Properties

Label 2340.2.g.b.1691.29
Level $2340$
Weight $2$
Character 2340.1691
Analytic conductor $18.685$
Analytic rank $0$
Dimension $48$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2340,2,Mod(1691,2340)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2340.1691"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2340, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 2340 = 2^{2} \cdot 3^{2} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2340.g (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [48,0,0,-4,0,0,0,0,0,-4,0,0,48] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.6849940730\)
Analytic rank: \(0\)
Dimension: \(48\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1691.29
Character \(\chi\) \(=\) 2340.1691
Dual form 2340.2.g.b.1691.30

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.405974 - 1.35469i) q^{2} +(-1.67037 - 1.09994i) q^{4} +1.00000i q^{5} -1.05331i q^{7} +(-2.16820 + 1.81629i) q^{8} +(1.35469 + 0.405974i) q^{10} +2.94047 q^{11} +1.00000 q^{13} +(-1.42691 - 0.427617i) q^{14} +(1.58028 + 3.67461i) q^{16} +2.82145i q^{17} +4.64725i q^{19} +(1.09994 - 1.67037i) q^{20} +(1.19375 - 3.98343i) q^{22} -6.54399 q^{23} -1.00000 q^{25} +(0.405974 - 1.35469i) q^{26} +(-1.15858 + 1.75942i) q^{28} +0.0387991i q^{29} +0.836825i q^{31} +(5.61950 - 0.648991i) q^{32} +(3.82219 + 1.14544i) q^{34} +1.05331 q^{35} -3.57653 q^{37} +(6.29559 + 1.88666i) q^{38} +(-1.81629 - 2.16820i) q^{40} +10.2580i q^{41} +5.05107i q^{43} +(-4.91167 - 3.23433i) q^{44} +(-2.65669 + 8.86508i) q^{46} +1.00144 q^{47} +5.89053 q^{49} +(-0.405974 + 1.35469i) q^{50} +(-1.67037 - 1.09994i) q^{52} +13.7903i q^{53} +2.94047i q^{55} +(1.91312 + 2.28379i) q^{56} +(0.0525607 + 0.0157514i) q^{58} +5.31956 q^{59} -2.98720 q^{61} +(1.13364 + 0.339729i) q^{62} +(1.40219 - 7.87616i) q^{64} +1.00000i q^{65} -15.1114i q^{67} +(3.10342 - 4.71287i) q^{68} +(0.427617 - 1.42691i) q^{70} +9.53560 q^{71} -5.77827 q^{73} +(-1.45198 + 4.84509i) q^{74} +(5.11169 - 7.76264i) q^{76} -3.09723i q^{77} -5.96259i q^{79} +(-3.67461 + 1.58028i) q^{80} +(13.8964 + 4.16448i) q^{82} +15.8285 q^{83} -2.82145 q^{85} +(6.84263 + 2.05060i) q^{86} +(-6.37553 + 5.34074i) q^{88} -2.96256i q^{89} -1.05331i q^{91} +(10.9309 + 7.19798i) q^{92} +(0.406560 - 1.35665i) q^{94} -4.64725 q^{95} +6.69353 q^{97} +(2.39140 - 7.97985i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q - 4 q^{4} - 4 q^{10} + 48 q^{13} - 36 q^{16} - 8 q^{22} - 48 q^{25} + 8 q^{28} + 8 q^{34} + 16 q^{37} + 4 q^{40} + 32 q^{46} - 64 q^{49} - 4 q^{52} + 72 q^{58} - 32 q^{61} - 28 q^{64} - 24 q^{70} - 48 q^{73}+ \cdots - 32 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2340\mathbb{Z}\right)^\times\).

\(n\) \(937\) \(1081\) \(1171\) \(2081\)
\(\chi(n)\) \(1\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.405974 1.35469i 0.287067 0.957911i
\(3\) 0 0
\(4\) −1.67037 1.09994i −0.835185 0.549969i
\(5\) 1.00000i 0.447214i
\(6\) 0 0
\(7\) 1.05331i 0.398115i −0.979988 0.199057i \(-0.936212\pi\)
0.979988 0.199057i \(-0.0637880\pi\)
\(8\) −2.16820 + 1.81629i −0.766575 + 0.642155i
\(9\) 0 0
\(10\) 1.35469 + 0.405974i 0.428391 + 0.128380i
\(11\) 2.94047 0.886585 0.443292 0.896377i \(-0.353810\pi\)
0.443292 + 0.896377i \(0.353810\pi\)
\(12\) 0 0
\(13\) 1.00000 0.277350
\(14\) −1.42691 0.427617i −0.381358 0.114285i
\(15\) 0 0
\(16\) 1.58028 + 3.67461i 0.395069 + 0.918651i
\(17\) 2.82145i 0.684303i 0.939645 + 0.342151i \(0.111156\pi\)
−0.939645 + 0.342151i \(0.888844\pi\)
\(18\) 0 0
\(19\) 4.64725i 1.06615i 0.846067 + 0.533077i \(0.178964\pi\)
−0.846067 + 0.533077i \(0.821036\pi\)
\(20\) 1.09994 1.67037i 0.245953 0.373506i
\(21\) 0 0
\(22\) 1.19375 3.98343i 0.254509 0.849269i
\(23\) −6.54399 −1.36452 −0.682258 0.731111i \(-0.739002\pi\)
−0.682258 + 0.731111i \(0.739002\pi\)
\(24\) 0 0
\(25\) −1.00000 −0.200000
\(26\) 0.405974 1.35469i 0.0796180 0.265677i
\(27\) 0 0
\(28\) −1.15858 + 1.75942i −0.218950 + 0.332499i
\(29\) 0.0387991i 0.00720481i 0.999994 + 0.00360240i \(0.00114668\pi\)
−0.999994 + 0.00360240i \(0.998853\pi\)
\(30\) 0 0
\(31\) 0.836825i 0.150298i 0.997172 + 0.0751491i \(0.0239433\pi\)
−0.997172 + 0.0751491i \(0.976057\pi\)
\(32\) 5.61950 0.648991i 0.993397 0.114727i
\(33\) 0 0
\(34\) 3.82219 + 1.14544i 0.655501 + 0.196441i
\(35\) 1.05331 0.178042
\(36\) 0 0
\(37\) −3.57653 −0.587978 −0.293989 0.955809i \(-0.594983\pi\)
−0.293989 + 0.955809i \(0.594983\pi\)
\(38\) 6.29559 + 1.88666i 1.02128 + 0.306057i
\(39\) 0 0
\(40\) −1.81629 2.16820i −0.287181 0.342823i
\(41\) 10.2580i 1.60203i 0.598642 + 0.801016i \(0.295707\pi\)
−0.598642 + 0.801016i \(0.704293\pi\)
\(42\) 0 0
\(43\) 5.05107i 0.770280i 0.922858 + 0.385140i \(0.125847\pi\)
−0.922858 + 0.385140i \(0.874153\pi\)
\(44\) −4.91167 3.23433i −0.740463 0.487594i
\(45\) 0 0
\(46\) −2.65669 + 8.86508i −0.391707 + 1.30708i
\(47\) 1.00144 0.146076 0.0730379 0.997329i \(-0.476731\pi\)
0.0730379 + 0.997329i \(0.476731\pi\)
\(48\) 0 0
\(49\) 5.89053 0.841505
\(50\) −0.405974 + 1.35469i −0.0574134 + 0.191582i
\(51\) 0 0
\(52\) −1.67037 1.09994i −0.231639 0.152534i
\(53\) 13.7903i 1.89424i 0.320872 + 0.947122i \(0.396024\pi\)
−0.320872 + 0.947122i \(0.603976\pi\)
\(54\) 0 0
\(55\) 2.94047i 0.396493i
\(56\) 1.91312 + 2.28379i 0.255651 + 0.305185i
\(57\) 0 0
\(58\) 0.0525607 + 0.0157514i 0.00690156 + 0.00206826i
\(59\) 5.31956 0.692547 0.346274 0.938134i \(-0.387447\pi\)
0.346274 + 0.938134i \(0.387447\pi\)
\(60\) 0 0
\(61\) −2.98720 −0.382472 −0.191236 0.981544i \(-0.561250\pi\)
−0.191236 + 0.981544i \(0.561250\pi\)
\(62\) 1.13364 + 0.339729i 0.143972 + 0.0431456i
\(63\) 0 0
\(64\) 1.40219 7.87616i 0.175274 0.984520i
\(65\) 1.00000i 0.124035i
\(66\) 0 0
\(67\) 15.1114i 1.84615i −0.384614 0.923077i \(-0.625666\pi\)
0.384614 0.923077i \(-0.374334\pi\)
\(68\) 3.10342 4.71287i 0.376345 0.571519i
\(69\) 0 0
\(70\) 0.427617 1.42691i 0.0511100 0.170549i
\(71\) 9.53560 1.13167 0.565834 0.824519i \(-0.308554\pi\)
0.565834 + 0.824519i \(0.308554\pi\)
\(72\) 0 0
\(73\) −5.77827 −0.676295 −0.338148 0.941093i \(-0.609800\pi\)
−0.338148 + 0.941093i \(0.609800\pi\)
\(74\) −1.45198 + 4.84509i −0.168789 + 0.563231i
\(75\) 0 0
\(76\) 5.11169 7.76264i 0.586351 0.890435i
\(77\) 3.09723i 0.352962i
\(78\) 0 0
\(79\) 5.96259i 0.670844i −0.942068 0.335422i \(-0.891121\pi\)
0.942068 0.335422i \(-0.108879\pi\)
\(80\) −3.67461 + 1.58028i −0.410833 + 0.176680i
\(81\) 0 0
\(82\) 13.8964 + 4.16448i 1.53460 + 0.459890i
\(83\) 15.8285 1.73740 0.868702 0.495335i \(-0.164955\pi\)
0.868702 + 0.495335i \(0.164955\pi\)
\(84\) 0 0
\(85\) −2.82145 −0.306029
\(86\) 6.84263 + 2.05060i 0.737860 + 0.221122i
\(87\) 0 0
\(88\) −6.37553 + 5.34074i −0.679634 + 0.569325i
\(89\) 2.96256i 0.314031i −0.987596 0.157015i \(-0.949813\pi\)
0.987596 0.157015i \(-0.0501872\pi\)
\(90\) 0 0
\(91\) 1.05331i 0.110417i
\(92\) 10.9309 + 7.19798i 1.13962 + 0.750441i
\(93\) 0 0
\(94\) 0.406560 1.35665i 0.0419335 0.139927i
\(95\) −4.64725 −0.476798
\(96\) 0 0
\(97\) 6.69353 0.679625 0.339813 0.940493i \(-0.389636\pi\)
0.339813 + 0.940493i \(0.389636\pi\)
\(98\) 2.39140 7.97985i 0.241568 0.806086i
\(99\) 0 0
\(100\) 1.67037 + 1.09994i 0.167037 + 0.109994i
\(101\) 17.9036i 1.78148i 0.454515 + 0.890739i \(0.349812\pi\)
−0.454515 + 0.890739i \(0.650188\pi\)
\(102\) 0 0
\(103\) 3.96918i 0.391095i 0.980694 + 0.195547i \(0.0626484\pi\)
−0.980694 + 0.195547i \(0.937352\pi\)
\(104\) −2.16820 + 1.81629i −0.212610 + 0.178102i
\(105\) 0 0
\(106\) 18.6816 + 5.59850i 1.81452 + 0.543775i
\(107\) 10.0977 0.976179 0.488090 0.872793i \(-0.337694\pi\)
0.488090 + 0.872793i \(0.337694\pi\)
\(108\) 0 0
\(109\) 1.00633 0.0963889 0.0481944 0.998838i \(-0.484653\pi\)
0.0481944 + 0.998838i \(0.484653\pi\)
\(110\) 3.98343 + 1.19375i 0.379805 + 0.113820i
\(111\) 0 0
\(112\) 3.87051 1.66452i 0.365728 0.157283i
\(113\) 0.938566i 0.0882929i 0.999025 + 0.0441464i \(0.0140568\pi\)
−0.999025 + 0.0441464i \(0.985943\pi\)
\(114\) 0 0
\(115\) 6.54399i 0.610230i
\(116\) 0.0426765 0.0648088i 0.00396242 0.00601735i
\(117\) 0 0
\(118\) 2.15960 7.20635i 0.198807 0.663398i
\(119\) 2.97187 0.272431
\(120\) 0 0
\(121\) −2.35364 −0.213967
\(122\) −1.21273 + 4.04674i −0.109795 + 0.366374i
\(123\) 0 0
\(124\) 0.920455 1.39781i 0.0826593 0.125527i
\(125\) 1.00000i 0.0894427i
\(126\) 0 0
\(127\) 5.55523i 0.492947i 0.969149 + 0.246474i \(0.0792719\pi\)
−0.969149 + 0.246474i \(0.920728\pi\)
\(128\) −10.1005 5.09704i −0.892767 0.450519i
\(129\) 0 0
\(130\) 1.35469 + 0.405974i 0.118814 + 0.0356063i
\(131\) 21.2161 1.85366 0.926830 0.375481i \(-0.122522\pi\)
0.926830 + 0.375481i \(0.122522\pi\)
\(132\) 0 0
\(133\) 4.89501 0.424451
\(134\) −20.4713 6.13484i −1.76845 0.529970i
\(135\) 0 0
\(136\) −5.12457 6.11747i −0.439428 0.524569i
\(137\) 17.8350i 1.52375i 0.647723 + 0.761876i \(0.275721\pi\)
−0.647723 + 0.761876i \(0.724279\pi\)
\(138\) 0 0
\(139\) 10.7470i 0.911553i −0.890094 0.455776i \(-0.849362\pi\)
0.890094 0.455776i \(-0.150638\pi\)
\(140\) −1.75942 1.15858i −0.148698 0.0979176i
\(141\) 0 0
\(142\) 3.87120 12.9178i 0.324864 1.08404i
\(143\) 2.94047 0.245894
\(144\) 0 0
\(145\) −0.0387991 −0.00322209
\(146\) −2.34583 + 7.82776i −0.194142 + 0.647830i
\(147\) 0 0
\(148\) 5.97414 + 3.93396i 0.491071 + 0.323370i
\(149\) 19.7279i 1.61617i 0.589065 + 0.808086i \(0.299496\pi\)
−0.589065 + 0.808086i \(0.700504\pi\)
\(150\) 0 0
\(151\) 13.3532i 1.08667i −0.839516 0.543335i \(-0.817161\pi\)
0.839516 0.543335i \(-0.182839\pi\)
\(152\) −8.44076 10.0762i −0.684636 0.817286i
\(153\) 0 0
\(154\) −4.19579 1.25739i −0.338106 0.101324i
\(155\) −0.836825 −0.0672154
\(156\) 0 0
\(157\) 2.73873 0.218574 0.109287 0.994010i \(-0.465143\pi\)
0.109287 + 0.994010i \(0.465143\pi\)
\(158\) −8.07746 2.42065i −0.642608 0.192577i
\(159\) 0 0
\(160\) 0.648991 + 5.61950i 0.0513073 + 0.444261i
\(161\) 6.89286i 0.543234i
\(162\) 0 0
\(163\) 22.1496i 1.73489i 0.497535 + 0.867444i \(0.334239\pi\)
−0.497535 + 0.867444i \(0.665761\pi\)
\(164\) 11.2832 17.1347i 0.881068 1.33799i
\(165\) 0 0
\(166\) 6.42596 21.4427i 0.498751 1.66428i
\(167\) −21.8513 −1.69090 −0.845451 0.534053i \(-0.820668\pi\)
−0.845451 + 0.534053i \(0.820668\pi\)
\(168\) 0 0
\(169\) 1.00000 0.0769231
\(170\) −1.14544 + 3.82219i −0.0878509 + 0.293149i
\(171\) 0 0
\(172\) 5.55586 8.43715i 0.423630 0.643327i
\(173\) 4.32498i 0.328822i −0.986392 0.164411i \(-0.947428\pi\)
0.986392 0.164411i \(-0.0525724\pi\)
\(174\) 0 0
\(175\) 1.05331i 0.0796229i
\(176\) 4.64675 + 10.8051i 0.350262 + 0.814463i
\(177\) 0 0
\(178\) −4.01335 1.20272i −0.300813 0.0901478i
\(179\) −18.5968 −1.38999 −0.694996 0.719013i \(-0.744594\pi\)
−0.694996 + 0.719013i \(0.744594\pi\)
\(180\) 0 0
\(181\) 3.24660 0.241318 0.120659 0.992694i \(-0.461499\pi\)
0.120659 + 0.992694i \(0.461499\pi\)
\(182\) −1.42691 0.427617i −0.105770 0.0316971i
\(183\) 0 0
\(184\) 14.1887 11.8858i 1.04600 0.876231i
\(185\) 3.57653i 0.262952i
\(186\) 0 0
\(187\) 8.29639i 0.606692i
\(188\) −1.67278 1.10153i −0.122000 0.0803371i
\(189\) 0 0
\(190\) −1.88666 + 6.29559i −0.136873 + 0.456730i
\(191\) 4.83744 0.350025 0.175012 0.984566i \(-0.444003\pi\)
0.175012 + 0.984566i \(0.444003\pi\)
\(192\) 0 0
\(193\) −8.94915 −0.644174 −0.322087 0.946710i \(-0.604384\pi\)
−0.322087 + 0.946710i \(0.604384\pi\)
\(194\) 2.71740 9.06766i 0.195098 0.651020i
\(195\) 0 0
\(196\) −9.83937 6.47922i −0.702812 0.462801i
\(197\) 25.3567i 1.80659i −0.429017 0.903296i \(-0.641140\pi\)
0.429017 0.903296i \(-0.358860\pi\)
\(198\) 0 0
\(199\) 0.0844252i 0.00598474i −0.999996 0.00299237i \(-0.999047\pi\)
0.999996 0.00299237i \(-0.000952503\pi\)
\(200\) 2.16820 1.81629i 0.153315 0.128431i
\(201\) 0 0
\(202\) 24.2539 + 7.26840i 1.70650 + 0.511403i
\(203\) 0.0408675 0.00286834
\(204\) 0 0
\(205\) −10.2580 −0.716451
\(206\) 5.37701 + 1.61138i 0.374634 + 0.112270i
\(207\) 0 0
\(208\) 1.58028 + 3.67461i 0.109572 + 0.254788i
\(209\) 13.6651i 0.945235i
\(210\) 0 0
\(211\) 7.27338i 0.500720i −0.968153 0.250360i \(-0.919451\pi\)
0.968153 0.250360i \(-0.0805490\pi\)
\(212\) 15.1685 23.0349i 1.04178 1.58205i
\(213\) 0 0
\(214\) 4.09939 13.6792i 0.280229 0.935093i
\(215\) −5.05107 −0.344480
\(216\) 0 0
\(217\) 0.881438 0.0598359
\(218\) 0.408543 1.36326i 0.0276700 0.0923319i
\(219\) 0 0
\(220\) 3.23433 4.91167i 0.218059 0.331145i
\(221\) 2.82145i 0.189791i
\(222\) 0 0
\(223\) 11.9534i 0.800461i −0.916414 0.400231i \(-0.868930\pi\)
0.916414 0.400231i \(-0.131070\pi\)
\(224\) −0.683590 5.91909i −0.0456743 0.395486i
\(225\) 0 0
\(226\) 1.27147 + 0.381033i 0.0845767 + 0.0253460i
\(227\) −10.6394 −0.706164 −0.353082 0.935592i \(-0.614866\pi\)
−0.353082 + 0.935592i \(0.614866\pi\)
\(228\) 0 0
\(229\) 14.9630 0.988783 0.494392 0.869239i \(-0.335391\pi\)
0.494392 + 0.869239i \(0.335391\pi\)
\(230\) −8.86508 2.65669i −0.584546 0.175177i
\(231\) 0 0
\(232\) −0.0704703 0.0841242i −0.00462660 0.00552302i
\(233\) 2.57732i 0.168846i 0.996430 + 0.0844229i \(0.0269047\pi\)
−0.996430 + 0.0844229i \(0.973095\pi\)
\(234\) 0 0
\(235\) 1.00144i 0.0653271i
\(236\) −8.88563 5.85118i −0.578405 0.380879i
\(237\) 0 0
\(238\) 1.20650 4.02596i 0.0782058 0.260964i
\(239\) −2.36787 −0.153165 −0.0765825 0.997063i \(-0.524401\pi\)
−0.0765825 + 0.997063i \(0.524401\pi\)
\(240\) 0 0
\(241\) −12.0291 −0.774861 −0.387430 0.921899i \(-0.626637\pi\)
−0.387430 + 0.921899i \(0.626637\pi\)
\(242\) −0.955516 + 3.18845i −0.0614229 + 0.204961i
\(243\) 0 0
\(244\) 4.98974 + 3.28574i 0.319435 + 0.210348i
\(245\) 5.89053i 0.376332i
\(246\) 0 0
\(247\) 4.64725i 0.295698i
\(248\) −1.51992 1.81440i −0.0965148 0.115215i
\(249\) 0 0
\(250\) −1.35469 0.405974i −0.0856781 0.0256760i
\(251\) −2.25731 −0.142480 −0.0712401 0.997459i \(-0.522696\pi\)
−0.0712401 + 0.997459i \(0.522696\pi\)
\(252\) 0 0
\(253\) −19.2424 −1.20976
\(254\) 7.52562 + 2.25528i 0.472199 + 0.141509i
\(255\) 0 0
\(256\) −11.0055 + 11.6138i −0.687841 + 0.725862i
\(257\) 1.83970i 0.114757i −0.998352 0.0573785i \(-0.981726\pi\)
0.998352 0.0573785i \(-0.0182742\pi\)
\(258\) 0 0
\(259\) 3.76720i 0.234083i
\(260\) 1.09994 1.67037i 0.0682152 0.103592i
\(261\) 0 0
\(262\) 8.61318 28.7413i 0.532124 1.77564i
\(263\) −7.46623 −0.460388 −0.230194 0.973145i \(-0.573936\pi\)
−0.230194 + 0.973145i \(0.573936\pi\)
\(264\) 0 0
\(265\) −13.7903 −0.847132
\(266\) 1.98724 6.63122i 0.121846 0.406586i
\(267\) 0 0
\(268\) −16.6216 + 25.2417i −1.01533 + 1.54188i
\(269\) 5.35185i 0.326308i −0.986601 0.163154i \(-0.947833\pi\)
0.986601 0.163154i \(-0.0521668\pi\)
\(270\) 0 0
\(271\) 20.8262i 1.26510i 0.774519 + 0.632550i \(0.217992\pi\)
−0.774519 + 0.632550i \(0.782008\pi\)
\(272\) −10.3677 + 4.45867i −0.628636 + 0.270347i
\(273\) 0 0
\(274\) 24.1610 + 7.24056i 1.45962 + 0.437418i
\(275\) −2.94047 −0.177317
\(276\) 0 0
\(277\) −21.6153 −1.29873 −0.649367 0.760475i \(-0.724966\pi\)
−0.649367 + 0.760475i \(0.724966\pi\)
\(278\) −14.5589 4.36302i −0.873186 0.261677i
\(279\) 0 0
\(280\) −2.28379 + 1.91312i −0.136483 + 0.114331i
\(281\) 12.2235i 0.729196i 0.931165 + 0.364598i \(0.118794\pi\)
−0.931165 + 0.364598i \(0.881206\pi\)
\(282\) 0 0
\(283\) 3.84030i 0.228282i 0.993465 + 0.114141i \(0.0364116\pi\)
−0.993465 + 0.114141i \(0.963588\pi\)
\(284\) −15.9280 10.4886i −0.945152 0.622382i
\(285\) 0 0
\(286\) 1.19375 3.98343i 0.0705881 0.235545i
\(287\) 10.8049 0.637793
\(288\) 0 0
\(289\) 9.03941 0.531730
\(290\) −0.0157514 + 0.0525607i −0.000924954 + 0.00308647i
\(291\) 0 0
\(292\) 9.65185 + 6.35573i 0.564832 + 0.371941i
\(293\) 13.3925i 0.782399i −0.920306 0.391199i \(-0.872060\pi\)
0.920306 0.391199i \(-0.127940\pi\)
\(294\) 0 0
\(295\) 5.31956i 0.309717i
\(296\) 7.75464 6.49602i 0.450729 0.377573i
\(297\) 0 0
\(298\) 26.7252 + 8.00900i 1.54815 + 0.463949i
\(299\) −6.54399 −0.378449
\(300\) 0 0
\(301\) 5.32035 0.306660
\(302\) −18.0895 5.42106i −1.04093 0.311947i
\(303\) 0 0
\(304\) −17.0768 + 7.34394i −0.979423 + 0.421204i
\(305\) 2.98720i 0.171047i
\(306\) 0 0
\(307\) 8.99995i 0.513654i −0.966457 0.256827i \(-0.917323\pi\)
0.966457 0.256827i \(-0.0826771\pi\)
\(308\) −3.40676 + 5.17353i −0.194118 + 0.294789i
\(309\) 0 0
\(310\) −0.339729 + 1.13364i −0.0192953 + 0.0643864i
\(311\) 0.931498 0.0528204 0.0264102 0.999651i \(-0.491592\pi\)
0.0264102 + 0.999651i \(0.491592\pi\)
\(312\) 0 0
\(313\) 8.95381 0.506099 0.253050 0.967453i \(-0.418566\pi\)
0.253050 + 0.967453i \(0.418566\pi\)
\(314\) 1.11185 3.71013i 0.0627454 0.209375i
\(315\) 0 0
\(316\) −6.55847 + 9.95973i −0.368943 + 0.560279i
\(317\) 3.58090i 0.201124i −0.994931 0.100562i \(-0.967936\pi\)
0.994931 0.100562i \(-0.0320640\pi\)
\(318\) 0 0
\(319\) 0.114087i 0.00638767i
\(320\) 7.87616 + 1.40219i 0.440291 + 0.0783847i
\(321\) 0 0
\(322\) 9.33769 + 2.79832i 0.520369 + 0.155944i
\(323\) −13.1120 −0.729571
\(324\) 0 0
\(325\) −1.00000 −0.0554700
\(326\) 30.0058 + 8.99214i 1.66187 + 0.498029i
\(327\) 0 0
\(328\) −18.6315 22.2414i −1.02875 1.22808i
\(329\) 1.05483i 0.0581549i
\(330\) 0 0
\(331\) 1.76396i 0.0969559i 0.998824 + 0.0484780i \(0.0154371\pi\)
−0.998824 + 0.0484780i \(0.984563\pi\)
\(332\) −26.4395 17.4104i −1.45105 0.955518i
\(333\) 0 0
\(334\) −8.87104 + 29.6017i −0.485402 + 1.61973i
\(335\) 15.1114 0.825625
\(336\) 0 0
\(337\) −10.5875 −0.576740 −0.288370 0.957519i \(-0.593113\pi\)
−0.288370 + 0.957519i \(0.593113\pi\)
\(338\) 0.405974 1.35469i 0.0220821 0.0736854i
\(339\) 0 0
\(340\) 4.71287 + 3.10342i 0.255591 + 0.168307i
\(341\) 2.46066i 0.133252i
\(342\) 0 0
\(343\) 13.5778i 0.733130i
\(344\) −9.17420 10.9517i −0.494639 0.590477i
\(345\) 0 0
\(346\) −5.85901 1.75583i −0.314982 0.0943939i
\(347\) −4.16045 −0.223345 −0.111672 0.993745i \(-0.535621\pi\)
−0.111672 + 0.993745i \(0.535621\pi\)
\(348\) 0 0
\(349\) 5.85211 0.313256 0.156628 0.987658i \(-0.449938\pi\)
0.156628 + 0.987658i \(0.449938\pi\)
\(350\) 1.42691 + 0.427617i 0.0762716 + 0.0228571i
\(351\) 0 0
\(352\) 16.5240 1.90834i 0.880731 0.101715i
\(353\) 10.2397i 0.545004i 0.962155 + 0.272502i \(0.0878512\pi\)
−0.962155 + 0.272502i \(0.912149\pi\)
\(354\) 0 0
\(355\) 9.53560i 0.506097i
\(356\) −3.25863 + 4.94857i −0.172707 + 0.262274i
\(357\) 0 0
\(358\) −7.54982 + 25.1929i −0.399021 + 1.33149i
\(359\) 3.35259 0.176943 0.0884715 0.996079i \(-0.471802\pi\)
0.0884715 + 0.996079i \(0.471802\pi\)
\(360\) 0 0
\(361\) −2.59697 −0.136683
\(362\) 1.31803 4.39813i 0.0692743 0.231161i
\(363\) 0 0
\(364\) −1.15858 + 1.75942i −0.0607259 + 0.0922187i
\(365\) 5.77827i 0.302448i
\(366\) 0 0
\(367\) 29.0091i 1.51426i 0.653262 + 0.757132i \(0.273400\pi\)
−0.653262 + 0.757132i \(0.726600\pi\)
\(368\) −10.3413 24.0466i −0.539078 1.25351i
\(369\) 0 0
\(370\) −4.84509 1.45198i −0.251884 0.0754848i
\(371\) 14.5255 0.754126
\(372\) 0 0
\(373\) −2.98117 −0.154359 −0.0771795 0.997017i \(-0.524591\pi\)
−0.0771795 + 0.997017i \(0.524591\pi\)
\(374\) 11.2390 + 3.36812i 0.581157 + 0.174161i
\(375\) 0 0
\(376\) −2.17133 + 1.81891i −0.111978 + 0.0938033i
\(377\) 0.0387991i 0.00199825i
\(378\) 0 0
\(379\) 27.7780i 1.42686i −0.700728 0.713429i \(-0.747141\pi\)
0.700728 0.713429i \(-0.252859\pi\)
\(380\) 7.76264 + 5.11169i 0.398215 + 0.262224i
\(381\) 0 0
\(382\) 1.96387 6.55323i 0.100481 0.335293i
\(383\) 23.2824 1.18968 0.594838 0.803846i \(-0.297216\pi\)
0.594838 + 0.803846i \(0.297216\pi\)
\(384\) 0 0
\(385\) 3.09723 0.157850
\(386\) −3.63312 + 12.1233i −0.184921 + 0.617061i
\(387\) 0 0
\(388\) −11.1807 7.36246i −0.567613 0.373772i
\(389\) 20.6880i 1.04892i −0.851434 0.524462i \(-0.824266\pi\)
0.851434 0.524462i \(-0.175734\pi\)
\(390\) 0 0
\(391\) 18.4636i 0.933742i
\(392\) −12.7719 + 10.6989i −0.645076 + 0.540377i
\(393\) 0 0
\(394\) −34.3505 10.2942i −1.73055 0.518613i
\(395\) 5.96259 0.300010
\(396\) 0 0
\(397\) −30.6375 −1.53765 −0.768826 0.639458i \(-0.779159\pi\)
−0.768826 + 0.639458i \(0.779159\pi\)
\(398\) −0.114370 0.0342744i −0.00573285 0.00171802i
\(399\) 0 0
\(400\) −1.58028 3.67461i −0.0790138 0.183730i
\(401\) 9.17964i 0.458409i 0.973378 + 0.229205i \(0.0736125\pi\)
−0.973378 + 0.229205i \(0.926388\pi\)
\(402\) 0 0
\(403\) 0.836825i 0.0416852i
\(404\) 19.6929 29.9057i 0.979757 1.48786i
\(405\) 0 0
\(406\) 0.0165911 0.0553628i 0.000823405 0.00274761i
\(407\) −10.5167 −0.521293
\(408\) 0 0
\(409\) 6.98980 0.345623 0.172812 0.984955i \(-0.444715\pi\)
0.172812 + 0.984955i \(0.444715\pi\)
\(410\) −4.16448 + 13.8964i −0.205669 + 0.686296i
\(411\) 0 0
\(412\) 4.36585 6.63000i 0.215090 0.326637i
\(413\) 5.60315i 0.275713i
\(414\) 0 0
\(415\) 15.8285i 0.776991i
\(416\) 5.61950 0.648991i 0.275519 0.0318194i
\(417\) 0 0
\(418\) 18.5120 + 5.54768i 0.905451 + 0.271346i
\(419\) −11.2283 −0.548538 −0.274269 0.961653i \(-0.588436\pi\)
−0.274269 + 0.961653i \(0.588436\pi\)
\(420\) 0 0
\(421\) −9.79629 −0.477442 −0.238721 0.971088i \(-0.576728\pi\)
−0.238721 + 0.971088i \(0.576728\pi\)
\(422\) −9.85318 2.95280i −0.479645 0.143740i
\(423\) 0 0
\(424\) −25.0472 29.9002i −1.21640 1.45208i
\(425\) 2.82145i 0.136861i
\(426\) 0 0
\(427\) 3.14646i 0.152268i
\(428\) −16.8669 11.1068i −0.815291 0.536868i
\(429\) 0 0
\(430\) −2.05060 + 6.84263i −0.0988887 + 0.329981i
\(431\) −24.2060 −1.16596 −0.582982 0.812485i \(-0.698114\pi\)
−0.582982 + 0.812485i \(0.698114\pi\)
\(432\) 0 0
\(433\) 0.782969 0.0376271 0.0188136 0.999823i \(-0.494011\pi\)
0.0188136 + 0.999823i \(0.494011\pi\)
\(434\) 0.357841 1.19408i 0.0171769 0.0573174i
\(435\) 0 0
\(436\) −1.68094 1.10690i −0.0805026 0.0530109i
\(437\) 30.4116i 1.45478i
\(438\) 0 0
\(439\) 24.4364i 1.16628i −0.812370 0.583142i \(-0.801823\pi\)
0.812370 0.583142i \(-0.198177\pi\)
\(440\) −5.34074 6.37553i −0.254610 0.303941i
\(441\) 0 0
\(442\) 3.82219 + 1.14544i 0.181803 + 0.0544828i
\(443\) −15.4804 −0.735495 −0.367748 0.929926i \(-0.619871\pi\)
−0.367748 + 0.929926i \(0.619871\pi\)
\(444\) 0 0
\(445\) 2.96256 0.140439
\(446\) −16.1932 4.85278i −0.766770 0.229786i
\(447\) 0 0
\(448\) −8.29605 1.47694i −0.391952 0.0697790i
\(449\) 26.3821i 1.24505i 0.782601 + 0.622523i \(0.213892\pi\)
−0.782601 + 0.622523i \(0.786108\pi\)
\(450\) 0 0
\(451\) 30.1634i 1.42034i
\(452\) 1.03236 1.56775i 0.0485583 0.0737409i
\(453\) 0 0
\(454\) −4.31933 + 14.4131i −0.202716 + 0.676442i
\(455\) 1.05331 0.0493800
\(456\) 0 0
\(457\) 10.8114 0.505737 0.252868 0.967501i \(-0.418626\pi\)
0.252868 + 0.967501i \(0.418626\pi\)
\(458\) 6.07459 20.2702i 0.283847 0.947166i
\(459\) 0 0
\(460\) −7.19798 + 10.9309i −0.335607 + 0.509655i
\(461\) 31.4194i 1.46335i 0.681656 + 0.731673i \(0.261260\pi\)
−0.681656 + 0.731673i \(0.738740\pi\)
\(462\) 0 0
\(463\) 14.1971i 0.659795i 0.944017 + 0.329897i \(0.107014\pi\)
−0.944017 + 0.329897i \(0.892986\pi\)
\(464\) −0.142571 + 0.0613132i −0.00661871 + 0.00284640i
\(465\) 0 0
\(466\) 3.49147 + 1.04632i 0.161739 + 0.0484700i
\(467\) −41.0005 −1.89727 −0.948637 0.316366i \(-0.897537\pi\)
−0.948637 + 0.316366i \(0.897537\pi\)
\(468\) 0 0
\(469\) −15.9170 −0.734981
\(470\) 1.35665 + 0.406560i 0.0625775 + 0.0187532i
\(471\) 0 0
\(472\) −11.5339 + 9.66185i −0.530889 + 0.444723i
\(473\) 14.8525i 0.682919i
\(474\) 0 0
\(475\) 4.64725i 0.213231i
\(476\) −4.96412 3.26887i −0.227530 0.149828i
\(477\) 0 0
\(478\) −0.961294 + 3.20773i −0.0439686 + 0.146718i
\(479\) 35.5508 1.62436 0.812179 0.583408i \(-0.198281\pi\)
0.812179 + 0.583408i \(0.198281\pi\)
\(480\) 0 0
\(481\) −3.57653 −0.163076
\(482\) −4.88349 + 16.2957i −0.222437 + 0.742247i
\(483\) 0 0
\(484\) 3.93145 + 2.58885i 0.178702 + 0.117675i
\(485\) 6.69353i 0.303938i
\(486\) 0 0
\(487\) 18.8833i 0.855684i −0.903853 0.427842i \(-0.859274\pi\)
0.903853 0.427842i \(-0.140726\pi\)
\(488\) 6.47686 5.42563i 0.293194 0.245607i
\(489\) 0 0
\(490\) 7.97985 + 2.39140i 0.360493 + 0.108033i
\(491\) 30.8985 1.39443 0.697214 0.716863i \(-0.254423\pi\)
0.697214 + 0.716863i \(0.254423\pi\)
\(492\) 0 0
\(493\) −0.109470 −0.00493027
\(494\) 6.29559 + 1.88666i 0.283252 + 0.0848850i
\(495\) 0 0
\(496\) −3.07500 + 1.32241i −0.138072 + 0.0593782i
\(497\) 10.0440i 0.450533i
\(498\) 0 0
\(499\) 14.8595i 0.665201i 0.943068 + 0.332601i \(0.107926\pi\)
−0.943068 + 0.332601i \(0.892074\pi\)
\(500\) −1.09994 + 1.67037i −0.0491907 + 0.0747012i
\(501\) 0 0
\(502\) −0.916409 + 3.05796i −0.0409013 + 0.136483i
\(503\) −22.2041 −0.990032 −0.495016 0.868884i \(-0.664838\pi\)
−0.495016 + 0.868884i \(0.664838\pi\)
\(504\) 0 0
\(505\) −17.9036 −0.796701
\(506\) −7.81191 + 26.0675i −0.347282 + 1.15884i
\(507\) 0 0
\(508\) 6.11041 9.27930i 0.271106 0.411702i
\(509\) 14.2922i 0.633490i 0.948511 + 0.316745i \(0.102590\pi\)
−0.948511 + 0.316745i \(0.897410\pi\)
\(510\) 0 0
\(511\) 6.08632i 0.269243i
\(512\) 11.2652 + 19.6239i 0.497854 + 0.867261i
\(513\) 0 0
\(514\) −2.49222 0.746868i −0.109927 0.0329429i
\(515\) −3.96918 −0.174903
\(516\) 0 0
\(517\) 2.94472 0.129509
\(518\) 5.10340 + 1.52939i 0.224230 + 0.0671974i
\(519\) 0 0
\(520\) −1.81629 2.16820i −0.0796495 0.0950819i
\(521\) 24.6719i 1.08090i 0.841377 + 0.540449i \(0.181745\pi\)
−0.841377 + 0.540449i \(0.818255\pi\)
\(522\) 0 0
\(523\) 23.2536i 1.01681i −0.861119 0.508403i \(-0.830236\pi\)
0.861119 0.508403i \(-0.169764\pi\)
\(524\) −35.4388 23.3364i −1.54815 1.01945i
\(525\) 0 0
\(526\) −3.03109 + 10.1144i −0.132162 + 0.441010i
\(527\) −2.36106 −0.102849
\(528\) 0 0
\(529\) 19.8238 0.861905
\(530\) −5.59850 + 18.6816i −0.243183 + 0.811477i
\(531\) 0 0
\(532\) −8.17648 5.38420i −0.354495 0.233435i
\(533\) 10.2580i 0.444324i
\(534\) 0 0
\(535\) 10.0977i 0.436561i
\(536\) 27.4467 + 32.7646i 1.18552 + 1.41522i
\(537\) 0 0
\(538\) −7.25010 2.17271i −0.312574 0.0936723i
\(539\) 17.3209 0.746065
\(540\) 0 0
\(541\) −41.4505 −1.78210 −0.891049 0.453908i \(-0.850030\pi\)
−0.891049 + 0.453908i \(0.850030\pi\)
\(542\) 28.2130 + 8.45488i 1.21185 + 0.363168i
\(543\) 0 0
\(544\) 1.83110 + 15.8552i 0.0785077 + 0.679784i
\(545\) 1.00633i 0.0431064i
\(546\) 0 0
\(547\) 25.6656i 1.09738i 0.836025 + 0.548691i \(0.184874\pi\)
−0.836025 + 0.548691i \(0.815126\pi\)
\(548\) 19.6174 29.7911i 0.838015 1.27261i
\(549\) 0 0
\(550\) −1.19375 + 3.98343i −0.0509018 + 0.169854i
\(551\) −0.180309 −0.00768143
\(552\) 0 0
\(553\) −6.28047 −0.267073
\(554\) −8.77523 + 29.2820i −0.372824 + 1.24407i
\(555\) 0 0
\(556\) −11.8211 + 17.9516i −0.501325 + 0.761316i
\(557\) 44.5000i 1.88553i −0.333463 0.942763i \(-0.608217\pi\)
0.333463 0.942763i \(-0.391783\pi\)
\(558\) 0 0
\(559\) 5.05107i 0.213637i
\(560\) 1.66452 + 3.87051i 0.0703390 + 0.163559i
\(561\) 0 0
\(562\) 16.5591 + 4.96244i 0.698504 + 0.209328i
\(563\) −27.5301 −1.16026 −0.580129 0.814525i \(-0.696998\pi\)
−0.580129 + 0.814525i \(0.696998\pi\)
\(564\) 0 0
\(565\) −0.938566 −0.0394858
\(566\) 5.20241 + 1.55906i 0.218674 + 0.0655322i
\(567\) 0 0
\(568\) −20.6751 + 17.3194i −0.867508 + 0.726706i
\(569\) 16.1417i 0.676694i 0.941021 + 0.338347i \(0.109868\pi\)
−0.941021 + 0.338347i \(0.890132\pi\)
\(570\) 0 0
\(571\) 39.9657i 1.67251i −0.548337 0.836257i \(-0.684739\pi\)
0.548337 0.836257i \(-0.315261\pi\)
\(572\) −4.91167 3.23433i −0.205367 0.135234i
\(573\) 0 0
\(574\) 4.38650 14.6373i 0.183089 0.610948i
\(575\) 6.54399 0.272903
\(576\) 0 0
\(577\) −6.58765 −0.274247 −0.137124 0.990554i \(-0.543786\pi\)
−0.137124 + 0.990554i \(0.543786\pi\)
\(578\) 3.66976 12.2456i 0.152642 0.509350i
\(579\) 0 0
\(580\) 0.0648088 + 0.0426765i 0.00269104 + 0.00177205i
\(581\) 16.6724i 0.691686i
\(582\) 0 0
\(583\) 40.5500i 1.67941i
\(584\) 12.5284 10.4950i 0.518431 0.434286i
\(585\) 0 0
\(586\) −18.1427 5.43701i −0.749468 0.224601i
\(587\) 42.2691 1.74463 0.872316 0.488943i \(-0.162618\pi\)
0.872316 + 0.488943i \(0.162618\pi\)
\(588\) 0 0
\(589\) −3.88894 −0.160241
\(590\) 7.20635 + 2.15960i 0.296681 + 0.0889093i
\(591\) 0 0
\(592\) −5.65191 13.1423i −0.232292 0.540147i
\(593\) 28.8146i 1.18327i −0.806205 0.591636i \(-0.798482\pi\)
0.806205 0.591636i \(-0.201518\pi\)
\(594\) 0 0
\(595\) 2.97187i 0.121835i
\(596\) 21.6994 32.9529i 0.888843 1.34980i
\(597\) 0 0
\(598\) −2.65669 + 8.86508i −0.108640 + 0.362520i
\(599\) 22.4024 0.915338 0.457669 0.889123i \(-0.348684\pi\)
0.457669 + 0.889123i \(0.348684\pi\)
\(600\) 0 0
\(601\) 34.1054 1.39119 0.695594 0.718435i \(-0.255141\pi\)
0.695594 + 0.718435i \(0.255141\pi\)
\(602\) 2.15992 7.20742i 0.0880318 0.293753i
\(603\) 0 0
\(604\) −14.6877 + 22.3048i −0.597635 + 0.907571i
\(605\) 2.35364i 0.0956890i
\(606\) 0 0
\(607\) 32.7256i 1.32829i −0.747603 0.664146i \(-0.768795\pi\)
0.747603 0.664146i \(-0.231205\pi\)
\(608\) 3.01603 + 26.1153i 0.122316 + 1.05911i
\(609\) 0 0
\(610\) −4.04674 1.21273i −0.163848 0.0491019i
\(611\) 1.00144 0.0405141
\(612\) 0 0
\(613\) 25.9015 1.04615 0.523076 0.852286i \(-0.324785\pi\)
0.523076 + 0.852286i \(0.324785\pi\)
\(614\) −12.1921 3.65374i −0.492035 0.147453i
\(615\) 0 0
\(616\) 5.62547 + 6.71542i 0.226657 + 0.270572i
\(617\) 22.9070i 0.922201i −0.887348 0.461100i \(-0.847455\pi\)
0.887348 0.461100i \(-0.152545\pi\)
\(618\) 0 0
\(619\) 34.2080i 1.37494i 0.726214 + 0.687468i \(0.241278\pi\)
−0.726214 + 0.687468i \(0.758722\pi\)
\(620\) 1.39781 + 0.920455i 0.0561373 + 0.0369664i
\(621\) 0 0
\(622\) 0.378164 1.26189i 0.0151630 0.0505972i
\(623\) −3.12050 −0.125020
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 3.63501 12.1296i 0.145284 0.484798i
\(627\) 0 0
\(628\) −4.57469 3.01243i −0.182550 0.120209i
\(629\) 10.0910i 0.402355i
\(630\) 0 0
\(631\) 41.3100i 1.64453i 0.569108 + 0.822263i \(0.307289\pi\)
−0.569108 + 0.822263i \(0.692711\pi\)
\(632\) 10.8298 + 12.9281i 0.430786 + 0.514252i
\(633\) 0 0
\(634\) −4.85102 1.45375i −0.192658 0.0577359i
\(635\) −5.55523 −0.220453
\(636\) 0 0
\(637\) 5.89053 0.233391
\(638\) 0.154553 + 0.0463165i 0.00611882 + 0.00183369i
\(639\) 0 0
\(640\) 5.09704 10.1005i 0.201478 0.399257i
\(641\) 2.36666i 0.0934776i −0.998907 0.0467388i \(-0.985117\pi\)
0.998907 0.0467388i \(-0.0148828\pi\)
\(642\) 0 0
\(643\) 8.39957i 0.331247i −0.986189 0.165623i \(-0.947036\pi\)
0.986189 0.165623i \(-0.0529636\pi\)
\(644\) 7.58172 11.5136i 0.298762 0.453701i
\(645\) 0 0
\(646\) −5.32313 + 17.7627i −0.209436 + 0.698864i
\(647\) 28.4889 1.12001 0.560007 0.828488i \(-0.310798\pi\)
0.560007 + 0.828488i \(0.310798\pi\)
\(648\) 0 0
\(649\) 15.6420 0.614002
\(650\) −0.405974 + 1.35469i −0.0159236 + 0.0531353i
\(651\) 0 0
\(652\) 24.3631 36.9980i 0.954134 1.44895i
\(653\) 15.1822i 0.594124i −0.954858 0.297062i \(-0.903993\pi\)
0.954858 0.297062i \(-0.0960068\pi\)
\(654\) 0 0
\(655\) 21.2161i 0.828982i
\(656\) −37.6942 + 16.2105i −1.47171 + 0.632914i
\(657\) 0 0
\(658\) −1.42897 0.428235i −0.0557072 0.0166943i
\(659\) 19.3682 0.754480 0.377240 0.926116i \(-0.376873\pi\)
0.377240 + 0.926116i \(0.376873\pi\)
\(660\) 0 0
\(661\) −33.7323 −1.31203 −0.656017 0.754746i \(-0.727760\pi\)
−0.656017 + 0.754746i \(0.727760\pi\)
\(662\) 2.38962 + 0.716121i 0.0928751 + 0.0278328i
\(663\) 0 0
\(664\) −34.3194 + 28.7491i −1.33185 + 1.11568i
\(665\) 4.89501i 0.189820i
\(666\) 0 0
\(667\) 0.253901i 0.00983107i
\(668\) 36.4997 + 24.0350i 1.41222 + 0.929943i
\(669\) 0 0
\(670\) 6.13484 20.4713i 0.237010 0.790875i
\(671\) −8.78378 −0.339094
\(672\) 0 0
\(673\) 26.5860 1.02482 0.512408 0.858742i \(-0.328754\pi\)
0.512408 + 0.858742i \(0.328754\pi\)
\(674\) −4.29826 + 14.3428i −0.165563 + 0.552465i
\(675\) 0 0
\(676\) −1.67037 1.09994i −0.0642450 0.0423053i
\(677\) 1.21310i 0.0466232i 0.999728 + 0.0233116i \(0.00742098\pi\)
−0.999728 + 0.0233116i \(0.992579\pi\)
\(678\) 0 0
\(679\) 7.05038i 0.270569i
\(680\) 6.11747 5.12457i 0.234594 0.196518i
\(681\) 0 0
\(682\) 3.33343 + 0.998963i 0.127644 + 0.0382523i
\(683\) 9.78586 0.374446 0.187223 0.982317i \(-0.440051\pi\)
0.187223 + 0.982317i \(0.440051\pi\)
\(684\) 0 0
\(685\) −17.8350 −0.681442
\(686\) −18.3936 5.51221i −0.702273 0.210457i
\(687\) 0 0
\(688\) −18.5607 + 7.98208i −0.707619 + 0.304314i
\(689\) 13.7903i 0.525369i
\(690\) 0 0
\(691\) 13.8480i 0.526801i −0.964687 0.263401i \(-0.915156\pi\)
0.964687 0.263401i \(-0.0848441\pi\)
\(692\) −4.75721 + 7.22432i −0.180842 + 0.274627i
\(693\) 0 0
\(694\) −1.68903 + 5.63612i −0.0641149 + 0.213944i
\(695\) 10.7470 0.407659
\(696\) 0 0
\(697\) −28.9425 −1.09628
\(698\) 2.37580 7.92780i 0.0899255 0.300072i
\(699\) 0 0
\(700\) 1.15858 1.75942i 0.0437901 0.0664999i
\(701\) 15.4379i 0.583082i −0.956558 0.291541i \(-0.905832\pi\)
0.956558 0.291541i \(-0.0941680\pi\)
\(702\) 0 0
\(703\) 16.6211i 0.626875i
\(704\) 4.12309 23.1596i 0.155395 0.872860i
\(705\) 0 0
\(706\) 13.8716 + 4.15705i 0.522066 + 0.156453i
\(707\) 18.8581 0.709232
\(708\) 0 0
\(709\) −8.23882 −0.309416 −0.154708 0.987960i \(-0.549444\pi\)
−0.154708 + 0.987960i \(0.549444\pi\)
\(710\) 12.9178 + 3.87120i 0.484796 + 0.145284i
\(711\) 0 0
\(712\) 5.38086 + 6.42342i 0.201656 + 0.240728i
\(713\) 5.47618i 0.205084i
\(714\) 0 0
\(715\) 2.94047i 0.109967i
\(716\) 31.0636 + 20.4553i 1.16090 + 0.764452i
\(717\) 0 0
\(718\) 1.36106 4.54172i 0.0507945 0.169496i
\(719\) −37.1091 −1.38394 −0.691969 0.721927i \(-0.743256\pi\)
−0.691969 + 0.721927i \(0.743256\pi\)
\(720\) 0 0
\(721\) 4.18078 0.155701
\(722\) −1.05430 + 3.51809i −0.0392370 + 0.130930i
\(723\) 0 0
\(724\) −5.42302 3.57105i −0.201545 0.132717i
\(725\) 0.0387991i 0.00144096i
\(726\) 0 0
\(727\) 41.8540i 1.55228i −0.630561 0.776140i \(-0.717175\pi\)
0.630561 0.776140i \(-0.282825\pi\)
\(728\) 1.91312 + 2.28379i 0.0709049 + 0.0846430i
\(729\) 0 0
\(730\) −7.82776 2.34583i −0.289719 0.0868229i
\(731\) −14.2513 −0.527105
\(732\) 0 0
\(733\) −17.6558 −0.652131 −0.326066 0.945347i \(-0.605723\pi\)
−0.326066 + 0.945347i \(0.605723\pi\)
\(734\) 39.2984 + 11.7769i 1.45053 + 0.434695i
\(735\) 0 0
\(736\) −36.7740 + 4.24699i −1.35551 + 0.156546i
\(737\) 44.4347i 1.63677i
\(738\) 0 0
\(739\) 26.6870i 0.981697i 0.871245 + 0.490848i \(0.163313\pi\)
−0.871245 + 0.490848i \(0.836687\pi\)
\(740\) −3.93396 + 5.97414i −0.144615 + 0.219614i
\(741\) 0 0
\(742\) 5.89697 19.6776i 0.216485 0.722386i
\(743\) −22.2196 −0.815158 −0.407579 0.913170i \(-0.633627\pi\)
−0.407579 + 0.913170i \(0.633627\pi\)
\(744\) 0 0
\(745\) −19.7279 −0.722774
\(746\) −1.21028 + 4.03856i −0.0443114 + 0.147862i
\(747\) 0 0
\(748\) 9.12551 13.8581i 0.333662 0.506701i
\(749\) 10.6360i 0.388631i
\(750\) 0 0
\(751\) 26.1685i 0.954902i 0.878658 + 0.477451i \(0.158439\pi\)
−0.878658 + 0.477451i \(0.841561\pi\)
\(752\) 1.58256 + 3.67991i 0.0577100 + 0.134193i
\(753\) 0 0
\(754\) 0.0525607 + 0.0157514i 0.00191415 + 0.000573632i
\(755\) 13.3532 0.485974
\(756\) 0 0
\(757\) 26.3551 0.957892 0.478946 0.877844i \(-0.341019\pi\)
0.478946 + 0.877844i \(0.341019\pi\)
\(758\) −37.6305 11.2771i −1.36680 0.409604i
\(759\) 0 0
\(760\) 10.0762 8.44076i 0.365501 0.306178i
\(761\) 20.7186i 0.751048i 0.926813 + 0.375524i \(0.122537\pi\)
−0.926813 + 0.375524i \(0.877463\pi\)
\(762\) 0 0
\(763\) 1.05998i 0.0383738i
\(764\) −8.08032 5.32088i −0.292336 0.192503i
\(765\) 0 0
\(766\) 9.45205 31.5405i 0.341517 1.13960i
\(767\) 5.31956 0.192078
\(768\) 0 0
\(769\) 43.2023 1.55791 0.778957 0.627077i \(-0.215749\pi\)
0.778957 + 0.627077i \(0.215749\pi\)
\(770\) 1.25739 4.19579i 0.0453134 0.151206i
\(771\) 0 0
\(772\) 14.9484 + 9.84351i 0.538005 + 0.354276i
\(773\) 2.06517i 0.0742791i 0.999310 + 0.0371395i \(0.0118246\pi\)
−0.999310 + 0.0371395i \(0.988175\pi\)
\(774\) 0 0
\(775\) 0.836825i 0.0300596i
\(776\) −14.5129 + 12.1574i −0.520983 + 0.436425i
\(777\) 0 0
\(778\) −28.0259 8.39880i −1.00478 0.301112i
\(779\) −47.6716 −1.70801
\(780\) 0 0
\(781\) 28.0391 1.00332
\(782\) −25.0124 7.49572i −0.894441 0.268046i
\(783\) 0 0
\(784\) 9.30867 + 21.6454i 0.332453 + 0.773050i
\(785\) 2.73873i 0.0977494i
\(786\) 0 0
\(787\) 21.5366i 0.767697i 0.923396 + 0.383848i \(0.125401\pi\)
−0.923396 + 0.383848i \(0.874599\pi\)
\(788\) −27.8908 + 42.3552i −0.993569 + 1.50884i
\(789\) 0 0
\(790\) 2.42065 8.07746i 0.0861230 0.287383i
\(791\) 0.988603 0.0351507
\(792\) 0 0
\(793\) −2.98720 −0.106079
\(794\) −12.4380 + 41.5043i −0.441409 + 1.47293i
\(795\) 0 0
\(796\) −0.0928624 + 0.141021i −0.00329142 + 0.00499837i
\(797\) 23.8557i 0.845014i −0.906360 0.422507i \(-0.861150\pi\)
0.906360 0.422507i \(-0.138850\pi\)
\(798\) 0 0
\(799\) 2.82553i 0.0999600i
\(800\) −5.61950 + 0.648991i −0.198679 + 0.0229453i
\(801\) 0 0
\(802\) 12.4356 + 3.72669i 0.439115 + 0.131594i
\(803\) −16.9908 −0.599593
\(804\) 0 0
\(805\) −6.89286 −0.242942
\(806\) 1.13364 + 0.339729i 0.0399307 + 0.0119664i
\(807\) 0 0
\(808\) −32.5182 38.8187i −1.14399 1.36564i
\(809\) 6.23599i 0.219246i −0.993973 0.109623i \(-0.965036\pi\)
0.993973 0.109623i \(-0.0349643\pi\)
\(810\) 0 0
\(811\) 32.1270i 1.12813i 0.825730 + 0.564066i \(0.190764\pi\)
−0.825730 + 0.564066i \(0.809236\pi\)
\(812\) −0.0682639 0.0449517i −0.00239559 0.00157750i
\(813\) 0 0
\(814\) −4.26950 + 14.2468i −0.149646 + 0.499352i
\(815\) −22.1496 −0.775866
\(816\) 0 0
\(817\) −23.4736 −0.821237
\(818\) 2.83767 9.46901i 0.0992169 0.331076i
\(819\) 0 0
\(820\) 17.1347 + 11.2832i 0.598369 + 0.394025i
\(821\) 16.6273i 0.580297i 0.956982 + 0.290148i \(0.0937046\pi\)
−0.956982 + 0.290148i \(0.906295\pi\)
\(822\) 0 0
\(823\) 14.7242i 0.513254i 0.966510 + 0.256627i \(0.0826112\pi\)
−0.966510 + 0.256627i \(0.917389\pi\)
\(824\) −7.20918 8.60598i −0.251144 0.299803i
\(825\) 0 0
\(826\) −7.59054 2.27473i −0.264109 0.0791481i
\(827\) −53.5217 −1.86113 −0.930566 0.366125i \(-0.880684\pi\)
−0.930566 + 0.366125i \(0.880684\pi\)
\(828\) 0 0
\(829\) 42.9301 1.49102 0.745511 0.666493i \(-0.232205\pi\)
0.745511 + 0.666493i \(0.232205\pi\)
\(830\) 21.4427 + 6.42596i 0.744288 + 0.223048i
\(831\) 0 0
\(832\) 1.40219 7.87616i 0.0486121 0.273057i
\(833\) 16.6199i 0.575844i
\(834\) 0 0
\(835\) 21.8513i 0.756195i
\(836\) 15.0308 22.8258i 0.519850 0.789447i
\(837\) 0 0
\(838\) −4.55840 + 15.2109i −0.157467 + 0.525451i
\(839\) 16.1309 0.556900 0.278450 0.960451i \(-0.410179\pi\)
0.278450 + 0.960451i \(0.410179\pi\)
\(840\) 0 0
\(841\) 28.9985 0.999948
\(842\) −3.97704 + 13.2709i −0.137058 + 0.457347i
\(843\) 0 0
\(844\) −8.00027 + 12.1492i −0.275381 + 0.418194i
\(845\) 1.00000i 0.0344010i
\(846\) 0 0
\(847\) 2.47912i 0.0851834i
\(848\) −50.6740 + 21.7925i −1.74015 + 0.748358i
\(849\) 0 0
\(850\) −3.82219 1.14544i −0.131100 0.0392881i
\(851\) 23.4048 0.802306
\(852\) 0 0
\(853\) 39.9874 1.36914 0.684572 0.728945i \(-0.259989\pi\)
0.684572 + 0.728945i \(0.259989\pi\)
\(854\) 4.26248 + 1.27738i 0.145859 + 0.0437110i
\(855\) 0 0
\(856\) −21.8938 + 18.3403i −0.748314 + 0.626859i
\(857\) 39.7421i 1.35756i −0.734340 0.678782i \(-0.762508\pi\)
0.734340 0.678782i \(-0.237492\pi\)
\(858\) 0 0
\(859\) 31.8271i 1.08593i −0.839757 0.542963i \(-0.817302\pi\)
0.839757 0.542963i \(-0.182698\pi\)
\(860\) 8.43715 + 5.55586i 0.287705 + 0.189453i
\(861\) 0 0
\(862\) −9.82701 + 32.7917i −0.334709 + 1.11689i
\(863\) 36.4117 1.23947 0.619734 0.784812i \(-0.287241\pi\)
0.619734 + 0.784812i \(0.287241\pi\)
\(864\) 0 0
\(865\) 4.32498 0.147054
\(866\) 0.317865 1.06068i 0.0108015 0.0360434i
\(867\) 0 0
\(868\) −1.47233 0.969526i −0.0499741 0.0329079i
\(869\) 17.5328i 0.594760i
\(870\) 0 0
\(871\) 15.1114i 0.512031i
\(872\) −2.18192 + 1.82779i −0.0738893 + 0.0618966i
\(873\) 0 0
\(874\) −41.1983 12.3463i −1.39355 0.417620i
\(875\) −1.05331 −0.0356084
\(876\) 0 0
\(877\) −55.9168 −1.88817 −0.944087 0.329695i \(-0.893054\pi\)
−0.944087 + 0.329695i \(0.893054\pi\)
\(878\) −33.1037 9.92052i −1.11720 0.334801i
\(879\) 0 0
\(880\) −10.8051 + 4.64675i −0.364239 + 0.156642i
\(881\) 26.8470i 0.904498i −0.891892 0.452249i \(-0.850622\pi\)
0.891892 0.452249i \(-0.149378\pi\)
\(882\) 0 0
\(883\) 35.7176i 1.20199i −0.799252 0.600996i \(-0.794771\pi\)
0.799252 0.600996i \(-0.205229\pi\)
\(884\) 3.10342 4.71287i 0.104379 0.158511i
\(885\) 0 0
\(886\) −6.28463 + 20.9711i −0.211136 + 0.704539i
\(887\) −24.9974 −0.839329 −0.419665 0.907679i \(-0.637852\pi\)
−0.419665 + 0.907679i \(0.637852\pi\)
\(888\) 0 0
\(889\) 5.85139 0.196249
\(890\) 1.20272 4.01335i 0.0403153 0.134528i
\(891\) 0 0
\(892\) −13.1480 + 19.9667i −0.440229 + 0.668534i
\(893\) 4.65397i 0.155739i
\(894\) 0 0
\(895\) 18.5968i 0.621623i
\(896\) −5.36878 + 10.6390i −0.179358 + 0.355423i
\(897\) 0 0
\(898\) 35.7395 + 10.7104i 1.19264 + 0.357412i
\(899\) −0.0324680 −0.00108287
\(900\) 0 0
\(901\) −38.9087 −1.29624
\(902\) 40.8620 + 12.2455i 1.36056 + 0.407732i
\(903\) 0 0
\(904\) −1.70471 2.03500i −0.0566977 0.0676831i
\(905\) 3.24660i 0.107921i
\(906\) 0 0
\(907\) 2.80328i 0.0930813i 0.998916 + 0.0465407i \(0.0148197\pi\)
−0.998916 + 0.0465407i \(0.985180\pi\)
\(908\) 17.7718 + 11.7027i 0.589778 + 0.388368i
\(909\) 0 0
\(910\) 0.427617 1.42691i 0.0141754 0.0473017i
\(911\) −10.8021 −0.357889 −0.178944 0.983859i \(-0.557268\pi\)
−0.178944 + 0.983859i \(0.557268\pi\)
\(912\) 0 0
\(913\) 46.5432 1.54036
\(914\) 4.38915 14.6461i 0.145180 0.484451i
\(915\) 0 0
\(916\) −24.9938 16.4584i −0.825817 0.543800i
\(917\) 22.3472i 0.737969i
\(918\) 0 0
\(919\) 8.18284i 0.269927i −0.990851 0.134964i \(-0.956908\pi\)
0.990851 0.134964i \(-0.0430917\pi\)
\(920\) 11.8858 + 14.1887i 0.391862 + 0.467787i
\(921\) 0 0
\(922\) 42.5635 + 12.7554i 1.40175 + 0.420078i
\(923\) 9.53560 0.313868
\(924\) 0 0
\(925\) 3.57653 0.117596
\(926\) 19.2327 + 5.76365i 0.632024 + 0.189405i
\(927\) 0 0
\(928\) 0.0251803 + 0.218031i 0.000826582 + 0.00715723i
\(929\) 2.05904i 0.0675550i −0.999429 0.0337775i \(-0.989246\pi\)
0.999429 0.0337775i \(-0.0107538\pi\)
\(930\) 0 0
\(931\) 27.3748i 0.897173i
\(932\) 2.83489 4.30508i 0.0928599 0.141018i
\(933\) 0 0
\(934\) −16.6451 + 55.5429i −0.544645 + 1.81742i
\(935\) −8.29639 −0.271321
\(936\) 0 0
\(937\) −30.9393 −1.01074 −0.505372 0.862902i \(-0.668645\pi\)
−0.505372 + 0.862902i \(0.668645\pi\)
\(938\) −6.46190 + 21.5627i −0.210989 + 0.704046i
\(939\) 0 0
\(940\) 1.10153 1.67278i 0.0359278 0.0545602i
\(941\) 0.795560i 0.0259345i −0.999916 0.0129673i \(-0.995872\pi\)
0.999916 0.0129673i \(-0.00412772\pi\)
\(942\) 0 0
\(943\) 67.1283i 2.18600i
\(944\) 8.40637 + 19.5473i 0.273604 + 0.636210i
\(945\) 0 0
\(946\) 20.1205 + 6.02973i 0.654175 + 0.196043i
\(947\) −34.2536 −1.11309 −0.556547 0.830816i \(-0.687874\pi\)
−0.556547 + 0.830816i \(0.687874\pi\)
\(948\) 0 0
\(949\) −5.77827 −0.187571
\(950\) −6.29559 1.88666i −0.204256 0.0612114i
\(951\) 0 0
\(952\) −6.44361 + 5.39777i −0.208839 + 0.174943i
\(953\) 5.88066i 0.190493i 0.995454 + 0.0952467i \(0.0303640\pi\)
−0.995454 + 0.0952467i \(0.969636\pi\)
\(954\) 0 0
\(955\) 4.83744i 0.156536i
\(956\) 3.95523 + 2.60451i 0.127921 + 0.0842359i
\(957\) 0 0
\(958\) 14.4327 48.1603i 0.466299 1.55599i
\(959\) 18.7859 0.606627
\(960\) 0 0
\(961\) 30.2997 0.977410
\(962\) −1.45198 + 4.84509i −0.0468137 + 0.156212i
\(963\) 0 0
\(964\) 20.0930 + 13.2312i 0.647152 + 0.426149i
\(965\) 8.94915i 0.288083i
\(966\) 0 0
\(967\) 0.248778i 0.00800015i −0.999992 0.00400007i \(-0.998727\pi\)
0.999992 0.00400007i \(-0.00127327\pi\)
\(968\) 5.10316 4.27489i 0.164022 0.137400i
\(969\) 0 0
\(970\) 9.06766 + 2.71740i 0.291145 + 0.0872504i
\(971\) −26.8071 −0.860280 −0.430140 0.902762i \(-0.641536\pi\)
−0.430140 + 0.902762i \(0.641536\pi\)
\(972\) 0 0
\(973\) −11.3200 −0.362902
\(974\) −25.5810 7.66613i −0.819669 0.245639i
\(975\) 0 0
\(976\) −4.72061 10.9768i −0.151103 0.351359i
\(977\) 20.6746i 0.661439i 0.943729 + 0.330720i \(0.107291\pi\)
−0.943729 + 0.330720i \(0.892709\pi\)
\(978\) 0 0
\(979\) 8.71132i 0.278415i
\(980\) 6.47922 9.83937i 0.206971 0.314307i
\(981\) 0 0
\(982\) 12.5440 41.8578i 0.400294 1.33574i
\(983\) 5.06227 0.161461 0.0807306 0.996736i \(-0.474275\pi\)
0.0807306 + 0.996736i \(0.474275\pi\)
\(984\) 0 0
\(985\) 25.3567 0.807933
\(986\) −0.0444418 + 0.148298i −0.00141532 + 0.00472276i
\(987\) 0 0
\(988\) 5.11169 7.76264i 0.162624 0.246962i
\(989\) 33.0541i 1.05106i
\(990\) 0 0
\(991\) 39.5125i 1.25516i −0.778554 0.627578i \(-0.784047\pi\)
0.778554 0.627578i \(-0.215953\pi\)
\(992\) 0.543092 + 4.70254i 0.0172432 + 0.149306i
\(993\) 0 0
\(994\) −13.6065 4.07759i −0.431571 0.129333i
\(995\) 0.0844252 0.00267646
\(996\) 0 0
\(997\) 49.8485 1.57872 0.789360 0.613931i \(-0.210413\pi\)
0.789360 + 0.613931i \(0.210413\pi\)
\(998\) 20.1300 + 6.03256i 0.637204 + 0.190957i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2340.2.g.b.1691.29 yes 48
3.2 odd 2 inner 2340.2.g.b.1691.20 yes 48
4.3 odd 2 inner 2340.2.g.b.1691.19 48
12.11 even 2 inner 2340.2.g.b.1691.30 yes 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2340.2.g.b.1691.19 48 4.3 odd 2 inner
2340.2.g.b.1691.20 yes 48 3.2 odd 2 inner
2340.2.g.b.1691.29 yes 48 1.1 even 1 trivial
2340.2.g.b.1691.30 yes 48 12.11 even 2 inner