i − 1.95931i −0.200698 0.979653i \(-0.564321\pi\)
0.200698 0.979653i \(-0.435679\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −26.0000 −0.944986 −0.472493 0.881334i \(-0.656646\pi\)
−0.472493 + 0.881334i \(0.656646\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) −47.0000 −1.69486 −0.847432 0.530904i \(-0.821852\pi\)
−0.847432 + 0.530904i \(0.821852\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(774\) 0 0
\(775\) − 8.66025i − 0.311086i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 3.46410i 0.123482i 0.998092 + 0.0617409i \(0.0196653\pi\)
−0.998092 + 0.0617409i \(0.980335\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −70.0000 −2.48577
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(810\) 0 0
\(811\) − 10.3923i − 0.364923i −0.983213 0.182462i \(-0.941593\pi\)
0.983213 0.182462i \(-0.0584065\pi\)
\(812\) 0 0
\(813\) 30.0000 1.05215
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 15.0000 0.524784
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(822\) 0 0
\(823\) − 24.2487i − 0.845257i −0.906303 0.422628i \(-0.861108\pi\)
0.906303 0.422628i \(-0.138892\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(828\) 0 0
\(829\) 53.0000 1.84077 0.920383 0.391018i \(-0.127877\pi\)
0.920383 + 0.391018i \(0.127877\pi\)
\(830\) 0 0
\(831\) − 8.66025i − 0.300421i
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) −9.00000 −0.311086
\(838\) 0 0
\(839\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(840\) 0 0
\(841\) 29.0000 1.00000
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 39.0000 1.33848
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) −23.0000 −0.787505 −0.393753 0.919216i \(-0.628823\pi\)
−0.393753 + 0.919216i \(0.628823\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(858\) 0 0
\(859\) 17.3205i 0.590968i 0.955348 + 0.295484i \(0.0954809\pi\)
−0.955348 + 0.295484i \(0.904519\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 29.4449i 1.00000i
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 77.9423i 2.64097i
\(872\) 0 0
\(873\) −42.0000 −1.42148
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −34.0000 −1.14810 −0.574049 0.818821i \(-0.694628\pi\)
−0.574049 + 0.818821i \(0.694628\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(882\) 0 0
\(883\) 22.5167i 0.757746i 0.925449 + 0.378873i \(0.123688\pi\)
−0.925449 + 0.378873i \(0.876312\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 57.1577i 1.89789i 0.315442 + 0.948945i \(0.397847\pi\)
−0.315442 + 0.948945i \(0.602153\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 29.4449i 0.971296i 0.874154 + 0.485648i \(0.161416\pi\)
−0.874154 + 0.485648i \(0.838584\pi\)
\(920\) 0 0
\(921\) 51.0000 1.68051
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 55.0000 1.80839
\(926\) 0 0
\(927\) 46.7654i 1.53598i
\(928\) 0 0
\(929\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 61.0000 1.99278 0.996392 0.0848755i \(-0.0270492\pi\)
0.996392 + 0.0848755i \(0.0270492\pi\)
\(938\) 0 0
\(939\) 22.5167i 0.734803i
\(940\) 0 0
\(941\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(948\) 0 0
\(949\) 85.0000 2.75922
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 28.0000 0.903226
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) − 46.7654i − 1.50387i −0.659236 0.751936i \(-0.729120\pi\)
0.659236 0.751936i \(-0.270880\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 43.3013i 1.38675i
\(976\) 0 0
\(977\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) −57.0000 −1.81987
\(982\) 0 0
\(983\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 15.5885i 0.495184i 0.968864 + 0.247592i \(0.0796392\pi\)
−0.968864 + 0.247592i \(0.920361\pi\)
\(992\) 0 0
\(993\) 33.0000 1.04722
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −59.0000 −1.86855 −0.934274 0.356555i \(-0.883951\pi\)
−0.934274 + 0.356555i \(0.883951\pi\)
\(998\) 0 0
\(999\) − 57.1577i − 1.80839i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2352.2.h.d.2255.2 2
3.2 odd 2 CM 2352.2.h.d.2255.2 2
4.3 odd 2 inner 2352.2.h.d.2255.1 2
7.3 odd 6 336.2.bj.a.191.1 yes 2
7.5 odd 6 336.2.bj.d.95.1 yes 2
7.6 odd 2 2352.2.h.b.2255.1 2
12.11 even 2 inner 2352.2.h.d.2255.1 2
21.5 even 6 336.2.bj.d.95.1 yes 2
21.17 even 6 336.2.bj.a.191.1 yes 2
21.20 even 2 2352.2.h.b.2255.1 2
28.3 even 6 336.2.bj.d.191.1 yes 2
28.19 even 6 336.2.bj.a.95.1 2
28.27 even 2 2352.2.h.b.2255.2 2
84.47 odd 6 336.2.bj.a.95.1 2
84.59 odd 6 336.2.bj.d.191.1 yes 2
84.83 odd 2 2352.2.h.b.2255.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
336.2.bj.a.95.1 2 28.19 even 6
336.2.bj.a.95.1 2 84.47 odd 6
336.2.bj.a.191.1 yes 2 7.3 odd 6
336.2.bj.a.191.1 yes 2 21.17 even 6
336.2.bj.d.95.1 yes 2 7.5 odd 6
336.2.bj.d.95.1 yes 2 21.5 even 6
336.2.bj.d.191.1 yes 2 28.3 even 6
336.2.bj.d.191.1 yes 2 84.59 odd 6
2352.2.h.b.2255.1 2 7.6 odd 2
2352.2.h.b.2255.1 2 21.20 even 2
2352.2.h.b.2255.2 2 28.27 even 2
2352.2.h.b.2255.2 2 84.83 odd 2
2352.2.h.d.2255.1 2 4.3 odd 2 inner
2352.2.h.d.2255.1 2 12.11 even 2 inner
2352.2.h.d.2255.2 2 1.1 even 1 trivial
2352.2.h.d.2255.2 2 3.2 odd 2 CM