Defining parameters
Level: | \( N \) | \(=\) | \( 2340 = 2^{2} \cdot 3^{2} \cdot 5 \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 2340.h (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 5 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 6 \) | ||
Sturm bound: | \(1008\) | ||
Trace bound: | \(5\) | ||
Distinguishing \(T_p\): | \(7\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(2340, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 528 | 30 | 498 |
Cusp forms | 480 | 30 | 450 |
Eisenstein series | 48 | 0 | 48 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(2340, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
2340.2.h.a | $2$ | $18.685$ | \(\Q(\sqrt{-1}) \) | None | \(0\) | \(0\) | \(-2\) | \(0\) | \(q+(-2 i-1)q^{5}+3 i q^{7}-3 q^{11}+\cdots\) |
2340.2.h.b | $2$ | $18.685$ | \(\Q(\sqrt{-1}) \) | None | \(0\) | \(0\) | \(2\) | \(0\) | \(q+(2 i+1)q^{5}+i q^{7}+3 q^{11}+i q^{13}+\cdots\) |
2340.2.h.c | $4$ | $18.685$ | \(\Q(\zeta_{8})\) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+(\zeta_{8}-2\zeta_{8}^{3})q^{5}+(2\zeta_{8}+2\zeta_{8}^{2}+2\zeta_{8}^{3})q^{7}+\cdots\) |
2340.2.h.d | $4$ | $18.685$ | \(\Q(i, \sqrt{6})\) | None | \(0\) | \(0\) | \(4\) | \(0\) | \(q+(1+\beta _{2}-\beta _{3})q^{5}-2\beta _{2}q^{7}+(-2+\cdots)q^{11}+\cdots\) |
2340.2.h.e | $6$ | $18.685$ | 6.0.350464.1 | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+(\beta _{1}+\beta _{4})q^{5}+(\beta _{3}+\beta _{4}-\beta _{5})q^{7}+\cdots\) |
2340.2.h.f | $12$ | $18.685$ | 12.0.\(\cdots\).1 | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+\beta _{9}q^{5}-\beta _{4}q^{7}+(\beta _{3}+\beta _{6}+\beta _{8})q^{11}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(2340, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(2340, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(30, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(45, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(60, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(65, [\chi])\)\(^{\oplus 9}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(90, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(130, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(180, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(195, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(260, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(390, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(585, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(780, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1170, [\chi])\)\(^{\oplus 2}\)