# Properties

 Label 2352.2.bl.r.607.1 Level $2352$ Weight $2$ Character 2352.607 Analytic conductor $18.781$ Analytic rank $0$ Dimension $8$ CM no Inner twists $2$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$2352 = 2^{4} \cdot 3 \cdot 7^{2}$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 2352.bl (of order $$6$$, degree $$2$$, not minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$18.7808145554$$ Analytic rank: $$0$$ Dimension: $$8$$ Relative dimension: $$4$$ over $$\Q(\zeta_{6})$$ Coefficient field: 8.0.339738624.1 Defining polynomial: $$x^{8} - 4 x^{6} + 14 x^{4} - 8 x^{2} + 4$$ Coefficient ring: $$\Z[a_1, \ldots, a_{11}]$$ Coefficient ring index: $$1$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

## Embedding invariants

 Embedding label 607.1 Root $$-0.662827 - 0.382683i$$ of defining polynomial Character $$\chi$$ $$=$$ 2352.607 Dual form 2352.2.bl.r.31.1

## $q$-expansion

 $$f(q)$$ $$=$$ $$q+(0.500000 + 0.866025i) q^{3} +(-3.72153 - 2.14862i) q^{5} +(-0.500000 + 0.866025i) q^{9} +O(q^{10})$$ $$q+(0.500000 + 0.866025i) q^{3} +(-3.72153 - 2.14862i) q^{5} +(-0.500000 + 0.866025i) q^{9} +(-4.38435 + 2.53131i) q^{11} +3.37849i q^{13} -4.29725i q^{15} +(2.39587 - 1.38326i) q^{17} +(2.35159 - 4.07308i) q^{19} +(-4.18394 - 2.41560i) q^{23} +(6.73317 + 11.6622i) q^{25} -1.00000 q^{27} +2.46054 q^{29} +(-2.84882 - 4.93430i) q^{31} +(-4.38435 - 2.53131i) q^{33} +(1.16765 - 2.02243i) q^{37} +(-2.92586 + 1.68925i) q^{39} -5.14822i q^{41} +13.0199i q^{43} +(3.72153 - 2.14862i) q^{45} +(2.67725 - 4.63713i) q^{47} +(2.39587 + 1.38326i) q^{51} +(2.11185 + 3.65784i) q^{53} +21.7553 q^{55} +4.70319 q^{57} +(4.80249 + 8.31815i) q^{59} +(3.35757 + 1.93849i) q^{61} +(7.25911 - 12.5732i) q^{65} +(4.12524 - 2.38171i) q^{67} -4.83120i q^{69} -12.3181i q^{71} +(9.96809 - 5.75508i) q^{73} +(-6.73317 + 11.6622i) q^{75} +(12.0521 + 6.95830i) q^{79} +(-0.500000 - 0.866025i) q^{81} -7.32191 q^{83} -11.8884 q^{85} +(1.23027 + 2.13089i) q^{87} +(12.1631 + 7.02239i) q^{89} +(2.84882 - 4.93430i) q^{93} +(-17.5030 + 10.1054i) q^{95} -14.5716i q^{97} -5.06262i q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$8q + 4q^{3} - 4q^{9} + O(q^{10})$$ $$8q + 4q^{3} - 4q^{9} - 24q^{23} + 12q^{25} - 8q^{27} + 16q^{29} - 16q^{31} - 8q^{47} - 8q^{53} + 64q^{55} + 24q^{59} + 48q^{61} + 8q^{65} + 48q^{67} + 48q^{73} - 12q^{75} + 24q^{79} - 4q^{81} - 64q^{85} + 8q^{87} + 48q^{89} + 16q^{93} - 72q^{95} + O(q^{100})$$

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/2352\mathbb{Z}\right)^\times$$.

 $$n$$ $$785$$ $$1471$$ $$1765$$ $$2257$$ $$\chi(n)$$ $$1$$ $$-1$$ $$1$$ $$e\left(\frac{5}{6}\right)$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ 0 0
$$3$$ 0.500000 + 0.866025i 0.288675 + 0.500000i
$$4$$ 0 0
$$5$$ −3.72153 2.14862i −1.66432 0.960894i −0.970617 0.240630i $$-0.922646\pi$$
−0.693701 0.720264i $$-0.744021\pi$$
$$6$$ 0 0
$$7$$ 0 0
$$8$$ 0 0
$$9$$ −0.500000 + 0.866025i −0.166667 + 0.288675i
$$10$$ 0 0
$$11$$ −4.38435 + 2.53131i −1.32193 + 0.763218i −0.984037 0.177966i $$-0.943048\pi$$
−0.337896 + 0.941184i $$0.609715\pi$$
$$12$$ 0 0
$$13$$ 3.37849i 0.937025i 0.883457 + 0.468513i $$0.155210\pi$$
−0.883457 + 0.468513i $$0.844790\pi$$
$$14$$ 0 0
$$15$$ 4.29725i 1.10954i
$$16$$ 0 0
$$17$$ 2.39587 1.38326i 0.581084 0.335489i −0.180480 0.983579i $$-0.557765\pi$$
0.761564 + 0.648089i $$0.224432\pi$$
$$18$$ 0 0
$$19$$ 2.35159 4.07308i 0.539492 0.934428i −0.459439 0.888209i $$-0.651950\pi$$
0.998931 0.0462188i $$-0.0147172\pi$$
$$20$$ 0 0
$$21$$ 0 0
$$22$$ 0 0
$$23$$ −4.18394 2.41560i −0.872412 0.503687i −0.00426301 0.999991i $$-0.501357\pi$$
−0.868149 + 0.496304i $$0.834690\pi$$
$$24$$ 0 0
$$25$$ 6.73317 + 11.6622i 1.34663 + 2.33244i
$$26$$ 0 0
$$27$$ −1.00000 −0.192450
$$28$$ 0 0
$$29$$ 2.46054 0.456912 0.228456 0.973554i $$-0.426632\pi$$
0.228456 + 0.973554i $$0.426632\pi$$
$$30$$ 0 0
$$31$$ −2.84882 4.93430i −0.511663 0.886227i −0.999909 0.0135202i $$-0.995696\pi$$
0.488245 0.872706i $$-0.337637\pi$$
$$32$$ 0 0
$$33$$ −4.38435 2.53131i −0.763218 0.440644i
$$34$$ 0 0
$$35$$ 0 0
$$36$$ 0 0
$$37$$ 1.16765 2.02243i 0.191961 0.332486i −0.753939 0.656944i $$-0.771849\pi$$
0.945900 + 0.324458i $$0.105182\pi$$
$$38$$ 0 0
$$39$$ −2.92586 + 1.68925i −0.468513 + 0.270496i
$$40$$ 0 0
$$41$$ 5.14822i 0.804018i −0.915636 0.402009i $$-0.868312\pi$$
0.915636 0.402009i $$-0.131688\pi$$
$$42$$ 0 0
$$43$$ 13.0199i 1.98552i 0.120117 + 0.992760i $$0.461673\pi$$
−0.120117 + 0.992760i $$0.538327\pi$$
$$44$$ 0 0
$$45$$ 3.72153 2.14862i 0.554772 0.320298i
$$46$$ 0 0
$$47$$ 2.67725 4.63713i 0.390517 0.676395i −0.602001 0.798495i $$-0.705630\pi$$
0.992518 + 0.122101i $$0.0389631\pi$$
$$48$$ 0 0
$$49$$ 0 0
$$50$$ 0 0
$$51$$ 2.39587 + 1.38326i 0.335489 + 0.193695i
$$52$$ 0 0
$$53$$ 2.11185 + 3.65784i 0.290085 + 0.502443i 0.973830 0.227279i $$-0.0729830\pi$$
−0.683744 + 0.729722i $$0.739650\pi$$
$$54$$ 0 0
$$55$$ 21.7553 2.93349
$$56$$ 0 0
$$57$$ 4.70319 0.622952
$$58$$ 0 0
$$59$$ 4.80249 + 8.31815i 0.625231 + 1.08293i 0.988496 + 0.151246i $$0.0483285\pi$$
−0.363265 + 0.931686i $$0.618338\pi$$
$$60$$ 0 0
$$61$$ 3.35757 + 1.93849i 0.429892 + 0.248198i 0.699301 0.714828i $$-0.253495\pi$$
−0.269408 + 0.963026i $$0.586828\pi$$
$$62$$ 0 0
$$63$$ 0 0
$$64$$ 0 0
$$65$$ 7.25911 12.5732i 0.900382 1.55951i
$$66$$ 0 0
$$67$$ 4.12524 2.38171i 0.503978 0.290972i −0.226377 0.974040i $$-0.572688\pi$$
0.730355 + 0.683068i $$0.239355\pi$$
$$68$$ 0 0
$$69$$ 4.83120i 0.581608i
$$70$$ 0 0
$$71$$ 12.3181i 1.46189i −0.682437 0.730944i $$-0.739080\pi$$
0.682437 0.730944i $$-0.260920\pi$$
$$72$$ 0 0
$$73$$ 9.96809 5.75508i 1.16668 0.673581i 0.213782 0.976881i $$-0.431422\pi$$
0.952895 + 0.303300i $$0.0980886\pi$$
$$74$$ 0 0
$$75$$ −6.73317 + 11.6622i −0.777480 + 1.34663i
$$76$$ 0 0
$$77$$ 0 0
$$78$$ 0 0
$$79$$ 12.0521 + 6.95830i 1.35597 + 0.782870i 0.989078 0.147393i $$-0.0470882\pi$$
0.366893 + 0.930263i $$0.380422\pi$$
$$80$$ 0 0
$$81$$ −0.500000 0.866025i −0.0555556 0.0962250i
$$82$$ 0 0
$$83$$ −7.32191 −0.803685 −0.401842 0.915709i $$-0.631630\pi$$
−0.401842 + 0.915709i $$0.631630\pi$$
$$84$$ 0 0
$$85$$ −11.8884 −1.28948
$$86$$ 0 0
$$87$$ 1.23027 + 2.13089i 0.131899 + 0.228456i
$$88$$ 0 0
$$89$$ 12.1631 + 7.02239i 1.28929 + 0.744372i 0.978528 0.206116i $$-0.0660823\pi$$
0.310762 + 0.950488i $$0.399416\pi$$
$$90$$ 0 0
$$91$$ 0 0
$$92$$ 0 0
$$93$$ 2.84882 4.93430i 0.295409 0.511663i
$$94$$ 0 0
$$95$$ −17.5030 + 10.1054i −1.79577 + 1.03679i
$$96$$ 0 0
$$97$$ 14.5716i 1.47952i −0.672868 0.739762i $$-0.734938\pi$$
0.672868 0.739762i $$-0.265062\pi$$
$$98$$ 0 0
$$99$$ 5.06262i 0.508812i
$$100$$ 0 0
$$101$$ 11.3524 6.55434i 1.12961 0.652181i 0.185773 0.982593i $$-0.440521\pi$$
0.943837 + 0.330412i $$0.107188\pi$$
$$102$$ 0 0
$$103$$ 0.104849 0.181604i 0.0103311 0.0178939i −0.860814 0.508920i $$-0.830045\pi$$
0.871145 + 0.491026i $$0.163378\pi$$
$$104$$ 0 0
$$105$$ 0 0
$$106$$ 0 0
$$107$$ 5.56558 + 3.21329i 0.538044 + 0.310640i 0.744286 0.667861i $$-0.232790\pi$$
−0.206242 + 0.978501i $$0.566123\pi$$
$$108$$ 0 0
$$109$$ −0.470012 0.814084i −0.0450190 0.0779751i 0.842638 0.538481i $$-0.181001\pi$$
−0.887657 + 0.460506i $$0.847668\pi$$
$$110$$ 0 0
$$111$$ 2.33530 0.221657
$$112$$ 0 0
$$113$$ 1.09821 0.103311 0.0516554 0.998665i $$-0.483550\pi$$
0.0516554 + 0.998665i $$0.483550\pi$$
$$114$$ 0 0
$$115$$ 10.3804 + 17.9794i 0.967980 + 1.67659i
$$116$$ 0 0
$$117$$ −2.92586 1.68925i −0.270496 0.156171i
$$118$$ 0 0
$$119$$ 0 0
$$120$$ 0 0
$$121$$ 7.31504 12.6700i 0.665004 1.15182i
$$122$$ 0 0
$$123$$ 4.45849 2.57411i 0.402009 0.232100i
$$124$$ 0 0
$$125$$ 36.3820i 3.25411i
$$126$$ 0 0
$$127$$ 5.22625i 0.463755i −0.972745 0.231877i $$-0.925513\pi$$
0.972745 0.231877i $$-0.0744868\pi$$
$$128$$ 0 0
$$129$$ −11.2756 + 6.50996i −0.992760 + 0.573170i
$$130$$ 0 0
$$131$$ 0.437508 0.757785i 0.0382252 0.0662080i −0.846280 0.532739i $$-0.821163\pi$$
0.884505 + 0.466531i $$0.154496\pi$$
$$132$$ 0 0
$$133$$ 0 0
$$134$$ 0 0
$$135$$ 3.72153 + 2.14862i 0.320298 + 0.184924i
$$136$$ 0 0
$$137$$ −0.118419 0.205108i −0.0101172 0.0175235i 0.860922 0.508736i $$-0.169887\pi$$
−0.871040 + 0.491213i $$0.836554\pi$$
$$138$$ 0 0
$$139$$ 3.00555 0.254927 0.127464 0.991843i $$-0.459316\pi$$
0.127464 + 0.991843i $$0.459316\pi$$
$$140$$ 0 0
$$141$$ 5.35449 0.450930
$$142$$ 0 0
$$143$$ −8.55201 14.8125i −0.715155 1.23868i
$$144$$ 0 0
$$145$$ −9.15698 5.28679i −0.760446 0.439044i
$$146$$ 0 0
$$147$$ 0 0
$$148$$ 0 0
$$149$$ 7.40083 12.8186i 0.606299 1.05014i −0.385545 0.922689i $$-0.625987\pi$$
0.991845 0.127452i $$-0.0406799\pi$$
$$150$$ 0 0
$$151$$ 10.7087 6.18269i 0.871464 0.503140i 0.00362965 0.999993i $$-0.498845\pi$$
0.867835 + 0.496853i $$0.165511\pi$$
$$152$$ 0 0
$$153$$ 2.76652i 0.223659i
$$154$$ 0 0
$$155$$ 24.4842i 1.96662i
$$156$$ 0 0
$$157$$ 9.43153 5.44530i 0.752718 0.434582i −0.0739569 0.997261i $$-0.523563\pi$$
0.826675 + 0.562679i $$0.190229\pi$$
$$158$$ 0 0
$$159$$ −2.11185 + 3.65784i −0.167481 + 0.290085i
$$160$$ 0 0
$$161$$ 0 0
$$162$$ 0 0
$$163$$ 1.30791 + 0.755120i 0.102443 + 0.0591455i 0.550346 0.834937i $$-0.314496\pi$$
−0.447903 + 0.894082i $$0.647829\pi$$
$$164$$ 0 0
$$165$$ 10.8777 + 18.8407i 0.846825 + 1.46674i
$$166$$ 0 0
$$167$$ −10.3333 −0.799612 −0.399806 0.916600i $$-0.630922\pi$$
−0.399806 + 0.916600i $$0.630922\pi$$
$$168$$ 0 0
$$169$$ 1.58579 0.121984
$$170$$ 0 0
$$171$$ 2.35159 + 4.07308i 0.179831 + 0.311476i
$$172$$ 0 0
$$173$$ 2.90674 + 1.67821i 0.220996 + 0.127592i 0.606411 0.795151i $$-0.292609\pi$$
−0.385416 + 0.922743i $$0.625942\pi$$
$$174$$ 0 0
$$175$$ 0 0
$$176$$ 0 0
$$177$$ −4.80249 + 8.31815i −0.360977 + 0.625231i
$$178$$ 0 0
$$179$$ −11.4826 + 6.62946i −0.858247 + 0.495509i −0.863425 0.504477i $$-0.831685\pi$$
0.00517789 + 0.999987i $$0.498352\pi$$
$$180$$ 0 0
$$181$$ 11.8519i 0.880946i 0.897766 + 0.440473i $$0.145189\pi$$
−0.897766 + 0.440473i $$0.854811\pi$$
$$182$$ 0 0
$$183$$ 3.87698i 0.286595i
$$184$$ 0 0
$$185$$ −8.69089 + 5.01769i −0.638967 + 0.368908i
$$186$$ 0 0
$$187$$ −7.00290 + 12.1294i −0.512103 + 0.886988i
$$188$$ 0 0
$$189$$ 0 0
$$190$$ 0 0
$$191$$ −1.16619 0.673302i −0.0843828 0.0487184i 0.457215 0.889356i $$-0.348847\pi$$
−0.541598 + 0.840638i $$0.682180\pi$$
$$192$$ 0 0
$$193$$ 13.0577 + 22.6166i 0.939912 + 1.62798i 0.765631 + 0.643280i $$0.222427\pi$$
0.174281 + 0.984696i $$0.444240\pi$$
$$194$$ 0 0
$$195$$ 14.5182 1.03967
$$196$$ 0 0
$$197$$ −7.49083 −0.533699 −0.266850 0.963738i $$-0.585983\pi$$
−0.266850 + 0.963738i $$0.585983\pi$$
$$198$$ 0 0
$$199$$ 2.24674 + 3.89147i 0.159267 + 0.275859i 0.934605 0.355688i $$-0.115753\pi$$
−0.775337 + 0.631547i $$0.782420\pi$$
$$200$$ 0 0
$$201$$ 4.12524 + 2.38171i 0.290972 + 0.167993i
$$202$$ 0 0
$$203$$ 0 0
$$204$$ 0 0
$$205$$ −11.0616 + 19.1593i −0.772576 + 1.33814i
$$206$$ 0 0
$$207$$ 4.18394 2.41560i 0.290804 0.167896i
$$208$$ 0 0
$$209$$ 23.8104i 1.64700i
$$210$$ 0 0
$$211$$ 5.93122i 0.408322i −0.978937 0.204161i $$-0.934553\pi$$
0.978937 0.204161i $$-0.0654466\pi$$
$$212$$ 0 0
$$213$$ 10.6678 6.15905i 0.730944 0.422011i
$$214$$ 0 0
$$215$$ 27.9749 48.4540i 1.90787 3.30453i
$$216$$ 0 0
$$217$$ 0 0
$$218$$ 0 0
$$219$$ 9.96809 + 5.75508i 0.673581 + 0.388892i
$$220$$ 0 0
$$221$$ 4.67333 + 8.09444i 0.314362 + 0.544491i
$$222$$ 0 0
$$223$$ −20.6163 −1.38057 −0.690286 0.723537i $$-0.742515\pi$$
−0.690286 + 0.723537i $$0.742515\pi$$
$$224$$ 0 0
$$225$$ −13.4663 −0.897756
$$226$$ 0 0
$$227$$ 10.2455 + 17.7458i 0.680021 + 1.17783i 0.974974 + 0.222318i $$0.0713625\pi$$
−0.294954 + 0.955512i $$0.595304\pi$$
$$228$$ 0 0
$$229$$ −25.1502 14.5205i −1.66197 0.959539i −0.971773 0.235917i $$-0.924191\pi$$
−0.690197 0.723622i $$-0.742476\pi$$
$$230$$ 0 0
$$231$$ 0 0
$$232$$ 0 0
$$233$$ −8.86819 + 15.3602i −0.580975 + 1.00628i 0.414390 + 0.910100i $$0.363995\pi$$
−0.995364 + 0.0961779i $$0.969338\pi$$
$$234$$ 0 0
$$235$$ −19.9269 + 11.5048i −1.29989 + 0.750490i
$$236$$ 0 0
$$237$$ 13.9166i 0.903981i
$$238$$ 0 0
$$239$$ 20.4248i 1.32117i 0.750750 + 0.660586i $$0.229692\pi$$
−0.750750 + 0.660586i $$0.770308\pi$$
$$240$$ 0 0
$$241$$ −2.82101 + 1.62871i −0.181717 + 0.104915i −0.588099 0.808789i $$-0.700124\pi$$
0.406382 + 0.913703i $$0.366790\pi$$
$$242$$ 0 0
$$243$$ 0.500000 0.866025i 0.0320750 0.0555556i
$$244$$ 0 0
$$245$$ 0 0
$$246$$ 0 0
$$247$$ 13.7609 + 7.94484i 0.875583 + 0.505518i
$$248$$ 0 0
$$249$$ −3.66096 6.34096i −0.232004 0.401842i
$$250$$ 0 0
$$251$$ −3.95633 −0.249721 −0.124861 0.992174i $$-0.539848\pi$$
−0.124861 + 0.992174i $$0.539848\pi$$
$$252$$ 0 0
$$253$$ 24.4585 1.53769
$$254$$ 0 0
$$255$$ −5.94420 10.2957i −0.372240 0.644739i
$$256$$ 0 0
$$257$$ −4.45849 2.57411i −0.278113 0.160569i 0.354456 0.935073i $$-0.384666\pi$$
−0.632569 + 0.774504i $$0.717999\pi$$
$$258$$ 0 0
$$259$$ 0 0
$$260$$ 0 0
$$261$$ −1.23027 + 2.13089i −0.0761519 + 0.131899i
$$262$$ 0 0
$$263$$ −0.0679848 + 0.0392511i −0.00419212 + 0.00242032i −0.502095 0.864813i $$-0.667437\pi$$
0.497902 + 0.867233i $$0.334104\pi$$
$$264$$ 0 0
$$265$$ 18.1503i 1.11497i
$$266$$ 0 0
$$267$$ 14.0448i 0.859527i
$$268$$ 0 0
$$269$$ 0.764956 0.441648i 0.0466402 0.0269277i −0.476499 0.879175i $$-0.658094\pi$$
0.523139 + 0.852247i $$0.324761\pi$$
$$270$$ 0 0
$$271$$ −9.65421 + 16.7216i −0.586451 + 1.01576i 0.408241 + 0.912874i $$0.366142\pi$$
−0.994693 + 0.102890i $$0.967191\pi$$
$$272$$ 0 0
$$273$$ 0 0
$$274$$ 0 0
$$275$$ −59.0412 34.0875i −3.56032 2.05555i
$$276$$ 0 0
$$277$$ −8.46635 14.6641i −0.508694 0.881083i −0.999949 0.0100677i $$-0.996795\pi$$
0.491256 0.871015i $$-0.336538\pi$$
$$278$$ 0 0
$$279$$ 5.69764 0.341109
$$280$$ 0 0
$$281$$ 5.05417 0.301507 0.150753 0.988571i $$-0.451830\pi$$
0.150753 + 0.988571i $$0.451830\pi$$
$$282$$ 0 0
$$283$$ −9.55781 16.5546i −0.568153 0.984069i −0.996749 0.0805731i $$-0.974325\pi$$
0.428596 0.903496i $$-0.359008\pi$$
$$284$$ 0 0
$$285$$ −17.5030 10.1054i −1.03679 0.598591i
$$286$$ 0 0
$$287$$ 0 0
$$288$$ 0 0
$$289$$ −4.67320 + 8.09421i −0.274894 + 0.476130i
$$290$$ 0 0
$$291$$ 12.6194 7.28581i 0.739762 0.427102i
$$292$$ 0 0
$$293$$ 2.37837i 0.138946i −0.997584 0.0694730i $$-0.977868\pi$$
0.997584 0.0694730i $$-0.0221318\pi$$
$$294$$ 0 0
$$295$$ 41.2750i 2.40312i
$$296$$ 0 0
$$297$$ 4.38435 2.53131i 0.254406 0.146881i
$$298$$ 0 0
$$299$$ 8.16109 14.1354i 0.471968 0.817472i
$$300$$ 0 0
$$301$$ 0 0
$$302$$ 0 0
$$303$$ 11.3524 + 6.55434i 0.652181 + 0.376537i
$$304$$ 0 0
$$305$$ −8.33018 14.4283i −0.476985 0.826162i
$$306$$ 0 0
$$307$$ −4.89599 −0.279429 −0.139714 0.990192i $$-0.544618\pi$$
−0.139714 + 0.990192i $$0.544618\pi$$
$$308$$ 0 0
$$309$$ 0.209698 0.0119293
$$310$$ 0 0
$$311$$ 5.24000 + 9.07594i 0.297133 + 0.514649i 0.975479 0.220093i $$-0.0706362\pi$$
−0.678346 + 0.734743i $$0.737303\pi$$
$$312$$ 0 0
$$313$$ −8.31534 4.80086i −0.470011 0.271361i 0.246234 0.969211i $$-0.420807\pi$$
−0.716244 + 0.697850i $$0.754140\pi$$
$$314$$ 0 0
$$315$$ 0 0
$$316$$ 0 0
$$317$$ 8.39672 14.5435i 0.471607 0.816847i −0.527865 0.849328i $$-0.677007\pi$$
0.999472 + 0.0324809i $$0.0103408\pi$$
$$318$$ 0 0
$$319$$ −10.7879 + 6.22840i −0.604006 + 0.348723i
$$320$$ 0 0
$$321$$ 6.42657i 0.358696i
$$322$$ 0 0
$$323$$ 13.0114i 0.723976i
$$324$$ 0 0
$$325$$ −39.4007 + 22.7480i −2.18556 + 1.26183i
$$326$$ 0 0
$$327$$ 0.470012 0.814084i 0.0259917 0.0450190i
$$328$$ 0 0
$$329$$ 0 0
$$330$$ 0 0
$$331$$ −23.2409 13.4181i −1.27743 0.737526i −0.301057 0.953606i $$-0.597340\pi$$
−0.976376 + 0.216080i $$0.930673\pi$$
$$332$$ 0 0
$$333$$ 1.16765 + 2.02243i 0.0639869 + 0.110829i
$$334$$ 0 0
$$335$$ −20.4696 −1.11837
$$336$$ 0 0
$$337$$ 23.0827 1.25739 0.628697 0.777651i $$-0.283589\pi$$
0.628697 + 0.777651i $$0.283589\pi$$
$$338$$ 0 0
$$339$$ 0.549104 + 0.951076i 0.0298232 + 0.0516554i
$$340$$ 0 0
$$341$$ 24.9805 + 14.4225i 1.35277 + 0.781021i
$$342$$ 0 0
$$343$$ 0 0
$$344$$ 0 0
$$345$$ −10.3804 + 17.9794i −0.558864 + 0.967980i
$$346$$ 0 0
$$347$$ −1.13181 + 0.653449i −0.0607586 + 0.0350790i −0.530072 0.847953i $$-0.677835\pi$$
0.469313 + 0.883032i $$0.344502\pi$$
$$348$$ 0 0
$$349$$ 26.5489i 1.42113i 0.703633 + 0.710564i $$0.251560\pi$$
−0.703633 + 0.710564i $$0.748440\pi$$
$$350$$ 0 0
$$351$$ 3.37849i 0.180331i
$$352$$ 0 0
$$353$$ 14.6266 8.44466i 0.778494 0.449464i −0.0574020 0.998351i $$-0.518282\pi$$
0.835896 + 0.548887i $$0.184948\pi$$
$$354$$ 0 0
$$355$$ −26.4670 + 45.8421i −1.40472 + 2.43305i
$$356$$ 0 0
$$357$$ 0 0
$$358$$ 0 0
$$359$$ 29.0899 + 16.7950i 1.53530 + 0.886408i 0.999104 + 0.0423171i $$0.0134740\pi$$
0.536200 + 0.844091i $$0.319859\pi$$
$$360$$ 0 0
$$361$$ −1.55998 2.70196i −0.0821040 0.142208i
$$362$$ 0 0
$$363$$ 14.6301 0.767880
$$364$$ 0 0
$$365$$ −49.4620 −2.58896
$$366$$ 0 0
$$367$$ −3.67989 6.37376i −0.192089 0.332708i 0.753854 0.657043i $$-0.228193\pi$$
−0.945942 + 0.324335i $$0.894859\pi$$
$$368$$ 0 0
$$369$$ 4.45849 + 2.57411i 0.232100 + 0.134003i
$$370$$ 0 0
$$371$$ 0 0
$$372$$ 0 0
$$373$$ −1.81504 + 3.14374i −0.0939791 + 0.162777i −0.909182 0.416399i $$-0.863292\pi$$
0.815203 + 0.579175i $$0.196625\pi$$
$$374$$ 0 0
$$375$$ 31.5077 18.1910i 1.62705 0.939379i
$$376$$ 0 0
$$377$$ 8.31293i 0.428138i
$$378$$ 0 0
$$379$$ 13.6647i 0.701908i −0.936393 0.350954i $$-0.885857\pi$$
0.936393 0.350954i $$-0.114143\pi$$
$$380$$ 0 0
$$381$$ 4.52607 2.61313i 0.231877 0.133874i
$$382$$ 0 0
$$383$$ −6.82843 + 11.8272i −0.348916 + 0.604341i −0.986057 0.166407i $$-0.946784\pi$$
0.637141 + 0.770747i $$0.280117\pi$$
$$384$$ 0 0
$$385$$ 0 0
$$386$$ 0 0
$$387$$ −11.2756 6.50996i −0.573170 0.330920i
$$388$$ 0 0
$$389$$ −13.4540 23.3030i −0.682144 1.18151i −0.974325 0.225145i $$-0.927714\pi$$
0.292181 0.956363i $$-0.405619\pi$$
$$390$$ 0 0
$$391$$ −13.3656 −0.675927
$$392$$ 0 0
$$393$$ 0.875015 0.0441387
$$394$$ 0 0
$$395$$ −29.9016 51.7910i −1.50451 2.60589i
$$396$$ 0 0
$$397$$ 31.8041 + 18.3621i 1.59620 + 0.921568i 0.992210 + 0.124579i $$0.0397581\pi$$
0.603994 + 0.796989i $$0.293575\pi$$
$$398$$ 0 0
$$399$$ 0 0
$$400$$ 0 0
$$401$$ 13.8408 23.9730i 0.691176 1.19715i −0.280276 0.959919i $$-0.590426\pi$$
0.971453 0.237233i $$-0.0762405\pi$$
$$402$$ 0 0
$$403$$ 16.6705 9.62472i 0.830417 0.479441i
$$404$$ 0 0
$$405$$ 4.29725i 0.213532i
$$406$$ 0 0
$$407$$ 11.8227i 0.586032i
$$408$$ 0 0
$$409$$ −7.29903 + 4.21410i −0.360914 + 0.208374i −0.669482 0.742829i $$-0.733484\pi$$
0.308568 + 0.951202i $$0.400150\pi$$
$$410$$ 0 0
$$411$$ 0.118419 0.205108i 0.00584118 0.0101172i
$$412$$ 0 0
$$413$$ 0 0
$$414$$ 0 0
$$415$$ 27.2487 + 15.7320i 1.33759 + 0.772256i
$$416$$ 0 0
$$417$$ 1.50277 + 2.60288i 0.0735911 + 0.127464i
$$418$$ 0 0
$$419$$ 18.3029 0.894154 0.447077 0.894495i $$-0.352465\pi$$
0.447077 + 0.894495i $$0.352465\pi$$
$$420$$ 0 0
$$421$$ 22.6274 1.10279 0.551396 0.834243i $$-0.314095\pi$$
0.551396 + 0.834243i $$0.314095\pi$$
$$422$$ 0 0
$$423$$ 2.67725 + 4.63713i 0.130172 + 0.225465i
$$424$$ 0 0
$$425$$ 32.2636 + 18.6274i 1.56502 + 0.903563i
$$426$$ 0 0
$$427$$ 0 0
$$428$$ 0 0
$$429$$ 8.55201 14.8125i 0.412895 0.715155i
$$430$$ 0 0
$$431$$ 3.85300 2.22453i 0.185592 0.107152i −0.404325 0.914615i $$-0.632494\pi$$
0.589918 + 0.807464i $$0.299160\pi$$
$$432$$ 0 0
$$433$$ 1.66205i 0.0798730i −0.999202 0.0399365i $$-0.987284\pi$$
0.999202 0.0399365i $$-0.0127156\pi$$
$$434$$ 0 0
$$435$$ 10.5736i 0.506964i
$$436$$ 0 0
$$437$$ −19.6779 + 11.3610i −0.941319 + 0.543471i
$$438$$ 0 0
$$439$$ 9.37753 16.2424i 0.447565 0.775206i −0.550662 0.834728i $$-0.685625\pi$$
0.998227 + 0.0595229i $$0.0189579\pi$$
$$440$$ 0 0
$$441$$ 0 0
$$442$$ 0 0
$$443$$ −28.6060 16.5157i −1.35911 0.784684i −0.369609 0.929187i $$-0.620508\pi$$
−0.989504 + 0.144503i $$0.953842\pi$$
$$444$$ 0 0
$$445$$ −30.1770 52.2680i −1.43053 2.47774i
$$446$$ 0 0
$$447$$ 14.8017 0.700094
$$448$$ 0 0
$$449$$ 9.29441 0.438630 0.219315 0.975654i $$-0.429618\pi$$
0.219315 + 0.975654i $$0.429618\pi$$
$$450$$ 0 0
$$451$$ 13.0317 + 22.5716i 0.613641 + 1.06286i
$$452$$ 0 0
$$453$$ 10.7087 + 6.18269i 0.503140 + 0.290488i
$$454$$ 0 0
$$455$$ 0 0
$$456$$ 0 0
$$457$$ 13.7224 23.7679i 0.641906 1.11181i −0.343101 0.939298i $$-0.611477\pi$$
0.985007 0.172515i $$-0.0551893\pi$$
$$458$$ 0 0
$$459$$ −2.39587 + 1.38326i −0.111830 + 0.0645649i
$$460$$ 0 0
$$461$$ 4.28209i 0.199437i −0.995016 0.0997183i $$-0.968206\pi$$
0.995016 0.0997183i $$-0.0317942\pi$$
$$462$$ 0 0
$$463$$ 16.1278i 0.749521i 0.927122 + 0.374760i $$0.122275\pi$$
−0.927122 + 0.374760i $$0.877725\pi$$
$$464$$ 0 0
$$465$$ −21.2039 + 12.2421i −0.983308 + 0.567713i
$$466$$ 0 0
$$467$$ 13.7702 23.8506i 0.637207 1.10368i −0.348836 0.937184i $$-0.613423\pi$$
0.986043 0.166491i $$-0.0532438\pi$$
$$468$$ 0 0
$$469$$ 0 0
$$470$$ 0 0
$$471$$ 9.43153 + 5.44530i 0.434582 + 0.250906i
$$472$$ 0 0
$$473$$ −32.9574 57.0839i −1.51538 2.62472i
$$474$$ 0 0
$$475$$ 63.3347 2.90600
$$476$$ 0 0
$$477$$ −4.22371 −0.193390
$$478$$ 0 0
$$479$$ −9.77545 16.9316i −0.446652 0.773624i 0.551514 0.834166i $$-0.314050\pi$$
−0.998166 + 0.0605420i $$0.980717\pi$$
$$480$$ 0 0
$$481$$ 6.83277 + 3.94490i 0.311548 + 0.179872i
$$482$$ 0 0
$$483$$ 0 0
$$484$$ 0 0
$$485$$ −31.3089 + 54.2287i −1.42167 + 2.46240i
$$486$$ 0 0
$$487$$ 32.7285 18.8958i 1.48307 0.856252i 0.483257 0.875479i $$-0.339454\pi$$
0.999815 + 0.0192268i $$0.00612046\pi$$
$$488$$ 0 0
$$489$$ 1.51024i 0.0682954i
$$490$$ 0 0
$$491$$ 29.2605i 1.32051i 0.751042 + 0.660254i $$0.229551\pi$$
−0.751042 + 0.660254i $$0.770449\pi$$
$$492$$ 0 0
$$493$$ 5.89515 3.40357i 0.265504 0.153289i
$$494$$ 0 0
$$495$$ −10.8777 + 18.8407i −0.488914 + 0.846825i
$$496$$ 0 0
$$497$$ 0 0
$$498$$ 0 0
$$499$$ −10.9485 6.32111i −0.490122 0.282972i 0.234503 0.972115i $$-0.424654\pi$$
−0.724625 + 0.689143i $$0.757987\pi$$
$$500$$ 0 0
$$501$$ −5.16663 8.94887i −0.230828 0.399806i
$$502$$ 0 0
$$503$$ −27.0714 −1.20706 −0.603528 0.797342i $$-0.706239\pi$$
−0.603528 + 0.797342i $$0.706239\pi$$
$$504$$ 0 0
$$505$$ −56.3312 −2.50671
$$506$$ 0 0
$$507$$ 0.792893 + 1.37333i 0.0352136 + 0.0609918i
$$508$$ 0 0
$$509$$ 10.1311 + 5.84917i 0.449051 + 0.259260i 0.707429 0.706784i $$-0.249855\pi$$
−0.258378 + 0.966044i $$0.583188\pi$$
$$510$$ 0 0
$$511$$ 0 0
$$512$$ 0 0
$$513$$ −2.35159 + 4.07308i −0.103825 + 0.179831i
$$514$$ 0 0
$$515$$ −0.780396 + 0.450562i −0.0343884 + 0.0198541i
$$516$$ 0 0
$$517$$ 27.1077i 1.19220i
$$518$$ 0 0
$$519$$ 3.35642i 0.147330i
$$520$$ 0 0
$$521$$ 6.24095 3.60322i 0.273421 0.157860i −0.357020 0.934097i $$-0.616207\pi$$
0.630441 + 0.776237i $$0.282874\pi$$
$$522$$ 0 0
$$523$$ −8.85727 + 15.3412i −0.387301 + 0.670825i −0.992086 0.125564i $$-0.959926\pi$$
0.604784 + 0.796389i $$0.293259\pi$$
$$524$$ 0 0
$$525$$ 0 0
$$526$$ 0 0
$$527$$ −13.6508 7.88130i −0.594639 0.343315i
$$528$$ 0 0
$$529$$ 0.170243 + 0.294869i 0.00740185 + 0.0128204i
$$530$$ 0 0
$$531$$ −9.60498 −0.416821
$$532$$ 0 0
$$533$$ 17.3932 0.753385
$$534$$ 0 0
$$535$$ −13.8083 23.9167i −0.596984 1.03401i
$$536$$ 0 0
$$537$$ −11.4826 6.62946i −0.495509 0.286082i
$$538$$ 0 0
$$539$$ 0 0
$$540$$ 0 0
$$541$$ −11.5590 + 20.0208i −0.496961 + 0.860761i −0.999994 0.00350600i $$-0.998884\pi$$
0.503033 + 0.864267i $$0.332217\pi$$
$$542$$ 0 0
$$543$$ −10.2641 + 5.92596i −0.440473 + 0.254307i
$$544$$ 0 0
$$545$$ 4.03951i 0.173034i
$$546$$ 0 0
$$547$$ 16.0524i 0.686351i −0.939271 0.343176i $$-0.888497\pi$$
0.939271 0.343176i $$-0.111503\pi$$
$$548$$ 0 0
$$549$$ −3.35757 + 1.93849i −0.143297 + 0.0827328i
$$550$$ 0 0
$$551$$ 5.78620 10.0220i 0.246500 0.426951i
$$552$$ 0 0
$$553$$ 0 0
$$554$$ 0 0
$$555$$ −8.69089 5.01769i −0.368908 0.212989i
$$556$$ 0 0
$$557$$ 6.29041 + 10.8953i 0.266533 + 0.461649i 0.967964 0.251088i $$-0.0807884\pi$$
−0.701431 + 0.712738i $$0.747455\pi$$
$$558$$ 0 0
$$559$$ −43.9877 −1.86048
$$560$$ 0 0
$$561$$ −14.0058 −0.591325
$$562$$ 0 0
$$563$$ 18.2974 + 31.6921i 0.771144 + 1.33566i 0.936936 + 0.349500i $$0.113649\pi$$
−0.165792 + 0.986161i $$0.553018\pi$$
$$564$$ 0 0
$$565$$ −4.08701 2.35964i −0.171942 0.0992707i
$$566$$ 0 0
$$567$$ 0 0
$$568$$ 0 0
$$569$$ 12.2495 21.2167i 0.513524 0.889450i −0.486353 0.873763i $$-0.661673\pi$$
0.999877 0.0156875i $$-0.00499368\pi$$
$$570$$ 0 0
$$571$$ 28.3990 16.3962i 1.18846 0.686159i 0.230506 0.973071i $$-0.425962\pi$$
0.957957 + 0.286912i $$0.0926286\pi$$
$$572$$ 0 0
$$573$$ 1.34660i 0.0562552i
$$574$$ 0 0
$$575$$ 65.0586i 2.71313i
$$576$$ 0 0
$$577$$ 16.6398 9.60699i 0.692724 0.399944i −0.111908 0.993719i $$-0.535696\pi$$
0.804632 + 0.593774i $$0.202363\pi$$
$$578$$ 0 0
$$579$$ −13.0577 + 22.6166i −0.542659 + 0.939912i
$$580$$ 0 0
$$581$$ 0 0
$$582$$ 0 0
$$583$$ −18.5182 10.6915i −0.766946 0.442797i
$$584$$ 0 0
$$585$$ 7.25911 + 12.5732i 0.300127 + 0.519836i
$$586$$ 0 0
$$587$$ −24.1451 −0.996573 −0.498286 0.867012i $$-0.666037\pi$$
−0.498286 + 0.867012i $$0.666037\pi$$
$$588$$ 0 0
$$589$$ −26.7971 −1.10415
$$590$$ 0 0
$$591$$ −3.74541 6.48725i −0.154066 0.266850i
$$592$$ 0 0
$$593$$ 2.20475 + 1.27291i 0.0905380 + 0.0522722i 0.544585 0.838705i $$-0.316687\pi$$
−0.454047 + 0.890978i $$0.650020\pi$$
$$594$$ 0 0
$$595$$ 0 0
$$596$$ 0 0
$$597$$ −2.24674 + 3.89147i −0.0919531 + 0.159267i
$$598$$ 0 0
$$599$$ 12.9816 7.49493i 0.530414 0.306234i −0.210771 0.977535i $$-0.567598\pi$$
0.741185 + 0.671301i $$0.234264\pi$$
$$600$$ 0 0
$$601$$ 24.3343i 0.992618i 0.868146 + 0.496309i $$0.165312\pi$$
−0.868146 + 0.496309i $$0.834688\pi$$
$$602$$ 0 0
$$603$$ 4.76342i 0.193981i
$$604$$ 0 0
$$605$$ −54.4462 + 31.4345i −2.21355 + 1.27800i
$$606$$ 0 0
$$607$$ 4.45644 7.71878i 0.180881 0.313296i −0.761300 0.648400i $$-0.775438\pi$$
0.942181 + 0.335105i $$0.108772\pi$$
$$608$$ 0 0
$$609$$ 0 0
$$610$$ 0 0
$$611$$ 15.6665 + 9.04506i 0.633799 + 0.365924i
$$612$$ 0 0
$$613$$ 8.58741 + 14.8738i 0.346842 + 0.600748i 0.985687 0.168588i $$-0.0539206\pi$$
−0.638844 + 0.769336i $$0.720587\pi$$
$$614$$ 0 0
$$615$$ −22.1232 −0.892094
$$616$$ 0 0
$$617$$ 35.9980 1.44922 0.724612 0.689157i $$-0.242019\pi$$
0.724612 + 0.689157i $$0.242019\pi$$
$$618$$ 0 0
$$619$$ −2.05562 3.56043i −0.0826222 0.143106i 0.821753 0.569843i $$-0.192996\pi$$
−0.904376 + 0.426738i $$0.859663\pi$$
$$620$$ 0 0
$$621$$ 4.18394 + 2.41560i 0.167896 + 0.0969347i
$$622$$ 0 0
$$623$$ 0 0
$$624$$ 0 0
$$625$$ −44.5054 + 77.0856i −1.78022 + 3.08342i
$$626$$ 0 0
$$627$$ −20.6204 + 11.9052i −0.823501 + 0.475448i
$$628$$ 0 0
$$629$$ 6.46065i 0.257603i
$$630$$ 0 0
$$631$$ 34.8970i 1.38923i 0.719383 + 0.694613i $$0.244425\pi$$
−0.719383 + 0.694613i $$0.755575\pi$$
$$632$$ 0 0
$$633$$ 5.13659 2.96561i 0.204161 0.117872i
$$634$$ 0 0
$$635$$ −11.2293 + 19.4496i −0.445619 + 0.771835i
$$636$$ 0 0
$$637$$ 0 0
$$638$$ 0 0
$$639$$ 10.6678 + 6.15905i 0.422011 + 0.243648i
$$640$$ 0 0
$$641$$ −3.66368 6.34567i −0.144707 0.250639i 0.784557 0.620057i $$-0.212890\pi$$
−0.929263 + 0.369418i $$0.879557\pi$$
$$642$$ 0 0
$$643$$ −9.24275 −0.364498 −0.182249 0.983252i $$-0.558338\pi$$
−0.182249 + 0.983252i $$0.558338\pi$$
$$644$$ 0 0
$$645$$ 55.9498 2.20302
$$646$$ 0 0
$$647$$ −7.59013 13.1465i −0.298399 0.516842i 0.677371 0.735642i $$-0.263119\pi$$
−0.975770 + 0.218800i $$0.929786\pi$$
$$648$$ 0 0
$$649$$ −42.1116 24.3132i −1.65303 0.954375i
$$650$$ 0 0
$$651$$ 0 0
$$652$$ 0 0
$$653$$ 1.06425 1.84333i 0.0416471 0.0721349i −0.844450 0.535634i $$-0.820073\pi$$
0.886098 + 0.463499i $$0.153406\pi$$
$$654$$ 0 0
$$655$$ −3.25639 + 1.88008i −0.127238 + 0.0734608i
$$656$$ 0 0
$$657$$ 11.5102i 0.449054i
$$658$$ 0 0
$$659$$ 13.0520i 0.508436i −0.967147 0.254218i $$-0.918182\pi$$
0.967147 0.254218i $$-0.0818180\pi$$
$$660$$ 0 0
$$661$$ 16.6958 9.63931i 0.649390 0.374926i −0.138832 0.990316i $$-0.544335\pi$$
0.788223 + 0.615390i $$0.211002\pi$$
$$662$$ 0 0
$$663$$ −4.67333 + 8.09444i −0.181497 + 0.314362i
$$664$$ 0 0
$$665$$ 0 0
$$666$$ 0 0
$$667$$ −10.2948 5.94369i −0.398615 0.230141i
$$668$$ 0 0
$$669$$ −10.3082 17.8543i −0.398537 0.690286i
$$670$$ 0 0
$$671$$ −19.6277 −0.757718
$$672$$ 0 0
$$673$$ −7.08216 −0.272997 −0.136499 0.990640i $$-0.543585\pi$$
−0.136499 + 0.990640i $$0.543585\pi$$
$$674$$ 0 0
$$675$$ −6.73317 11.6622i −0.259160 0.448878i
$$676$$ 0 0
$$677$$ −31.6135 18.2521i −1.21501 0.701485i −0.251161 0.967945i $$-0.580812\pi$$
−0.963846 + 0.266461i $$0.914146\pi$$
$$678$$ 0 0
$$679$$ 0 0
$$680$$ 0 0
$$681$$ −10.2455 + 17.7458i −0.392610 + 0.680021i
$$682$$ 0 0
$$683$$ −26.0852 + 15.0603i −0.998124 + 0.576267i −0.907693 0.419636i $$-0.862158\pi$$
−0.0904313 + 0.995903i $$0.528825\pi$$
$$684$$ 0 0
$$685$$ 1.01775i 0.0388863i
$$686$$ 0 0
$$687$$ 29.0409i 1.10798i
$$688$$ 0 0
$$689$$ −12.3580 + 7.13488i −0.470801 + 0.271817i
$$690$$ 0 0
$$691$$ 19.9057 34.4776i 0.757247 1.31159i −0.187002 0.982359i $$-0.559877\pi$$
0.944249 0.329231i $$-0.106789\pi$$
$$692$$ 0 0
$$693$$ 0 0
$$694$$ 0 0
$$695$$ −11.1852 6.45779i −0.424280 0.244958i
$$696$$ 0 0
$$697$$ −7.12132 12.3345i −0.269739 0.467202i
$$698$$ 0 0
$$699$$ −17.7364 −0.670852
$$700$$ 0 0
$$701$$ 28.0795 1.06055 0.530275 0.847826i $$-0.322089\pi$$
0.530275 + 0.847826i $$0.322089\pi$$
$$702$$ 0 0
$$703$$ −5.49168 9.51187i −0.207123 0.358747i
$$704$$ 0 0
$$705$$ −19.9269 11.5048i −0.750490 0.433296i
$$706$$ 0 0
$$707$$ 0 0
$$708$$ 0 0
$$709$$ 18.4738 31.9975i 0.693797 1.20169i −0.276787 0.960931i $$-0.589270\pi$$
0.970585 0.240761i $$-0.0773969\pi$$
$$710$$ 0 0
$$711$$ −12.0521 + 6.95830i −0.451990 + 0.260957i
$$712$$ 0 0
$$713$$ 27.5264i 1.03087i
$$714$$ 0 0
$$715$$ 73.5002i 2.74875i
$$716$$ 0 0
$$717$$ −17.6884 + 10.2124i −0.660586 + 0.381389i
$$718$$ 0 0
$$719$$ 9.35449 16.2025i 0.348864 0.604250i −0.637184 0.770712i $$-0.719901\pi$$
0.986048 + 0.166462i $$0.0532343\pi$$
$$720$$ 0 0
$$721$$ 0 0
$$722$$ 0 0
$$723$$ −2.82101 1.62871i −0.104915 0.0605724i
$$724$$ 0 0
$$725$$ 16.5673 + 28.6954i 0.615293 + 1.06572i
$$726$$ 0 0
$$727$$ 31.2078 1.15743 0.578716 0.815529i $$-0.303554\pi$$
0.578716 + 0.815529i $$0.303554\pi$$
$$728$$ 0 0
$$729$$ 1.00000 0.0370370
$$730$$ 0 0
$$731$$ 18.0099 + 31.1941i 0.666120 + 1.15375i
$$732$$ 0 0
$$733$$ 3.52383 + 2.03449i 0.130156 + 0.0751455i 0.563664 0.826004i $$-0.309391\pi$$
−0.433508 + 0.901150i $$0.642725\pi$$
$$734$$ 0 0
$$735$$ 0 0
$$736$$ 0 0
$$737$$ −12.0577 + 20.8845i −0.444150 + 0.769291i
$$738$$ 0 0
$$739$$ 34.5566 19.9513i 1.27119 0.733919i 0.295974 0.955196i $$-0.404356\pi$$
0.975211 + 0.221277i $$0.0710224\pi$$
$$740$$ 0 0
$$741$$ 15.8897i 0.583722i
$$742$$ 0 0
$$743$$ 41.7530i 1.53177i 0.642979 + 0.765884i $$0.277698\pi$$
−0.642979 + 0.765884i $$0.722302\pi$$
$$744$$ 0 0
$$745$$ −55.0847 + 31.8032i −2.01815 + 1.16518i
$$746$$ 0 0
$$747$$ 3.66096 6.34096i 0.133947 0.232004i
$$748$$ 0 0
$$749$$ 0 0
$$750$$ 0 0
$$751$$ 7.88020 + 4.54963i 0.287552 + 0.166019i 0.636838 0.770998i $$-0.280242\pi$$
−0.349285 + 0.937017i $$0.613576\pi$$
$$752$$ 0 0
$$753$$ −1.97816 3.42628i −0.0720883 0.124861i
$$754$$ 0 0
$$755$$ −53.1371 −1.93386
$$756$$ 0 0
$$757$$ −0.902155 −0.0327894 −0.0163947 0.999866i $$-0.505219\pi$$
−0.0163947 + 0.999866i $$0.505219\pi$$
$$758$$ 0 0
$$759$$ 12.2293 + 21.1817i 0.443894 + 0.768847i
$$760$$ 0 0
$$761$$ −20.5924 11.8891i −0.746475 0.430978i 0.0779436 0.996958i $$-0.475165\pi$$
−0.824419 + 0.565980i $$0.808498\pi$$
$$762$$ 0 0
$$763$$ 0 0
$$764$$ 0 0
$$765$$ 5.94420 10.2957i 0.214913 0.372240i
$$766$$ 0 0
$$767$$ −28.1028 + 16.2252i −1.01473 + 0.585857i
$$768$$ 0 0
$$769$$ 16.3028i 0.587895i 0.955822 + 0.293948i $$0.0949691\pi$$
−0.955822 + 0.293948i $$0.905031\pi$$
$$770$$ 0 0
$$771$$ 5.14822i 0.185409i
$$772$$ 0 0
$$773$$ 21.7270 12.5441i 0.781465 0.451179i −0.0554845 0.998460i $$-0.517670\pi$$
0.836949 + 0.547281i $$0.184337\pi$$
$$774$$ 0 0
$$775$$ 38.3632 66.4470i 1.37805 2.38685i
$$776$$ 0 0
$$777$$ 0 0
$$778$$ 0 0
$$779$$ −20.9691 12.1065i −0.751297 0.433761i
$$780$$ 0 0
$$781$$ 31.1809 + 54.0069i 1.11574 + 1.93252i
$$782$$ 0 0
$$783$$ −2.46054 −0.0879327
$$784$$ 0 0
$$785$$ −46.7996 −1.67035
$$786$$ 0 0
$$787$$ −2.23565 3.87226i −0.0796924 0.138031i 0.823425 0.567425i $$-0.192060\pi$$
−0.903117 + 0.429394i $$0.858727\pi$$
$$788$$ 0 0
$$789$$ −0.0679848 0.0392511i −0.00242032 0.00139737i
$$790$$ 0 0
$$791$$ 0 0
$$792$$ 0 0
$$793$$ −6.54918 + 11.3435i −0.232568 + 0.402820i
$$794$$ 0 0
$$795$$ 15.7186 9.07516i 0.557483 0.321863i
$$796$$ 0 0
$$797$$ 6.62320i 0.234606i 0.993096 + 0.117303i $$0.0374248\pi$$
−0.993096 + 0.117303i $$0.962575\pi$$
$$798$$ 0 0
$$799$$ 14.8133i 0.524056i
$$800$$ 0 0