Defining parameters
Level: | \( N \) | \(=\) | \( 2340 = 2^{2} \cdot 3^{2} \cdot 5 \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 2340.r (of order \(3\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 9 \) |
Character field: | \(\Q(\zeta_{3})\) | ||
Newform subspaces: | \( 7 \) | ||
Sturm bound: | \(1008\) | ||
Trace bound: | \(3\) | ||
Distinguishing \(T_p\): | \(7\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(2340, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 1032 | 96 | 936 |
Cusp forms | 984 | 96 | 888 |
Eisenstein series | 48 | 0 | 48 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(2340, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
2340.2.r.a | $2$ | $18.685$ | \(\Q(\sqrt{-3}) \) | None | \(0\) | \(-3\) | \(1\) | \(0\) | \(q+(-2+\zeta_{6})q^{3}+\zeta_{6}q^{5}+(3-3\zeta_{6})q^{9}+\cdots\) |
2340.2.r.b | $2$ | $18.685$ | \(\Q(\sqrt{-3}) \) | None | \(0\) | \(0\) | \(1\) | \(4\) | \(q+(-1+2\zeta_{6})q^{3}+\zeta_{6}q^{5}+(4-4\zeta_{6})q^{7}+\cdots\) |
2340.2.r.c | $2$ | $18.685$ | \(\Q(\sqrt{-3}) \) | None | \(0\) | \(3\) | \(-1\) | \(-4\) | \(q+(2-\zeta_{6})q^{3}-\zeta_{6}q^{5}+(-4+4\zeta_{6})q^{7}+\cdots\) |
2340.2.r.d | $14$ | $18.685$ | \(\mathbb{Q}[x]/(x^{14} - \cdots)\) | None | \(0\) | \(2\) | \(7\) | \(-4\) | \(q+(\beta _{1}-\beta _{7})q^{3}-\beta _{4}q^{5}+(-1-\beta _{4}+\cdots)q^{7}+\cdots\) |
2340.2.r.e | $20$ | $18.685$ | \(\mathbb{Q}[x]/(x^{20} - \cdots)\) | None | \(0\) | \(-4\) | \(-10\) | \(4\) | \(q-\beta _{9}q^{3}+(-1-\beta _{7})q^{5}+\beta _{15}q^{7}+\cdots\) |
2340.2.r.f | $26$ | $18.685$ | None | \(0\) | \(-1\) | \(13\) | \(0\) | ||
2340.2.r.g | $30$ | $18.685$ | None | \(0\) | \(-1\) | \(-15\) | \(0\) |
Decomposition of \(S_{2}^{\mathrm{old}}(2340, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(2340, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(18, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(36, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(45, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(90, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(117, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(180, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(234, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(468, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(585, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1170, [\chi])\)\(^{\oplus 2}\)