Properties

Label 2352.2.a.bc
Level $2352$
Weight $2$
Character orbit 2352.a
Self dual yes
Analytic conductor $18.781$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 2352 = 2^{4} \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2352.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(18.7808145554\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{2}) \)
Defining polynomial: \(x^{2} - 2\)
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 147)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{2}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - q^{3} + ( 2 + \beta ) q^{5} + q^{9} +O(q^{10})\) \( q - q^{3} + ( 2 + \beta ) q^{5} + q^{9} + 2 q^{11} + ( 4 - \beta ) q^{13} + ( -2 - \beta ) q^{15} + ( 2 - 3 \beta ) q^{17} + 2 \beta q^{19} + ( 2 + 4 \beta ) q^{23} + ( 1 + 4 \beta ) q^{25} - q^{27} + ( -4 - 2 \beta ) q^{29} + ( 4 - 2 \beta ) q^{31} -2 q^{33} -4 q^{37} + ( -4 + \beta ) q^{39} + ( 2 + 3 \beta ) q^{41} -4 \beta q^{43} + ( 2 + \beta ) q^{45} + 2 \beta q^{47} + ( -2 + 3 \beta ) q^{51} -2 q^{53} + ( 4 + 2 \beta ) q^{55} -2 \beta q^{57} + ( 4 - 2 \beta ) q^{59} + ( 8 + 3 \beta ) q^{61} + ( 6 + 2 \beta ) q^{65} + 4 \beta q^{67} + ( -2 - 4 \beta ) q^{69} + ( 2 - 8 \beta ) q^{71} + ( 4 + 7 \beta ) q^{73} + ( -1 - 4 \beta ) q^{75} + ( -8 - 4 \beta ) q^{79} + q^{81} + ( 4 - 8 \beta ) q^{83} + ( -2 - 4 \beta ) q^{85} + ( 4 + 2 \beta ) q^{87} + ( -10 - 3 \beta ) q^{89} + ( -4 + 2 \beta ) q^{93} + ( 4 + 4 \beta ) q^{95} + ( 4 - \beta ) q^{97} + 2 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q - 2q^{3} + 4q^{5} + 2q^{9} + O(q^{10}) \) \( 2q - 2q^{3} + 4q^{5} + 2q^{9} + 4q^{11} + 8q^{13} - 4q^{15} + 4q^{17} + 4q^{23} + 2q^{25} - 2q^{27} - 8q^{29} + 8q^{31} - 4q^{33} - 8q^{37} - 8q^{39} + 4q^{41} + 4q^{45} - 4q^{51} - 4q^{53} + 8q^{55} + 8q^{59} + 16q^{61} + 12q^{65} - 4q^{69} + 4q^{71} + 8q^{73} - 2q^{75} - 16q^{79} + 2q^{81} + 8q^{83} - 4q^{85} + 8q^{87} - 20q^{89} - 8q^{93} + 8q^{95} + 8q^{97} + 4q^{99} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.41421
1.41421
0 −1.00000 0 0.585786 0 0 0 1.00000 0
1.2 0 −1.00000 0 3.41421 0 0 0 1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(-1\)
\(3\) \(1\)
\(7\) \(1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2352.2.a.bc 2
3.b odd 2 1 7056.2.a.cf 2
4.b odd 2 1 147.2.a.e yes 2
7.b odd 2 1 2352.2.a.be 2
7.c even 3 2 2352.2.q.bd 4
7.d odd 6 2 2352.2.q.bb 4
8.b even 2 1 9408.2.a.dt 2
8.d odd 2 1 9408.2.a.di 2
12.b even 2 1 441.2.a.i 2
20.d odd 2 1 3675.2.a.bd 2
21.c even 2 1 7056.2.a.cv 2
28.d even 2 1 147.2.a.d 2
28.f even 6 2 147.2.e.e 4
28.g odd 6 2 147.2.e.d 4
56.e even 2 1 9408.2.a.ef 2
56.h odd 2 1 9408.2.a.dq 2
84.h odd 2 1 441.2.a.j 2
84.j odd 6 2 441.2.e.f 4
84.n even 6 2 441.2.e.g 4
140.c even 2 1 3675.2.a.bf 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
147.2.a.d 2 28.d even 2 1
147.2.a.e yes 2 4.b odd 2 1
147.2.e.d 4 28.g odd 6 2
147.2.e.e 4 28.f even 6 2
441.2.a.i 2 12.b even 2 1
441.2.a.j 2 84.h odd 2 1
441.2.e.f 4 84.j odd 6 2
441.2.e.g 4 84.n even 6 2
2352.2.a.bc 2 1.a even 1 1 trivial
2352.2.a.be 2 7.b odd 2 1
2352.2.q.bb 4 7.d odd 6 2
2352.2.q.bd 4 7.c even 3 2
3675.2.a.bd 2 20.d odd 2 1
3675.2.a.bf 2 140.c even 2 1
7056.2.a.cf 2 3.b odd 2 1
7056.2.a.cv 2 21.c even 2 1
9408.2.a.di 2 8.d odd 2 1
9408.2.a.dq 2 56.h odd 2 1
9408.2.a.dt 2 8.b even 2 1
9408.2.a.ef 2 56.e even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(2352))\):

\( T_{5}^{2} - 4 T_{5} + 2 \)
\( T_{11} - 2 \)
\( T_{13}^{2} - 8 T_{13} + 14 \)
\( T_{17}^{2} - 4 T_{17} - 14 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \)
$3$ \( ( 1 + T )^{2} \)
$5$ \( 2 - 4 T + T^{2} \)
$7$ \( T^{2} \)
$11$ \( ( -2 + T )^{2} \)
$13$ \( 14 - 8 T + T^{2} \)
$17$ \( -14 - 4 T + T^{2} \)
$19$ \( -8 + T^{2} \)
$23$ \( -28 - 4 T + T^{2} \)
$29$ \( 8 + 8 T + T^{2} \)
$31$ \( 8 - 8 T + T^{2} \)
$37$ \( ( 4 + T )^{2} \)
$41$ \( -14 - 4 T + T^{2} \)
$43$ \( -32 + T^{2} \)
$47$ \( -8 + T^{2} \)
$53$ \( ( 2 + T )^{2} \)
$59$ \( 8 - 8 T + T^{2} \)
$61$ \( 46 - 16 T + T^{2} \)
$67$ \( -32 + T^{2} \)
$71$ \( -124 - 4 T + T^{2} \)
$73$ \( -82 - 8 T + T^{2} \)
$79$ \( 32 + 16 T + T^{2} \)
$83$ \( -112 - 8 T + T^{2} \)
$89$ \( 82 + 20 T + T^{2} \)
$97$ \( 14 - 8 T + T^{2} \)
show more
show less