Defining parameters
Level: | \( N \) | \(=\) | \( 2352 = 2^{4} \cdot 3 \cdot 7^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 2352.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 33 \) | ||
Sturm bound: | \(896\) | ||
Trace bound: | \(13\) | ||
Distinguishing \(T_p\): | \(5\), \(11\), \(13\), \(17\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(2352))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 496 | 41 | 455 |
Cusp forms | 401 | 41 | 360 |
Eisenstein series | 95 | 0 | 95 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(3\) | \(7\) | Fricke | Total | Cusp | Eisenstein | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
All | New | Old | All | New | Old | All | New | Old | |||||||
\(+\) | \(+\) | \(+\) | \(+\) | \(60\) | \(5\) | \(55\) | \(49\) | \(5\) | \(44\) | \(11\) | \(0\) | \(11\) | |||
\(+\) | \(+\) | \(-\) | \(-\) | \(63\) | \(6\) | \(57\) | \(51\) | \(6\) | \(45\) | \(12\) | \(0\) | \(12\) | |||
\(+\) | \(-\) | \(+\) | \(-\) | \(64\) | \(7\) | \(57\) | \(52\) | \(7\) | \(45\) | \(12\) | \(0\) | \(12\) | |||
\(+\) | \(-\) | \(-\) | \(+\) | \(61\) | \(3\) | \(58\) | \(49\) | \(3\) | \(46\) | \(12\) | \(0\) | \(12\) | |||
\(-\) | \(+\) | \(+\) | \(-\) | \(64\) | \(4\) | \(60\) | \(52\) | \(4\) | \(48\) | \(12\) | \(0\) | \(12\) | |||
\(-\) | \(+\) | \(-\) | \(+\) | \(61\) | \(6\) | \(55\) | \(49\) | \(6\) | \(43\) | \(12\) | \(0\) | \(12\) | |||
\(-\) | \(-\) | \(+\) | \(+\) | \(60\) | \(4\) | \(56\) | \(48\) | \(4\) | \(44\) | \(12\) | \(0\) | \(12\) | |||
\(-\) | \(-\) | \(-\) | \(-\) | \(63\) | \(6\) | \(57\) | \(51\) | \(6\) | \(45\) | \(12\) | \(0\) | \(12\) | |||
Plus space | \(+\) | \(242\) | \(18\) | \(224\) | \(195\) | \(18\) | \(177\) | \(47\) | \(0\) | \(47\) | |||||
Minus space | \(-\) | \(254\) | \(23\) | \(231\) | \(206\) | \(23\) | \(183\) | \(48\) | \(0\) | \(48\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(2352))\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(2352))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(2352)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(14))\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(21))\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(24))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(42))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(48))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(49))\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(56))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(84))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(98))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(112))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(147))\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(168))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(196))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(294))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(336))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(392))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(588))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(784))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1176))\)\(^{\oplus 2}\)