Properties

Label 2340.2.h
Level $2340$
Weight $2$
Character orbit 2340.h
Rep. character $\chi_{2340}(469,\cdot)$
Character field $\Q$
Dimension $30$
Newform subspaces $6$
Sturm bound $1008$
Trace bound $5$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2340 = 2^{2} \cdot 3^{2} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2340.h (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 5 \)
Character field: \(\Q\)
Newform subspaces: \( 6 \)
Sturm bound: \(1008\)
Trace bound: \(5\)
Distinguishing \(T_p\): \(7\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2340, [\chi])\).

Total New Old
Modular forms 528 30 498
Cusp forms 480 30 450
Eisenstein series 48 0 48

Trace form

\( 30 q + 4 q^{5} - 8 q^{11} - 4 q^{19} + 10 q^{25} - 4 q^{29} - 16 q^{31} + 12 q^{35} - 8 q^{41} - 6 q^{49} + 4 q^{55} - 36 q^{59} - 4 q^{61} - 2 q^{65} + 4 q^{71} - 16 q^{79} - 12 q^{85} + 60 q^{89} + 4 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(2340, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
2340.2.h.a 2340.h 5.b $2$ $18.685$ \(\Q(\sqrt{-1}) \) None 780.2.h.b \(0\) \(0\) \(-2\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(-2 i-1)q^{5}+3 i q^{7}-3 q^{11}+\cdots\)
2340.2.h.b 2340.h 5.b $2$ $18.685$ \(\Q(\sqrt{-1}) \) None 780.2.h.a \(0\) \(0\) \(2\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(2 i+1)q^{5}+i q^{7}+3 q^{11}+i q^{13}+\cdots\)
2340.2.h.c 2340.h 5.b $4$ $18.685$ \(\Q(\zeta_{8})\) None 780.2.h.d \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(\zeta_{8}-2\zeta_{8}^{3})q^{5}+(2\zeta_{8}+2\zeta_{8}^{2}+2\zeta_{8}^{3})q^{7}+\cdots\)
2340.2.h.d 2340.h 5.b $4$ $18.685$ \(\Q(i, \sqrt{6})\) None 780.2.h.c \(0\) \(0\) \(4\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(1+\beta _{2}-\beta _{3})q^{5}-2\beta _{2}q^{7}+(-2+\cdots)q^{11}+\cdots\)
2340.2.h.e 2340.h 5.b $6$ $18.685$ 6.0.350464.1 None 260.2.c.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(\beta _{1}+\beta _{4})q^{5}+(\beta _{3}+\beta _{4}-\beta _{5})q^{7}+\cdots\)
2340.2.h.f 2340.h 5.b $12$ $18.685$ 12.0.\(\cdots\).1 None 2340.2.h.f \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{9}q^{5}-\beta _{4}q^{7}+(\beta _{3}+\beta _{6}+\beta _{8})q^{11}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(2340, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2340, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(30, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(45, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(60, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(65, [\chi])\)\(^{\oplus 9}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(90, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(130, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(180, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(195, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(260, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(390, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(585, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(780, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1170, [\chi])\)\(^{\oplus 2}\)