Properties

Label 2340.2.t
Level $2340$
Weight $2$
Character orbit 2340.t
Rep. character $\chi_{2340}(61,\cdot)$
Character field $\Q(\zeta_{3})$
Dimension $112$
Sturm bound $1008$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2340 = 2^{2} \cdot 3^{2} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2340.t (of order \(3\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 117 \)
Character field: \(\Q(\zeta_{3})\)
Sturm bound: \(1008\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2340, [\chi])\).

Total New Old
Modular forms 1032 112 920
Cusp forms 984 112 872
Eisenstein series 48 0 48

Trace form

\( 112 q + 8 q^{7} + 2 q^{9} + 4 q^{11} - 2 q^{13} - 4 q^{15} + 16 q^{17} + 2 q^{19} - 30 q^{21} - 56 q^{25} - 12 q^{27} - 2 q^{29} - 4 q^{31} + 22 q^{33} + 8 q^{35} + 2 q^{37} - 26 q^{39} + 8 q^{41} + 8 q^{43}+ \cdots + 26 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(2340, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(2340, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2340, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(117, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(234, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(468, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(585, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1170, [\chi])\)\(^{\oplus 2}\)