Properties

Label 2340.2.q.b.2161.1
Level $2340$
Weight $2$
Character 2340.2161
Analytic conductor $18.685$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 2340 = 2^{2} \cdot 3^{2} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2340.q (of order \(3\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(18.6849940730\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
Defining polynomial: \(x^{2} - x + 1\)
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 260)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 2161.1
Root \(0.500000 - 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 2340.2161
Dual form 2340.2.q.b.1621.1

$q$-expansion

\(f(q)\) \(=\) \(q-1.00000 q^{5} +(0.500000 - 0.866025i) q^{7} +O(q^{10})\) \(q-1.00000 q^{5} +(0.500000 - 0.866025i) q^{7} +(1.50000 + 2.59808i) q^{11} +(1.00000 + 3.46410i) q^{13} +(-1.50000 + 2.59808i) q^{17} +(3.50000 - 6.06218i) q^{19} +(-1.50000 - 2.59808i) q^{23} +1.00000 q^{25} +(1.50000 + 2.59808i) q^{29} -4.00000 q^{31} +(-0.500000 + 0.866025i) q^{35} +(3.50000 + 6.06218i) q^{37} +(-4.50000 - 7.79423i) q^{41} +(-5.50000 + 9.52628i) q^{43} +(3.00000 + 5.19615i) q^{49} +6.00000 q^{53} +(-1.50000 - 2.59808i) q^{55} +(-1.50000 + 2.59808i) q^{59} +(-5.50000 + 9.52628i) q^{61} +(-1.00000 - 3.46410i) q^{65} +(3.50000 + 6.06218i) q^{67} +(-1.50000 + 2.59808i) q^{71} +2.00000 q^{73} +3.00000 q^{77} +8.00000 q^{79} +12.0000 q^{83} +(1.50000 - 2.59808i) q^{85} +(7.50000 + 12.9904i) q^{89} +(3.50000 + 0.866025i) q^{91} +(-3.50000 + 6.06218i) q^{95} +(3.50000 - 6.06218i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{5} + q^{7} + O(q^{10}) \) \( 2 q - 2 q^{5} + q^{7} + 3 q^{11} + 2 q^{13} - 3 q^{17} + 7 q^{19} - 3 q^{23} + 2 q^{25} + 3 q^{29} - 8 q^{31} - q^{35} + 7 q^{37} - 9 q^{41} - 11 q^{43} + 6 q^{49} + 12 q^{53} - 3 q^{55} - 3 q^{59} - 11 q^{61} - 2 q^{65} + 7 q^{67} - 3 q^{71} + 4 q^{73} + 6 q^{77} + 16 q^{79} + 24 q^{83} + 3 q^{85} + 15 q^{89} + 7 q^{91} - 7 q^{95} + 7 q^{97} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2340\mathbb{Z}\right)^\times\).

\(n\) \(937\) \(1081\) \(1171\) \(2081\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −1.00000 −0.447214
\(6\) 0 0
\(7\) 0.500000 0.866025i 0.188982 0.327327i −0.755929 0.654654i \(-0.772814\pi\)
0.944911 + 0.327327i \(0.106148\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 1.50000 + 2.59808i 0.452267 + 0.783349i 0.998526 0.0542666i \(-0.0172821\pi\)
−0.546259 + 0.837616i \(0.683949\pi\)
\(12\) 0 0
\(13\) 1.00000 + 3.46410i 0.277350 + 0.960769i
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −1.50000 + 2.59808i −0.363803 + 0.630126i −0.988583 0.150675i \(-0.951855\pi\)
0.624780 + 0.780801i \(0.285189\pi\)
\(18\) 0 0
\(19\) 3.50000 6.06218i 0.802955 1.39076i −0.114708 0.993399i \(-0.536593\pi\)
0.917663 0.397360i \(-0.130073\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −1.50000 2.59808i −0.312772 0.541736i 0.666190 0.745782i \(-0.267924\pi\)
−0.978961 + 0.204046i \(0.934591\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 1.50000 + 2.59808i 0.278543 + 0.482451i 0.971023 0.238987i \(-0.0768152\pi\)
−0.692480 + 0.721437i \(0.743482\pi\)
\(30\) 0 0
\(31\) −4.00000 −0.718421 −0.359211 0.933257i \(-0.616954\pi\)
−0.359211 + 0.933257i \(0.616954\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −0.500000 + 0.866025i −0.0845154 + 0.146385i
\(36\) 0 0
\(37\) 3.50000 + 6.06218i 0.575396 + 0.996616i 0.995998 + 0.0893706i \(0.0284856\pi\)
−0.420602 + 0.907245i \(0.638181\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −4.50000 7.79423i −0.702782 1.21725i −0.967486 0.252924i \(-0.918608\pi\)
0.264704 0.964330i \(-0.414726\pi\)
\(42\) 0 0
\(43\) −5.50000 + 9.52628i −0.838742 + 1.45274i 0.0522047 + 0.998636i \(0.483375\pi\)
−0.890947 + 0.454108i \(0.849958\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(48\) 0 0
\(49\) 3.00000 + 5.19615i 0.428571 + 0.742307i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 6.00000 0.824163 0.412082 0.911147i \(-0.364802\pi\)
0.412082 + 0.911147i \(0.364802\pi\)
\(54\) 0 0
\(55\) −1.50000 2.59808i −0.202260 0.350325i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −1.50000 + 2.59808i −0.195283 + 0.338241i −0.946993 0.321253i \(-0.895896\pi\)
0.751710 + 0.659494i \(0.229229\pi\)
\(60\) 0 0
\(61\) −5.50000 + 9.52628i −0.704203 + 1.21972i 0.262776 + 0.964857i \(0.415362\pi\)
−0.966978 + 0.254858i \(0.917971\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −1.00000 3.46410i −0.124035 0.429669i
\(66\) 0 0
\(67\) 3.50000 + 6.06218i 0.427593 + 0.740613i 0.996659 0.0816792i \(-0.0260283\pi\)
−0.569066 + 0.822292i \(0.692695\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −1.50000 + 2.59808i −0.178017 + 0.308335i −0.941201 0.337846i \(-0.890302\pi\)
0.763184 + 0.646181i \(0.223635\pi\)
\(72\) 0 0
\(73\) 2.00000 0.234082 0.117041 0.993127i \(-0.462659\pi\)
0.117041 + 0.993127i \(0.462659\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 3.00000 0.341882
\(78\) 0 0
\(79\) 8.00000 0.900070 0.450035 0.893011i \(-0.351411\pi\)
0.450035 + 0.893011i \(0.351411\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 12.0000 1.31717 0.658586 0.752506i \(-0.271155\pi\)
0.658586 + 0.752506i \(0.271155\pi\)
\(84\) 0 0
\(85\) 1.50000 2.59808i 0.162698 0.281801i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 7.50000 + 12.9904i 0.794998 + 1.37698i 0.922840 + 0.385183i \(0.125862\pi\)
−0.127842 + 0.991795i \(0.540805\pi\)
\(90\) 0 0
\(91\) 3.50000 + 0.866025i 0.366900 + 0.0907841i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −3.50000 + 6.06218i −0.359092 + 0.621966i
\(96\) 0 0
\(97\) 3.50000 6.06218i 0.355371 0.615521i −0.631810 0.775123i \(-0.717688\pi\)
0.987181 + 0.159602i \(0.0510211\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −4.50000 7.79423i −0.447767 0.775555i 0.550474 0.834853i \(-0.314447\pi\)
−0.998240 + 0.0592978i \(0.981114\pi\)
\(102\) 0 0
\(103\) 8.00000 0.788263 0.394132 0.919054i \(-0.371045\pi\)
0.394132 + 0.919054i \(0.371045\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 4.50000 + 7.79423i 0.435031 + 0.753497i 0.997298 0.0734594i \(-0.0234039\pi\)
−0.562267 + 0.826956i \(0.690071\pi\)
\(108\) 0 0
\(109\) 2.00000 0.191565 0.0957826 0.995402i \(-0.469465\pi\)
0.0957826 + 0.995402i \(0.469465\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 4.50000 7.79423i 0.423324 0.733219i −0.572938 0.819599i \(-0.694196\pi\)
0.996262 + 0.0863794i \(0.0275297\pi\)
\(114\) 0 0
\(115\) 1.50000 + 2.59808i 0.139876 + 0.242272i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 1.50000 + 2.59808i 0.137505 + 0.238165i
\(120\) 0 0
\(121\) 1.00000 1.73205i 0.0909091 0.157459i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) 9.50000 + 16.4545i 0.842989 + 1.46010i 0.887357 + 0.461084i \(0.152539\pi\)
−0.0443678 + 0.999015i \(0.514127\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 12.0000 1.04844 0.524222 0.851581i \(-0.324356\pi\)
0.524222 + 0.851581i \(0.324356\pi\)
\(132\) 0 0
\(133\) −3.50000 6.06218i −0.303488 0.525657i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −7.50000 + 12.9904i −0.640768 + 1.10984i 0.344493 + 0.938789i \(0.388051\pi\)
−0.985262 + 0.171054i \(0.945283\pi\)
\(138\) 0 0
\(139\) −2.50000 + 4.33013i −0.212047 + 0.367277i −0.952355 0.304991i \(-0.901346\pi\)
0.740308 + 0.672268i \(0.234680\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −7.50000 + 7.79423i −0.627182 + 0.651786i
\(144\) 0 0
\(145\) −1.50000 2.59808i −0.124568 0.215758i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −10.5000 + 18.1865i −0.860194 + 1.48990i 0.0115483 + 0.999933i \(0.496324\pi\)
−0.871742 + 0.489966i \(0.837009\pi\)
\(150\) 0 0
\(151\) 8.00000 0.651031 0.325515 0.945537i \(-0.394462\pi\)
0.325515 + 0.945537i \(0.394462\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 4.00000 0.321288
\(156\) 0 0
\(157\) −10.0000 −0.798087 −0.399043 0.916932i \(-0.630658\pi\)
−0.399043 + 0.916932i \(0.630658\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −3.00000 −0.236433
\(162\) 0 0
\(163\) 0.500000 0.866025i 0.0391630 0.0678323i −0.845780 0.533533i \(-0.820864\pi\)
0.884943 + 0.465700i \(0.154198\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −1.50000 2.59808i −0.116073 0.201045i 0.802135 0.597143i \(-0.203697\pi\)
−0.918208 + 0.396098i \(0.870364\pi\)
\(168\) 0 0
\(169\) −11.0000 + 6.92820i −0.846154 + 0.532939i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −1.50000 + 2.59808i −0.114043 + 0.197528i −0.917397 0.397974i \(-0.869713\pi\)
0.803354 + 0.595502i \(0.203047\pi\)
\(174\) 0 0
\(175\) 0.500000 0.866025i 0.0377964 0.0654654i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −10.5000 18.1865i −0.784807 1.35933i −0.929114 0.369792i \(-0.879429\pi\)
0.144308 0.989533i \(-0.453905\pi\)
\(180\) 0 0
\(181\) 2.00000 0.148659 0.0743294 0.997234i \(-0.476318\pi\)
0.0743294 + 0.997234i \(0.476318\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −3.50000 6.06218i −0.257325 0.445700i
\(186\) 0 0
\(187\) −9.00000 −0.658145
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −1.50000 + 2.59808i −0.108536 + 0.187990i −0.915177 0.403051i \(-0.867950\pi\)
0.806641 + 0.591041i \(0.201283\pi\)
\(192\) 0 0
\(193\) −2.50000 4.33013i −0.179954 0.311689i 0.761911 0.647682i \(-0.224262\pi\)
−0.941865 + 0.335993i \(0.890928\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 10.5000 + 18.1865i 0.748094 + 1.29574i 0.948735 + 0.316072i \(0.102364\pi\)
−0.200641 + 0.979665i \(0.564303\pi\)
\(198\) 0 0
\(199\) −8.50000 + 14.7224i −0.602549 + 1.04365i 0.389885 + 0.920864i \(0.372515\pi\)
−0.992434 + 0.122782i \(0.960818\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 3.00000 0.210559
\(204\) 0 0
\(205\) 4.50000 + 7.79423i 0.314294 + 0.544373i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 21.0000 1.45260
\(210\) 0 0
\(211\) −5.50000 9.52628i −0.378636 0.655816i 0.612228 0.790681i \(-0.290273\pi\)
−0.990864 + 0.134865i \(0.956940\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 5.50000 9.52628i 0.375097 0.649687i
\(216\) 0 0
\(217\) −2.00000 + 3.46410i −0.135769 + 0.235159i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −10.5000 2.59808i −0.706306 0.174766i
\(222\) 0 0
\(223\) 9.50000 + 16.4545i 0.636167 + 1.10187i 0.986267 + 0.165161i \(0.0528144\pi\)
−0.350100 + 0.936713i \(0.613852\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 13.5000 23.3827i 0.896026 1.55196i 0.0634974 0.997982i \(-0.479775\pi\)
0.832529 0.553981i \(-0.186892\pi\)
\(228\) 0 0
\(229\) −22.0000 −1.45380 −0.726900 0.686743i \(-0.759040\pi\)
−0.726900 + 0.686743i \(0.759040\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −18.0000 −1.17922 −0.589610 0.807688i \(-0.700718\pi\)
−0.589610 + 0.807688i \(0.700718\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(240\) 0 0
\(241\) 0.500000 0.866025i 0.0322078 0.0557856i −0.849472 0.527633i \(-0.823079\pi\)
0.881680 + 0.471848i \(0.156413\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −3.00000 5.19615i −0.191663 0.331970i
\(246\) 0 0
\(247\) 24.5000 + 6.06218i 1.55890 + 0.385727i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 10.5000 18.1865i 0.662754 1.14792i −0.317135 0.948380i \(-0.602721\pi\)
0.979889 0.199543i \(-0.0639459\pi\)
\(252\) 0 0
\(253\) 4.50000 7.79423i 0.282913 0.490019i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 4.50000 + 7.79423i 0.280702 + 0.486191i 0.971558 0.236802i \(-0.0760993\pi\)
−0.690856 + 0.722993i \(0.742766\pi\)
\(258\) 0 0
\(259\) 7.00000 0.434959
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −1.50000 2.59808i −0.0924940 0.160204i 0.816066 0.577959i \(-0.196151\pi\)
−0.908560 + 0.417755i \(0.862817\pi\)
\(264\) 0 0
\(265\) −6.00000 −0.368577
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 13.5000 23.3827i 0.823110 1.42567i −0.0802460 0.996775i \(-0.525571\pi\)
0.903356 0.428892i \(-0.141096\pi\)
\(270\) 0 0
\(271\) −11.5000 19.9186i −0.698575 1.20997i −0.968960 0.247216i \(-0.920484\pi\)
0.270385 0.962752i \(-0.412849\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 1.50000 + 2.59808i 0.0904534 + 0.156670i
\(276\) 0 0
\(277\) 9.50000 16.4545i 0.570800 0.988654i −0.425684 0.904872i \(-0.639967\pi\)
0.996484 0.0837823i \(-0.0267000\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −6.00000 −0.357930 −0.178965 0.983855i \(-0.557275\pi\)
−0.178965 + 0.983855i \(0.557275\pi\)
\(282\) 0 0
\(283\) −2.50000 4.33013i −0.148610 0.257399i 0.782104 0.623148i \(-0.214146\pi\)
−0.930714 + 0.365748i \(0.880813\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −9.00000 −0.531253
\(288\) 0 0
\(289\) 4.00000 + 6.92820i 0.235294 + 0.407541i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −13.5000 + 23.3827i −0.788678 + 1.36603i 0.138098 + 0.990419i \(0.455901\pi\)
−0.926777 + 0.375613i \(0.877432\pi\)
\(294\) 0 0
\(295\) 1.50000 2.59808i 0.0873334 0.151266i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 7.50000 7.79423i 0.433736 0.450752i
\(300\) 0 0
\(301\) 5.50000 + 9.52628i 0.317015 + 0.549086i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 5.50000 9.52628i 0.314929 0.545473i
\(306\) 0 0
\(307\) 20.0000 1.14146 0.570730 0.821138i \(-0.306660\pi\)
0.570730 + 0.821138i \(0.306660\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −24.0000 −1.36092 −0.680458 0.732787i \(-0.738219\pi\)
−0.680458 + 0.732787i \(0.738219\pi\)
\(312\) 0 0
\(313\) −22.0000 −1.24351 −0.621757 0.783210i \(-0.713581\pi\)
−0.621757 + 0.783210i \(0.713581\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 18.0000 1.01098 0.505490 0.862832i \(-0.331312\pi\)
0.505490 + 0.862832i \(0.331312\pi\)
\(318\) 0 0
\(319\) −4.50000 + 7.79423i −0.251952 + 0.436393i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 10.5000 + 18.1865i 0.584236 + 1.01193i
\(324\) 0 0
\(325\) 1.00000 + 3.46410i 0.0554700 + 0.192154i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 9.50000 16.4545i 0.522167 0.904420i −0.477500 0.878632i \(-0.658457\pi\)
0.999667 0.0257885i \(-0.00820965\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −3.50000 6.06218i −0.191225 0.331212i
\(336\) 0 0
\(337\) −34.0000 −1.85210 −0.926049 0.377403i \(-0.876817\pi\)
−0.926049 + 0.377403i \(0.876817\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −6.00000 10.3923i −0.324918 0.562775i
\(342\) 0 0
\(343\) 13.0000 0.701934
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −16.5000 + 28.5788i −0.885766 + 1.53419i −0.0409337 + 0.999162i \(0.513033\pi\)
−0.844833 + 0.535031i \(0.820300\pi\)
\(348\) 0 0
\(349\) 0.500000 + 0.866025i 0.0267644 + 0.0463573i 0.879097 0.476642i \(-0.158146\pi\)
−0.852333 + 0.523000i \(0.824813\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 4.50000 + 7.79423i 0.239511 + 0.414845i 0.960574 0.278024i \(-0.0896796\pi\)
−0.721063 + 0.692869i \(0.756346\pi\)
\(354\) 0 0
\(355\) 1.50000 2.59808i 0.0796117 0.137892i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 24.0000 1.26667 0.633336 0.773877i \(-0.281685\pi\)
0.633336 + 0.773877i \(0.281685\pi\)
\(360\) 0 0
\(361\) −15.0000 25.9808i −0.789474 1.36741i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −2.00000 −0.104685
\(366\) 0 0
\(367\) −2.50000 4.33013i −0.130499 0.226031i 0.793370 0.608740i \(-0.208325\pi\)
−0.923869 + 0.382709i \(0.874991\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 3.00000 5.19615i 0.155752 0.269771i
\(372\) 0 0
\(373\) 15.5000 26.8468i 0.802560 1.39007i −0.115367 0.993323i \(-0.536804\pi\)
0.917926 0.396751i \(-0.129862\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −7.50000 + 7.79423i −0.386270 + 0.401423i
\(378\) 0 0
\(379\) 0.500000 + 0.866025i 0.0256833 + 0.0444847i 0.878581 0.477593i \(-0.158491\pi\)
−0.852898 + 0.522077i \(0.825157\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −4.50000 + 7.79423i −0.229939 + 0.398266i −0.957790 0.287469i \(-0.907186\pi\)
0.727851 + 0.685736i \(0.240519\pi\)
\(384\) 0 0
\(385\) −3.00000 −0.152894
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −18.0000 −0.912636 −0.456318 0.889817i \(-0.650832\pi\)
−0.456318 + 0.889817i \(0.650832\pi\)
\(390\) 0 0
\(391\) 9.00000 0.455150
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −8.00000 −0.402524
\(396\) 0 0
\(397\) −2.50000 + 4.33013i −0.125471 + 0.217323i −0.921917 0.387387i \(-0.873378\pi\)
0.796446 + 0.604710i \(0.206711\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −16.5000 28.5788i −0.823971 1.42716i −0.902703 0.430263i \(-0.858421\pi\)
0.0787327 0.996896i \(-0.474913\pi\)
\(402\) 0 0
\(403\) −4.00000 13.8564i −0.199254 0.690237i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −10.5000 + 18.1865i −0.520466 + 0.901473i
\(408\) 0 0
\(409\) 12.5000 21.6506i 0.618085 1.07056i −0.371750 0.928333i \(-0.621242\pi\)
0.989835 0.142222i \(-0.0454247\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 1.50000 + 2.59808i 0.0738102 + 0.127843i
\(414\) 0 0
\(415\) −12.0000 −0.589057
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −4.50000 7.79423i −0.219839 0.380773i 0.734919 0.678155i \(-0.237220\pi\)
−0.954759 + 0.297382i \(0.903887\pi\)
\(420\) 0 0
\(421\) 2.00000 0.0974740 0.0487370 0.998812i \(-0.484480\pi\)
0.0487370 + 0.998812i \(0.484480\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −1.50000 + 2.59808i −0.0727607 + 0.126025i
\(426\) 0 0
\(427\) 5.50000 + 9.52628i 0.266164 + 0.461009i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −4.50000 7.79423i −0.216757 0.375435i 0.737057 0.675830i \(-0.236215\pi\)
−0.953815 + 0.300395i \(0.902881\pi\)
\(432\) 0 0
\(433\) −14.5000 + 25.1147i −0.696826 + 1.20694i 0.272736 + 0.962089i \(0.412071\pi\)
−0.969561 + 0.244848i \(0.921262\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −21.0000 −1.00457
\(438\) 0 0
\(439\) −5.50000 9.52628i −0.262501 0.454665i 0.704405 0.709798i \(-0.251214\pi\)
−0.966906 + 0.255134i \(0.917881\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(444\) 0 0
\(445\) −7.50000 12.9904i −0.355534 0.615803i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 1.50000 2.59808i 0.0707894 0.122611i −0.828458 0.560051i \(-0.810782\pi\)
0.899247 + 0.437440i \(0.144115\pi\)
\(450\) 0 0
\(451\) 13.5000 23.3827i 0.635690 1.10105i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −3.50000 0.866025i −0.164083 0.0405999i
\(456\) 0 0
\(457\) −2.50000 4.33013i −0.116945 0.202555i 0.801611 0.597847i \(-0.203977\pi\)
−0.918556 + 0.395292i \(0.870643\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 13.5000 23.3827i 0.628758 1.08904i −0.359044 0.933321i \(-0.616897\pi\)
0.987801 0.155719i \(-0.0497696\pi\)
\(462\) 0 0
\(463\) −4.00000 −0.185896 −0.0929479 0.995671i \(-0.529629\pi\)
−0.0929479 + 0.995671i \(0.529629\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 36.0000 1.66588 0.832941 0.553362i \(-0.186655\pi\)
0.832941 + 0.553362i \(0.186655\pi\)
\(468\) 0 0
\(469\) 7.00000 0.323230
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −33.0000 −1.51734
\(474\) 0 0
\(475\) 3.50000 6.06218i 0.160591 0.278152i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 19.5000 + 33.7750i 0.890978 + 1.54322i 0.838705 + 0.544586i \(0.183313\pi\)
0.0522726 + 0.998633i \(0.483354\pi\)
\(480\) 0 0
\(481\) −17.5000 + 18.1865i −0.797931 + 0.829235i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −3.50000 + 6.06218i −0.158927 + 0.275269i
\(486\) 0 0
\(487\) −5.50000 + 9.52628i −0.249229 + 0.431677i −0.963312 0.268384i \(-0.913510\pi\)
0.714083 + 0.700061i \(0.246844\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −4.50000 7.79423i −0.203082 0.351749i 0.746438 0.665455i \(-0.231763\pi\)
−0.949520 + 0.313707i \(0.898429\pi\)
\(492\) 0 0
\(493\) −9.00000 −0.405340
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 1.50000 + 2.59808i 0.0672842 + 0.116540i
\(498\) 0 0
\(499\) 32.0000 1.43252 0.716258 0.697835i \(-0.245853\pi\)
0.716258 + 0.697835i \(0.245853\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 7.50000 12.9904i 0.334408 0.579212i −0.648963 0.760820i \(-0.724797\pi\)
0.983371 + 0.181608i \(0.0581302\pi\)
\(504\) 0 0
\(505\) 4.50000 + 7.79423i 0.200247 + 0.346839i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −4.50000 7.79423i −0.199459 0.345473i 0.748894 0.662690i \(-0.230585\pi\)
−0.948353 + 0.317217i \(0.897252\pi\)
\(510\) 0 0
\(511\) 1.00000 1.73205i 0.0442374 0.0766214i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −8.00000 −0.352522
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −30.0000 −1.31432 −0.657162 0.753749i \(-0.728243\pi\)
−0.657162 + 0.753749i \(0.728243\pi\)
\(522\) 0 0
\(523\) −14.5000 25.1147i −0.634041 1.09819i −0.986718 0.162446i \(-0.948062\pi\)
0.352677 0.935745i \(-0.385272\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 6.00000 10.3923i 0.261364 0.452696i
\(528\) 0 0
\(529\) 7.00000 12.1244i 0.304348 0.527146i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 22.5000 23.3827i 0.974583 1.01282i
\(534\) 0 0
\(535\) −4.50000 7.79423i −0.194552 0.336974i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −9.00000 + 15.5885i −0.387657 + 0.671442i
\(540\) 0 0
\(541\) −22.0000 −0.945854 −0.472927 0.881102i \(-0.656803\pi\)
−0.472927 + 0.881102i \(0.656803\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −2.00000 −0.0856706
\(546\) 0 0
\(547\) 8.00000 0.342055 0.171028 0.985266i \(-0.445291\pi\)
0.171028 + 0.985266i \(0.445291\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 21.0000 0.894630
\(552\) 0 0
\(553\) 4.00000 6.92820i 0.170097 0.294617i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −19.5000 33.7750i −0.826242 1.43109i −0.900967 0.433888i \(-0.857141\pi\)
0.0747252 0.997204i \(-0.476192\pi\)
\(558\) 0 0
\(559\) −38.5000 9.52628i −1.62838 0.402919i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 19.5000 33.7750i 0.821827 1.42345i −0.0824933 0.996592i \(-0.526288\pi\)
0.904320 0.426855i \(-0.140378\pi\)
\(564\) 0 0
\(565\) −4.50000 + 7.79423i −0.189316 + 0.327906i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 13.5000 + 23.3827i 0.565949 + 0.980253i 0.996961 + 0.0779066i \(0.0248236\pi\)
−0.431011 + 0.902347i \(0.641843\pi\)
\(570\) 0 0
\(571\) −40.0000 −1.67395 −0.836974 0.547243i \(-0.815677\pi\)
−0.836974 + 0.547243i \(0.815677\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −1.50000 2.59808i −0.0625543 0.108347i
\(576\) 0 0
\(577\) 2.00000 0.0832611 0.0416305 0.999133i \(-0.486745\pi\)
0.0416305 + 0.999133i \(0.486745\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 6.00000 10.3923i 0.248922 0.431145i
\(582\) 0 0
\(583\) 9.00000 + 15.5885i 0.372742 + 0.645608i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 16.5000 + 28.5788i 0.681028 + 1.17957i 0.974668 + 0.223659i \(0.0718001\pi\)
−0.293640 + 0.955916i \(0.594867\pi\)
\(588\) 0 0
\(589\) −14.0000 + 24.2487i −0.576860 + 0.999151i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 6.00000 0.246390 0.123195 0.992382i \(-0.460686\pi\)
0.123195 + 0.992382i \(0.460686\pi\)
\(594\) 0 0
\(595\) −1.50000 2.59808i −0.0614940 0.106511i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −24.0000 −0.980613 −0.490307 0.871550i \(-0.663115\pi\)
−0.490307 + 0.871550i \(0.663115\pi\)
\(600\) 0 0
\(601\) −17.5000 30.3109i −0.713840 1.23641i −0.963405 0.268049i \(-0.913621\pi\)
0.249565 0.968358i \(-0.419712\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −1.00000 + 1.73205i −0.0406558 + 0.0704179i
\(606\) 0 0
\(607\) 6.50000 11.2583i 0.263827 0.456962i −0.703429 0.710766i \(-0.748349\pi\)
0.967256 + 0.253804i \(0.0816819\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 21.5000 + 37.2391i 0.868377 + 1.50407i 0.863655 + 0.504084i \(0.168170\pi\)
0.00472215 + 0.999989i \(0.498497\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 16.5000 28.5788i 0.664265 1.15054i −0.315219 0.949019i \(-0.602078\pi\)
0.979484 0.201522i \(-0.0645887\pi\)
\(618\) 0 0
\(619\) 44.0000 1.76851 0.884255 0.467005i \(-0.154667\pi\)
0.884255 + 0.467005i \(0.154667\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 15.0000 0.600962
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −21.0000 −0.837325
\(630\) 0 0
\(631\) −8.50000 + 14.7224i −0.338380 + 0.586091i −0.984128 0.177459i \(-0.943212\pi\)
0.645748 + 0.763550i \(0.276545\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −9.50000 16.4545i −0.376996 0.652976i
\(636\) 0 0
\(637\) −15.0000 + 15.5885i −0.594322 + 0.617637i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 13.5000 23.3827i 0.533218 0.923561i −0.466029 0.884769i \(-0.654316\pi\)
0.999247 0.0387913i \(-0.0123508\pi\)
\(642\) 0 0
\(643\) −5.50000 + 9.52628i −0.216899 + 0.375680i −0.953858 0.300257i \(-0.902928\pi\)
0.736959 + 0.675937i \(0.236261\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 22.5000 + 38.9711i 0.884566 + 1.53211i 0.846210 + 0.532850i \(0.178879\pi\)
0.0383563 + 0.999264i \(0.487788\pi\)
\(648\) 0 0
\(649\) −9.00000 −0.353281
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −19.5000 33.7750i −0.763094 1.32172i −0.941248 0.337715i \(-0.890346\pi\)
0.178154 0.984003i \(-0.442987\pi\)
\(654\) 0 0
\(655\) −12.0000 −0.468879
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −19.5000 + 33.7750i −0.759612 + 1.31569i 0.183436 + 0.983032i \(0.441278\pi\)
−0.943049 + 0.332655i \(0.892055\pi\)
\(660\) 0 0
\(661\) 0.500000 + 0.866025i 0.0194477 + 0.0336845i 0.875585 0.483063i \(-0.160476\pi\)
−0.856138 + 0.516748i \(0.827143\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 3.50000 + 6.06218i 0.135724 + 0.235081i
\(666\) 0 0
\(667\) 4.50000 7.79423i 0.174241 0.301794i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −33.0000 −1.27395
\(672\) 0 0
\(673\) −8.50000 14.7224i −0.327651 0.567508i 0.654394 0.756153i \(-0.272924\pi\)
−0.982045 + 0.188645i \(0.939590\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 42.0000 1.61419 0.807096 0.590421i \(-0.201038\pi\)
0.807096 + 0.590421i \(0.201038\pi\)
\(678\) 0 0
\(679\) −3.50000 6.06218i −0.134318 0.232645i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 25.5000 44.1673i 0.975730 1.69001i 0.298227 0.954495i \(-0.403605\pi\)
0.677503 0.735520i \(-0.263062\pi\)
\(684\) 0 0
\(685\) 7.50000 12.9904i 0.286560 0.496337i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 6.00000 + 20.7846i 0.228582 + 0.791831i
\(690\) 0 0
\(691\) −11.5000 19.9186i −0.437481 0.757739i 0.560014 0.828483i \(-0.310796\pi\)
−0.997494 + 0.0707446i \(0.977462\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 2.50000 4.33013i 0.0948304 0.164251i
\(696\) 0 0
\(697\) 27.0000 1.02270
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −18.0000 −0.679851 −0.339925 0.940452i \(-0.610402\pi\)
−0.339925 + 0.940452i \(0.610402\pi\)
\(702\) 0 0
\(703\) 49.0000 1.84807
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −9.00000 −0.338480
\(708\) 0 0
\(709\) 18.5000 32.0429i 0.694782 1.20340i −0.275472 0.961309i \(-0.588834\pi\)
0.970254 0.242089i \(-0.0778325\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 6.00000 + 10.3923i 0.224702 + 0.389195i
\(714\) 0 0
\(715\) 7.50000 7.79423i 0.280484 0.291488i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 4.50000 7.79423i 0.167822 0.290676i −0.769832 0.638247i \(-0.779660\pi\)
0.937654 + 0.347571i \(0.112993\pi\)
\(720\) 0 0
\(721\) 4.00000 6.92820i 0.148968 0.258020i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 1.50000 + 2.59808i 0.0557086 + 0.0964901i
\(726\) 0 0
\(727\) −52.0000 −1.92857 −0.964287 0.264861i \(-0.914674\pi\)
−0.964287 + 0.264861i \(0.914674\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −16.5000 28.5788i −0.610275 1.05703i
\(732\) 0 0
\(733\) −34.0000 −1.25582 −0.627909 0.778287i \(-0.716089\pi\)
−0.627909 + 0.778287i \(0.716089\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −10.5000 + 18.1865i −0.386772 + 0.669910i
\(738\) 0 0
\(739\) −23.5000 40.7032i −0.864461 1.49729i −0.867581 0.497296i \(-0.834326\pi\)
0.00311943 0.999995i \(-0.499007\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 10.5000 + 18.1865i 0.385208 + 0.667199i 0.991798 0.127815i \(-0.0407965\pi\)
−0.606590 + 0.795015i \(0.707463\pi\)
\(744\) 0 0
\(745\) 10.5000 18.1865i 0.384690 0.666303i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 9.00000 0.328853
\(750\) 0 0
\(751\) 6.50000 + 11.2583i 0.237188 + 0.410822i 0.959906 0.280321i \(-0.0904408\pi\)
−0.722718 + 0.691143i \(0.757107\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −8.00000 −0.291150
\(756\) 0 0
\(757\) −14.5000 25.1147i −0.527011 0.912811i −0.999505 0.0314762i \(-0.989979\pi\)
0.472493 0.881334i \(-0.343354\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 1.50000 2.59808i 0.0543750 0.0941802i −0.837557 0.546350i \(-0.816017\pi\)
0.891932 + 0.452170i \(0.149350\pi\)
\(762\) 0 0
\(763\) 1.00000 1.73205i 0.0362024 0.0627044i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −10.5000 2.59808i −0.379133 0.0938111i
\(768\) 0 0
\(769\) 6.50000 + 11.2583i 0.234396 + 0.405986i 0.959097 0.283078i \(-0.0913554\pi\)
−0.724701 + 0.689063i \(0.758022\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −13.5000 + 23.3827i −0.485561 + 0.841017i −0.999862 0.0165929i \(-0.994718\pi\)
0.514301 + 0.857610i \(0.328051\pi\)
\(774\) 0 0
\(775\) −4.00000 −0.143684
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −63.0000 −2.25721
\(780\) 0 0
\(781\) −9.00000 −0.322045
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 10.0000 0.356915
\(786\) 0 0
\(787\) 18.5000 32.0429i 0.659454 1.14221i −0.321303 0.946976i \(-0.604121\pi\)
0.980757 0.195231i \(-0.0625457\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −4.50000 7.79423i −0.160002 0.277131i
\(792\) 0 0
\(793\) −38.5000 9.52628i −1.36718 0.338288i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −25.5000 + 44.1673i −0.903256 + 1.56449i −0.0800155 + 0.996794i \(0.525497\pi\)
−0.823241 + 0.567692i \(0.807836\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 3.00000 + 5.19615i 0.105868