Properties

Label 2352.1.d.a
Level $2352$
Weight $1$
Character orbit 2352.d
Self dual yes
Analytic conductor $1.174$
Analytic rank $0$
Dimension $1$
Projective image $D_{3}$
CM discriminant -3
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 2352 = 2^{4} \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 2352.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

Self dual: yes
Analytic conductor: \(1.17380090971\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 84)
Projective image \(D_{3}\)
Projective field Galois closure of 3.1.588.1
Artin image $D_6$
Artin field Galois closure of 6.0.5531904.1

$q$-expansion

\(f(q)\) \(=\) \( q - q^{3} + q^{9} + O(q^{10}) \) \( q - q^{3} + q^{9} - q^{13} + q^{19} + q^{25} - q^{27} + q^{31} - q^{37} + q^{39} + q^{43} - q^{57} + 2q^{61} + q^{67} - q^{73} - q^{75} + q^{79} + q^{81} - q^{93} + 2q^{97} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2352\mathbb{Z}\right)^\times\).

\(n\) \(785\) \(1471\) \(1765\) \(2257\)
\(\chi(n)\) \(-1\) \(1\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
785.1
0
0 −1.00000 0 0 0 0 0 1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 CM by \(\Q(\sqrt{-3}) \)

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2352.1.d.a 1
3.b odd 2 1 CM 2352.1.d.a 1
4.b odd 2 1 588.1.c.b 1
7.b odd 2 1 2352.1.d.b 1
7.c even 3 2 336.1.bn.a 2
7.d odd 6 2 2352.1.bn.a 2
12.b even 2 1 588.1.c.b 1
21.c even 2 1 2352.1.d.b 1
21.g even 6 2 2352.1.bn.a 2
21.h odd 6 2 336.1.bn.a 2
28.d even 2 1 588.1.c.a 1
28.f even 6 2 588.1.p.a 2
28.g odd 6 2 84.1.p.a 2
56.k odd 6 2 1344.1.bn.b 2
56.p even 6 2 1344.1.bn.a 2
84.h odd 2 1 588.1.c.a 1
84.j odd 6 2 588.1.p.a 2
84.n even 6 2 84.1.p.a 2
140.p odd 6 2 2100.1.bn.c 2
140.w even 12 4 2100.1.bh.a 4
168.s odd 6 2 1344.1.bn.a 2
168.v even 6 2 1344.1.bn.b 2
252.o even 6 2 2268.1.m.a 2
252.u odd 6 2 2268.1.bh.b 2
252.bb even 6 2 2268.1.bh.b 2
252.bl odd 6 2 2268.1.m.a 2
420.ba even 6 2 2100.1.bn.c 2
420.bp odd 12 4 2100.1.bh.a 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
84.1.p.a 2 28.g odd 6 2
84.1.p.a 2 84.n even 6 2
336.1.bn.a 2 7.c even 3 2
336.1.bn.a 2 21.h odd 6 2
588.1.c.a 1 28.d even 2 1
588.1.c.a 1 84.h odd 2 1
588.1.c.b 1 4.b odd 2 1
588.1.c.b 1 12.b even 2 1
588.1.p.a 2 28.f even 6 2
588.1.p.a 2 84.j odd 6 2
1344.1.bn.a 2 56.p even 6 2
1344.1.bn.a 2 168.s odd 6 2
1344.1.bn.b 2 56.k odd 6 2
1344.1.bn.b 2 168.v even 6 2
2100.1.bh.a 4 140.w even 12 4
2100.1.bh.a 4 420.bp odd 12 4
2100.1.bn.c 2 140.p odd 6 2
2100.1.bn.c 2 420.ba even 6 2
2268.1.m.a 2 252.o even 6 2
2268.1.m.a 2 252.bl odd 6 2
2268.1.bh.b 2 252.u odd 6 2
2268.1.bh.b 2 252.bb even 6 2
2352.1.d.a 1 1.a even 1 1 trivial
2352.1.d.a 1 3.b odd 2 1 CM
2352.1.d.b 1 7.b odd 2 1
2352.1.d.b 1 21.c even 2 1
2352.1.bn.a 2 7.d odd 6 2
2352.1.bn.a 2 21.g even 6 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{13} + 1 \) acting on \(S_{1}^{\mathrm{new}}(2352, [\chi])\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T \)
$3$ \( 1 + T \)
$5$ \( T \)
$7$ \( T \)
$11$ \( T \)
$13$ \( 1 + T \)
$17$ \( T \)
$19$ \( -1 + T \)
$23$ \( T \)
$29$ \( T \)
$31$ \( -1 + T \)
$37$ \( 1 + T \)
$41$ \( T \)
$43$ \( -1 + T \)
$47$ \( T \)
$53$ \( T \)
$59$ \( T \)
$61$ \( -2 + T \)
$67$ \( -1 + T \)
$71$ \( T \)
$73$ \( 1 + T \)
$79$ \( -1 + T \)
$83$ \( T \)
$89$ \( T \)
$97$ \( -2 + T \)
show more
show less