Properties

Label 2340.2.g.b.1691.26
Level $2340$
Weight $2$
Character 2340.1691
Analytic conductor $18.685$
Analytic rank $0$
Dimension $48$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2340,2,Mod(1691,2340)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2340, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2340.1691"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2340 = 2^{2} \cdot 3^{2} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2340.g (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [48,0,0,-4,0,0,0,0,0,-4,0,0,48] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.6849940730\)
Analytic rank: \(0\)
Dimension: \(48\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1691.26
Character \(\chi\) \(=\) 2340.1691
Dual form 2340.2.g.b.1691.25

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.273967 + 1.38742i) q^{2} +(-1.84988 + 0.760217i) q^{4} +1.00000i q^{5} +1.96615i q^{7} +(-1.56155 - 2.35830i) q^{8} +(-1.38742 + 0.273967i) q^{10} +4.36912 q^{11} +1.00000 q^{13} +(-2.72788 + 0.538660i) q^{14} +(2.84414 - 2.81263i) q^{16} +0.0716155i q^{17} +5.97650i q^{19} +(-0.760217 - 1.84988i) q^{20} +(1.19700 + 6.06182i) q^{22} +2.51552 q^{23} -1.00000 q^{25} +(0.273967 + 1.38742i) q^{26} +(-1.49470 - 3.63714i) q^{28} +8.97749i q^{29} -8.59947i q^{31} +(4.68150 + 3.17546i) q^{32} +(-0.0993610 + 0.0196203i) q^{34} -1.96615 q^{35} +7.61005 q^{37} +(-8.29193 + 1.63737i) q^{38} +(2.35830 - 1.56155i) q^{40} -0.210511i q^{41} +3.48595i q^{43} +(-8.08237 + 3.32148i) q^{44} +(0.689170 + 3.49009i) q^{46} -6.45364 q^{47} +3.13427 q^{49} +(-0.273967 - 1.38742i) q^{50} +(-1.84988 + 0.760217i) q^{52} +12.4170i q^{53} +4.36912i q^{55} +(4.63675 - 3.07023i) q^{56} +(-12.4556 + 2.45954i) q^{58} -4.78803 q^{59} -1.86816 q^{61} +(11.9311 - 2.35597i) q^{62} +(-3.12312 + 7.36520i) q^{64} +1.00000i q^{65} -1.41578i q^{67} +(-0.0544433 - 0.132480i) q^{68} +(-0.538660 - 2.72788i) q^{70} -5.02207 q^{71} -1.40955 q^{73} +(2.08490 + 10.5584i) q^{74} +(-4.54344 - 11.0558i) q^{76} +8.59033i q^{77} -8.61213i q^{79} +(2.81263 + 2.84414i) q^{80} +(0.292068 - 0.0576731i) q^{82} -5.88367 q^{83} -0.0716155 q^{85} +(-4.83648 + 0.955035i) q^{86} +(-6.82261 - 10.3037i) q^{88} +6.62764i q^{89} +1.96615i q^{91} +(-4.65342 + 1.91234i) q^{92} +(-1.76809 - 8.95393i) q^{94} -5.97650 q^{95} -9.32275 q^{97} +(0.858688 + 4.34856i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q - 4 q^{4} - 4 q^{10} + 48 q^{13} - 36 q^{16} - 8 q^{22} - 48 q^{25} + 8 q^{28} + 8 q^{34} + 16 q^{37} + 4 q^{40} + 32 q^{46} - 64 q^{49} - 4 q^{52} + 72 q^{58} - 32 q^{61} - 28 q^{64} - 24 q^{70} - 48 q^{73}+ \cdots - 32 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2340\mathbb{Z}\right)^\times\).

\(n\) \(937\) \(1081\) \(1171\) \(2081\)
\(\chi(n)\) \(1\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.273967 + 1.38742i 0.193724 + 0.981056i
\(3\) 0 0
\(4\) −1.84988 + 0.760217i −0.924942 + 0.380108i
\(5\) 1.00000i 0.447214i
\(6\) 0 0
\(7\) 1.96615i 0.743133i 0.928406 + 0.371567i \(0.121179\pi\)
−0.928406 + 0.371567i \(0.878821\pi\)
\(8\) −1.56155 2.35830i −0.552091 0.833784i
\(9\) 0 0
\(10\) −1.38742 + 0.273967i −0.438742 + 0.0866361i
\(11\) 4.36912 1.31734 0.658670 0.752432i \(-0.271119\pi\)
0.658670 + 0.752432i \(0.271119\pi\)
\(12\) 0 0
\(13\) 1.00000 0.277350
\(14\) −2.72788 + 0.538660i −0.729055 + 0.143963i
\(15\) 0 0
\(16\) 2.84414 2.81263i 0.711035 0.703157i
\(17\) 0.0716155i 0.0173693i 0.999962 + 0.00868465i \(0.00276445\pi\)
−0.999962 + 0.00868465i \(0.997236\pi\)
\(18\) 0 0
\(19\) 5.97650i 1.37110i 0.728024 + 0.685552i \(0.240439\pi\)
−0.728024 + 0.685552i \(0.759561\pi\)
\(20\) −0.760217 1.84988i −0.169990 0.413647i
\(21\) 0 0
\(22\) 1.19700 + 6.06182i 0.255201 + 1.29238i
\(23\) 2.51552 0.524522 0.262261 0.964997i \(-0.415532\pi\)
0.262261 + 0.964997i \(0.415532\pi\)
\(24\) 0 0
\(25\) −1.00000 −0.200000
\(26\) 0.273967 + 1.38742i 0.0537294 + 0.272096i
\(27\) 0 0
\(28\) −1.49470 3.63714i −0.282471 0.687355i
\(29\) 8.97749i 1.66708i 0.552461 + 0.833539i \(0.313689\pi\)
−0.552461 + 0.833539i \(0.686311\pi\)
\(30\) 0 0
\(31\) 8.59947i 1.54451i −0.635313 0.772255i \(-0.719129\pi\)
0.635313 0.772255i \(-0.280871\pi\)
\(32\) 4.68150 + 3.17546i 0.827581 + 0.561347i
\(33\) 0 0
\(34\) −0.0993610 + 0.0196203i −0.0170403 + 0.00336485i
\(35\) −1.96615 −0.332339
\(36\) 0 0
\(37\) 7.61005 1.25108 0.625542 0.780191i \(-0.284878\pi\)
0.625542 + 0.780191i \(0.284878\pi\)
\(38\) −8.29193 + 1.63737i −1.34513 + 0.265616i
\(39\) 0 0
\(40\) 2.35830 1.56155i 0.372879 0.246903i
\(41\) 0.210511i 0.0328763i −0.999865 0.0164381i \(-0.994767\pi\)
0.999865 0.0164381i \(-0.00523266\pi\)
\(42\) 0 0
\(43\) 3.48595i 0.531602i 0.964028 + 0.265801i \(0.0856364\pi\)
−0.964028 + 0.265801i \(0.914364\pi\)
\(44\) −8.08237 + 3.32148i −1.21846 + 0.500732i
\(45\) 0 0
\(46\) 0.689170 + 3.49009i 0.101613 + 0.514585i
\(47\) −6.45364 −0.941361 −0.470680 0.882304i \(-0.655992\pi\)
−0.470680 + 0.882304i \(0.655992\pi\)
\(48\) 0 0
\(49\) 3.13427 0.447753
\(50\) −0.273967 1.38742i −0.0387448 0.196211i
\(51\) 0 0
\(52\) −1.84988 + 0.760217i −0.256533 + 0.105423i
\(53\) 12.4170i 1.70560i 0.522236 + 0.852801i \(0.325098\pi\)
−0.522236 + 0.852801i \(0.674902\pi\)
\(54\) 0 0
\(55\) 4.36912i 0.589133i
\(56\) 4.63675 3.07023i 0.619612 0.410277i
\(57\) 0 0
\(58\) −12.4556 + 2.45954i −1.63550 + 0.322953i
\(59\) −4.78803 −0.623349 −0.311674 0.950189i \(-0.600890\pi\)
−0.311674 + 0.950189i \(0.600890\pi\)
\(60\) 0 0
\(61\) −1.86816 −0.239193 −0.119597 0.992823i \(-0.538160\pi\)
−0.119597 + 0.992823i \(0.538160\pi\)
\(62\) 11.9311 2.35597i 1.51525 0.299209i
\(63\) 0 0
\(64\) −3.12312 + 7.36520i −0.390390 + 0.920649i
\(65\) 1.00000i 0.124035i
\(66\) 0 0
\(67\) 1.41578i 0.172965i −0.996253 0.0864824i \(-0.972437\pi\)
0.996253 0.0864824i \(-0.0275626\pi\)
\(68\) −0.0544433 0.132480i −0.00660222 0.0160656i
\(69\) 0 0
\(70\) −0.538660 2.72788i −0.0643821 0.326043i
\(71\) −5.02207 −0.596010 −0.298005 0.954564i \(-0.596321\pi\)
−0.298005 + 0.954564i \(0.596321\pi\)
\(72\) 0 0
\(73\) −1.40955 −0.164975 −0.0824876 0.996592i \(-0.526286\pi\)
−0.0824876 + 0.996592i \(0.526286\pi\)
\(74\) 2.08490 + 10.5584i 0.242365 + 1.22738i
\(75\) 0 0
\(76\) −4.54344 11.0558i −0.521168 1.26819i
\(77\) 8.59033i 0.978959i
\(78\) 0 0
\(79\) 8.61213i 0.968940i −0.874808 0.484470i \(-0.839012\pi\)
0.874808 0.484470i \(-0.160988\pi\)
\(80\) 2.81263 + 2.84414i 0.314461 + 0.317985i
\(81\) 0 0
\(82\) 0.292068 0.0576731i 0.0322535 0.00636893i
\(83\) −5.88367 −0.645817 −0.322908 0.946430i \(-0.604661\pi\)
−0.322908 + 0.946430i \(0.604661\pi\)
\(84\) 0 0
\(85\) −0.0716155 −0.00776779
\(86\) −4.83648 + 0.955035i −0.521531 + 0.102984i
\(87\) 0 0
\(88\) −6.82261 10.3037i −0.727292 1.09838i
\(89\) 6.62764i 0.702528i 0.936276 + 0.351264i \(0.114248\pi\)
−0.936276 + 0.351264i \(0.885752\pi\)
\(90\) 0 0
\(91\) 1.96615i 0.206108i
\(92\) −4.65342 + 1.91234i −0.485152 + 0.199375i
\(93\) 0 0
\(94\) −1.76809 8.95393i −0.182364 0.923528i
\(95\) −5.97650 −0.613176
\(96\) 0 0
\(97\) −9.32275 −0.946582 −0.473291 0.880906i \(-0.656934\pi\)
−0.473291 + 0.880906i \(0.656934\pi\)
\(98\) 0.858688 + 4.34856i 0.0867406 + 0.439271i
\(99\) 0 0
\(100\) 1.84988 0.760217i 0.184988 0.0760217i
\(101\) 3.75790i 0.373925i −0.982367 0.186963i \(-0.940136\pi\)
0.982367 0.186963i \(-0.0598643\pi\)
\(102\) 0 0
\(103\) 14.8434i 1.46256i −0.682077 0.731281i \(-0.738923\pi\)
0.682077 0.731281i \(-0.261077\pi\)
\(104\) −1.56155 2.35830i −0.153123 0.231250i
\(105\) 0 0
\(106\) −17.2276 + 3.40184i −1.67329 + 0.330416i
\(107\) −14.1755 −1.37039 −0.685197 0.728357i \(-0.740284\pi\)
−0.685197 + 0.728357i \(0.740284\pi\)
\(108\) 0 0
\(109\) 8.37528 0.802206 0.401103 0.916033i \(-0.368627\pi\)
0.401103 + 0.916033i \(0.368627\pi\)
\(110\) −6.06182 + 1.19700i −0.577972 + 0.114129i
\(111\) 0 0
\(112\) 5.53003 + 5.59199i 0.522539 + 0.528394i
\(113\) 1.62190i 0.152575i 0.997086 + 0.0762876i \(0.0243067\pi\)
−0.997086 + 0.0762876i \(0.975693\pi\)
\(114\) 0 0
\(115\) 2.51552i 0.234573i
\(116\) −6.82484 16.6073i −0.633670 1.54195i
\(117\) 0 0
\(118\) −1.31176 6.64302i −0.120758 0.611540i
\(119\) −0.140806 −0.0129077
\(120\) 0 0
\(121\) 8.08925 0.735386
\(122\) −0.511814 2.59192i −0.0463375 0.234662i
\(123\) 0 0
\(124\) 6.53746 + 15.9080i 0.587081 + 1.42858i
\(125\) 1.00000i 0.0894427i
\(126\) 0 0
\(127\) 6.46594i 0.573759i 0.957967 + 0.286880i \(0.0926179\pi\)
−0.957967 + 0.286880i \(0.907382\pi\)
\(128\) −11.0743 2.31527i −0.978837 0.204643i
\(129\) 0 0
\(130\) −1.38742 + 0.273967i −0.121685 + 0.0240285i
\(131\) 3.74851 0.327509 0.163754 0.986501i \(-0.447640\pi\)
0.163754 + 0.986501i \(0.447640\pi\)
\(132\) 0 0
\(133\) −11.7507 −1.01891
\(134\) 1.96428 0.387877i 0.169688 0.0335074i
\(135\) 0 0
\(136\) 0.168891 0.111831i 0.0144822 0.00958944i
\(137\) 20.1321i 1.72000i 0.510293 + 0.860000i \(0.329537\pi\)
−0.510293 + 0.860000i \(0.670463\pi\)
\(138\) 0 0
\(139\) 22.0701i 1.87196i −0.352051 0.935981i \(-0.614516\pi\)
0.352051 0.935981i \(-0.385484\pi\)
\(140\) 3.63714 1.49470i 0.307395 0.126325i
\(141\) 0 0
\(142\) −1.37588 6.96774i −0.115462 0.584720i
\(143\) 4.36912 0.365365
\(144\) 0 0
\(145\) −8.97749 −0.745540
\(146\) −0.386170 1.95564i −0.0319597 0.161850i
\(147\) 0 0
\(148\) −14.0777 + 5.78529i −1.15718 + 0.475548i
\(149\) 6.70578i 0.549359i 0.961536 + 0.274680i \(0.0885718\pi\)
−0.961536 + 0.274680i \(0.911428\pi\)
\(150\) 0 0
\(151\) 14.6433i 1.19165i 0.803112 + 0.595827i \(0.203176\pi\)
−0.803112 + 0.595827i \(0.796824\pi\)
\(152\) 14.0944 9.33260i 1.14320 0.756974i
\(153\) 0 0
\(154\) −11.9184 + 2.35347i −0.960414 + 0.189648i
\(155\) 8.59947 0.690726
\(156\) 0 0
\(157\) −7.75689 −0.619067 −0.309534 0.950888i \(-0.600173\pi\)
−0.309534 + 0.950888i \(0.600173\pi\)
\(158\) 11.9487 2.35944i 0.950585 0.187707i
\(159\) 0 0
\(160\) −3.17546 + 4.68150i −0.251042 + 0.370105i
\(161\) 4.94587i 0.389789i
\(162\) 0 0
\(163\) 3.65693i 0.286433i 0.989691 + 0.143217i \(0.0457445\pi\)
−0.989691 + 0.143217i \(0.954255\pi\)
\(164\) 0.160034 + 0.389421i 0.0124966 + 0.0304086i
\(165\) 0 0
\(166\) −1.61193 8.16314i −0.125110 0.633582i
\(167\) 14.8809 1.15152 0.575760 0.817619i \(-0.304706\pi\)
0.575760 + 0.817619i \(0.304706\pi\)
\(168\) 0 0
\(169\) 1.00000 0.0769231
\(170\) −0.0196203 0.0993610i −0.00150481 0.00762064i
\(171\) 0 0
\(172\) −2.65008 6.44859i −0.202066 0.491701i
\(173\) 2.65773i 0.202064i 0.994883 + 0.101032i \(0.0322144\pi\)
−0.994883 + 0.101032i \(0.967786\pi\)
\(174\) 0 0
\(175\) 1.96615i 0.148627i
\(176\) 12.4264 12.2887i 0.936675 0.926297i
\(177\) 0 0
\(178\) −9.19534 + 1.81576i −0.689220 + 0.136097i
\(179\) −4.15872 −0.310837 −0.155419 0.987849i \(-0.549673\pi\)
−0.155419 + 0.987849i \(0.549673\pi\)
\(180\) 0 0
\(181\) −6.25207 −0.464712 −0.232356 0.972631i \(-0.574644\pi\)
−0.232356 + 0.972631i \(0.574644\pi\)
\(182\) −2.72788 + 0.538660i −0.202204 + 0.0399281i
\(183\) 0 0
\(184\) −3.92811 5.93234i −0.289584 0.437338i
\(185\) 7.61005i 0.559502i
\(186\) 0 0
\(187\) 0.312897i 0.0228813i
\(188\) 11.9385 4.90617i 0.870704 0.357819i
\(189\) 0 0
\(190\) −1.63737 8.29193i −0.118787 0.601560i
\(191\) 11.0501 0.799556 0.399778 0.916612i \(-0.369087\pi\)
0.399778 + 0.916612i \(0.369087\pi\)
\(192\) 0 0
\(193\) −16.9753 −1.22191 −0.610954 0.791666i \(-0.709214\pi\)
−0.610954 + 0.791666i \(0.709214\pi\)
\(194\) −2.55413 12.9346i −0.183376 0.928650i
\(195\) 0 0
\(196\) −5.79804 + 2.38273i −0.414146 + 0.170195i
\(197\) 6.51969i 0.464509i 0.972655 + 0.232255i \(0.0746102\pi\)
−0.972655 + 0.232255i \(0.925390\pi\)
\(198\) 0 0
\(199\) 11.3778i 0.806548i 0.915079 + 0.403274i \(0.132128\pi\)
−0.915079 + 0.403274i \(0.867872\pi\)
\(200\) 1.56155 + 2.35830i 0.110418 + 0.166757i
\(201\) 0 0
\(202\) 5.21380 1.02954i 0.366841 0.0724383i
\(203\) −17.6510 −1.23886
\(204\) 0 0
\(205\) 0.210511 0.0147027
\(206\) 20.5940 4.06660i 1.43485 0.283333i
\(207\) 0 0
\(208\) 2.84414 2.81263i 0.197206 0.195021i
\(209\) 26.1121i 1.80621i
\(210\) 0 0
\(211\) 21.5436i 1.48312i 0.670886 + 0.741560i \(0.265914\pi\)
−0.670886 + 0.741560i \(0.734086\pi\)
\(212\) −9.43959 22.9699i −0.648314 1.57758i
\(213\) 0 0
\(214\) −3.88362 19.6674i −0.265479 1.34443i
\(215\) −3.48595 −0.237740
\(216\) 0 0
\(217\) 16.9078 1.14778
\(218\) 2.29455 + 11.6201i 0.155407 + 0.787009i
\(219\) 0 0
\(220\) −3.32148 8.08237i −0.223934 0.544913i
\(221\) 0.0716155i 0.00481738i
\(222\) 0 0
\(223\) 25.1026i 1.68099i −0.541816 0.840497i \(-0.682263\pi\)
0.541816 0.840497i \(-0.317737\pi\)
\(224\) −6.24341 + 9.20452i −0.417155 + 0.615003i
\(225\) 0 0
\(226\) −2.25026 + 0.444346i −0.149685 + 0.0295575i
\(227\) −22.7277 −1.50849 −0.754246 0.656592i \(-0.771997\pi\)
−0.754246 + 0.656592i \(0.771997\pi\)
\(228\) 0 0
\(229\) 22.5945 1.49308 0.746542 0.665338i \(-0.231712\pi\)
0.746542 + 0.665338i \(0.231712\pi\)
\(230\) −3.49009 + 0.689170i −0.230129 + 0.0454425i
\(231\) 0 0
\(232\) 21.1716 14.0188i 1.38998 0.920379i
\(233\) 22.6564i 1.48427i −0.670249 0.742136i \(-0.733813\pi\)
0.670249 0.742136i \(-0.266187\pi\)
\(234\) 0 0
\(235\) 6.45364i 0.420989i
\(236\) 8.85730 3.63994i 0.576561 0.236940i
\(237\) 0 0
\(238\) −0.0385764 0.195358i −0.00250053 0.0126632i
\(239\) −13.0926 −0.846889 −0.423444 0.905922i \(-0.639179\pi\)
−0.423444 + 0.905922i \(0.639179\pi\)
\(240\) 0 0
\(241\) 4.59983 0.296301 0.148151 0.988965i \(-0.452668\pi\)
0.148151 + 0.988965i \(0.452668\pi\)
\(242\) 2.21619 + 11.2232i 0.142462 + 0.721455i
\(243\) 0 0
\(244\) 3.45587 1.42020i 0.221240 0.0909193i
\(245\) 3.13427i 0.200241i
\(246\) 0 0
\(247\) 5.97650i 0.380276i
\(248\) −20.2801 + 13.4285i −1.28779 + 0.852710i
\(249\) 0 0
\(250\) 1.38742 0.273967i 0.0877483 0.0173272i
\(251\) 28.8981 1.82403 0.912016 0.410155i \(-0.134525\pi\)
0.912016 + 0.410155i \(0.134525\pi\)
\(252\) 0 0
\(253\) 10.9906 0.690974
\(254\) −8.97099 + 1.77146i −0.562890 + 0.111151i
\(255\) 0 0
\(256\) 0.178269 15.9990i 0.0111418 0.999938i
\(257\) 12.6201i 0.787222i 0.919277 + 0.393611i \(0.128774\pi\)
−0.919277 + 0.393611i \(0.871226\pi\)
\(258\) 0 0
\(259\) 14.9625i 0.929722i
\(260\) −0.760217 1.84988i −0.0471467 0.114725i
\(261\) 0 0
\(262\) 1.02697 + 5.20077i 0.0634464 + 0.321305i
\(263\) 9.23080 0.569196 0.284598 0.958647i \(-0.408140\pi\)
0.284598 + 0.958647i \(0.408140\pi\)
\(264\) 0 0
\(265\) −12.4170 −0.762768
\(266\) −3.21930 16.3031i −0.197388 0.999610i
\(267\) 0 0
\(268\) 1.07630 + 2.61902i 0.0657454 + 0.159982i
\(269\) 30.2419i 1.84388i −0.387330 0.921941i \(-0.626603\pi\)
0.387330 0.921941i \(-0.373397\pi\)
\(270\) 0 0
\(271\) 14.1029i 0.856689i 0.903616 + 0.428344i \(0.140903\pi\)
−0.903616 + 0.428344i \(0.859097\pi\)
\(272\) 0.201428 + 0.203685i 0.0122133 + 0.0123502i
\(273\) 0 0
\(274\) −27.9317 + 5.51554i −1.68742 + 0.333206i
\(275\) −4.36912 −0.263468
\(276\) 0 0
\(277\) 13.1165 0.788097 0.394048 0.919090i \(-0.371074\pi\)
0.394048 + 0.919090i \(0.371074\pi\)
\(278\) 30.6206 6.04649i 1.83650 0.362644i
\(279\) 0 0
\(280\) 3.07023 + 4.63675i 0.183482 + 0.277099i
\(281\) 8.11697i 0.484218i −0.970249 0.242109i \(-0.922161\pi\)
0.970249 0.242109i \(-0.0778392\pi\)
\(282\) 0 0
\(283\) 1.08934i 0.0647546i 0.999476 + 0.0323773i \(0.0103078\pi\)
−0.999476 + 0.0323773i \(0.989692\pi\)
\(284\) 9.29025 3.81787i 0.551275 0.226549i
\(285\) 0 0
\(286\) 1.19700 + 6.06182i 0.0707799 + 0.358443i
\(287\) 0.413895 0.0244315
\(288\) 0 0
\(289\) 16.9949 0.999698
\(290\) −2.45954 12.4556i −0.144429 0.731416i
\(291\) 0 0
\(292\) 2.60750 1.07156i 0.152593 0.0627085i
\(293\) 22.9490i 1.34070i 0.742047 + 0.670348i \(0.233855\pi\)
−0.742047 + 0.670348i \(0.766145\pi\)
\(294\) 0 0
\(295\) 4.78803i 0.278770i
\(296\) −11.8835 17.9467i −0.690713 1.04313i
\(297\) 0 0
\(298\) −9.30376 + 1.83717i −0.538952 + 0.106424i
\(299\) 2.51552 0.145476
\(300\) 0 0
\(301\) −6.85388 −0.395051
\(302\) −20.3164 + 4.01179i −1.16908 + 0.230852i
\(303\) 0 0
\(304\) 16.8097 + 16.9980i 0.964100 + 0.974903i
\(305\) 1.86816i 0.106970i
\(306\) 0 0
\(307\) 24.5145i 1.39912i −0.714575 0.699558i \(-0.753380\pi\)
0.714575 0.699558i \(-0.246620\pi\)
\(308\) −6.53052 15.8911i −0.372111 0.905481i
\(309\) 0 0
\(310\) 2.35597 + 11.9311i 0.133810 + 0.677641i
\(311\) 29.0810 1.64903 0.824517 0.565837i \(-0.191447\pi\)
0.824517 + 0.565837i \(0.191447\pi\)
\(312\) 0 0
\(313\) 7.12171 0.402543 0.201271 0.979535i \(-0.435493\pi\)
0.201271 + 0.979535i \(0.435493\pi\)
\(314\) −2.12513 10.7621i −0.119928 0.607340i
\(315\) 0 0
\(316\) 6.54709 + 15.9314i 0.368302 + 0.896213i
\(317\) 13.3640i 0.750598i 0.926904 + 0.375299i \(0.122460\pi\)
−0.926904 + 0.375299i \(0.877540\pi\)
\(318\) 0 0
\(319\) 39.2238i 2.19611i
\(320\) −7.36520 3.12312i −0.411727 0.174588i
\(321\) 0 0
\(322\) −6.86202 + 1.35501i −0.382405 + 0.0755116i
\(323\) −0.428010 −0.0238151
\(324\) 0 0
\(325\) −1.00000 −0.0554700
\(326\) −5.07371 + 1.00188i −0.281007 + 0.0554890i
\(327\) 0 0
\(328\) −0.496447 + 0.328723i −0.0274117 + 0.0181507i
\(329\) 12.6888i 0.699556i
\(330\) 0 0
\(331\) 26.6953i 1.46731i −0.679525 0.733653i \(-0.737814\pi\)
0.679525 0.733653i \(-0.262186\pi\)
\(332\) 10.8841 4.47286i 0.597343 0.245480i
\(333\) 0 0
\(334\) 4.07688 + 20.6461i 0.223077 + 1.12971i
\(335\) 1.41578 0.0773522
\(336\) 0 0
\(337\) −25.3169 −1.37910 −0.689549 0.724239i \(-0.742191\pi\)
−0.689549 + 0.724239i \(0.742191\pi\)
\(338\) 0.273967 + 1.38742i 0.0149019 + 0.0754658i
\(339\) 0 0
\(340\) 0.132480 0.0544433i 0.00718476 0.00295260i
\(341\) 37.5721i 2.03465i
\(342\) 0 0
\(343\) 19.9255i 1.07587i
\(344\) 8.22089 5.44348i 0.443241 0.293493i
\(345\) 0 0
\(346\) −3.68740 + 0.728132i −0.198236 + 0.0391446i
\(347\) −16.5210 −0.886894 −0.443447 0.896301i \(-0.646244\pi\)
−0.443447 + 0.896301i \(0.646244\pi\)
\(348\) 0 0
\(349\) 21.7411 1.16377 0.581887 0.813270i \(-0.302315\pi\)
0.581887 + 0.813270i \(0.302315\pi\)
\(350\) 2.72788 0.538660i 0.145811 0.0287926i
\(351\) 0 0
\(352\) 20.4541 + 13.8740i 1.09021 + 0.739485i
\(353\) 29.0213i 1.54465i 0.635230 + 0.772323i \(0.280905\pi\)
−0.635230 + 0.772323i \(0.719095\pi\)
\(354\) 0 0
\(355\) 5.02207i 0.266544i
\(356\) −5.03844 12.2604i −0.267037 0.649798i
\(357\) 0 0
\(358\) −1.13935 5.76991i −0.0602167 0.304949i
\(359\) 31.0955 1.64116 0.820580 0.571532i \(-0.193651\pi\)
0.820580 + 0.571532i \(0.193651\pi\)
\(360\) 0 0
\(361\) −16.7186 −0.879924
\(362\) −1.71286 8.67426i −0.0900260 0.455909i
\(363\) 0 0
\(364\) −1.49470 3.63714i −0.0783434 0.190638i
\(365\) 1.40955i 0.0737792i
\(366\) 0 0
\(367\) 21.0100i 1.09671i −0.836245 0.548356i \(-0.815254\pi\)
0.836245 0.548356i \(-0.184746\pi\)
\(368\) 7.15449 7.07521i 0.372953 0.368821i
\(369\) 0 0
\(370\) −10.5584 + 2.08490i −0.548903 + 0.108389i
\(371\) −24.4136 −1.26749
\(372\) 0 0
\(373\) 21.0508 1.08997 0.544984 0.838446i \(-0.316536\pi\)
0.544984 + 0.838446i \(0.316536\pi\)
\(374\) −0.434120 + 0.0857235i −0.0224478 + 0.00443266i
\(375\) 0 0
\(376\) 10.0777 + 15.2196i 0.519717 + 0.784891i
\(377\) 8.97749i 0.462364i
\(378\) 0 0
\(379\) 11.5894i 0.595310i −0.954674 0.297655i \(-0.903795\pi\)
0.954674 0.297655i \(-0.0962045\pi\)
\(380\) 11.0558 4.54344i 0.567152 0.233073i
\(381\) 0 0
\(382\) 3.02736 + 15.3311i 0.154893 + 0.784409i
\(383\) 9.87863 0.504774 0.252387 0.967626i \(-0.418784\pi\)
0.252387 + 0.967626i \(0.418784\pi\)
\(384\) 0 0
\(385\) −8.59033 −0.437804
\(386\) −4.65068 23.5519i −0.236713 1.19876i
\(387\) 0 0
\(388\) 17.2460 7.08731i 0.875534 0.359804i
\(389\) 1.06843i 0.0541716i −0.999633 0.0270858i \(-0.991377\pi\)
0.999633 0.0270858i \(-0.00862274\pi\)
\(390\) 0 0
\(391\) 0.180150i 0.00911058i
\(392\) −4.89432 7.39154i −0.247201 0.373329i
\(393\) 0 0
\(394\) −9.04557 + 1.78618i −0.455709 + 0.0899866i
\(395\) 8.61213 0.433323
\(396\) 0 0
\(397\) 32.7236 1.64235 0.821174 0.570677i \(-0.193319\pi\)
0.821174 + 0.570677i \(0.193319\pi\)
\(398\) −15.7858 + 3.11713i −0.791269 + 0.156248i
\(399\) 0 0
\(400\) −2.84414 + 2.81263i −0.142207 + 0.140631i
\(401\) 23.5346i 1.17526i −0.809130 0.587630i \(-0.800061\pi\)
0.809130 0.587630i \(-0.199939\pi\)
\(402\) 0 0
\(403\) 8.59947i 0.428370i
\(404\) 2.85682 + 6.95168i 0.142132 + 0.345859i
\(405\) 0 0
\(406\) −4.83581 24.4895i −0.239997 1.21539i
\(407\) 33.2492 1.64810
\(408\) 0 0
\(409\) 18.4855 0.914047 0.457023 0.889455i \(-0.348916\pi\)
0.457023 + 0.889455i \(0.348916\pi\)
\(410\) 0.0576731 + 0.292068i 0.00284827 + 0.0144242i
\(411\) 0 0
\(412\) 11.2842 + 27.4585i 0.555932 + 1.35278i
\(413\) 9.41397i 0.463231i
\(414\) 0 0
\(415\) 5.88367i 0.288818i
\(416\) 4.68150 + 3.17546i 0.229530 + 0.155690i
\(417\) 0 0
\(418\) −36.2285 + 7.15385i −1.77199 + 0.349906i
\(419\) 2.83618 0.138557 0.0692783 0.997597i \(-0.477930\pi\)
0.0692783 + 0.997597i \(0.477930\pi\)
\(420\) 0 0
\(421\) 23.3525 1.13813 0.569066 0.822292i \(-0.307305\pi\)
0.569066 + 0.822292i \(0.307305\pi\)
\(422\) −29.8900 + 5.90223i −1.45502 + 0.287316i
\(423\) 0 0
\(424\) 29.2829 19.3897i 1.42210 0.941648i
\(425\) 0.0716155i 0.00347386i
\(426\) 0 0
\(427\) 3.67307i 0.177752i
\(428\) 26.2230 10.7764i 1.26754 0.520899i
\(429\) 0 0
\(430\) −0.955035 4.83648i −0.0460559 0.233236i
\(431\) −27.5094 −1.32508 −0.662540 0.749027i \(-0.730521\pi\)
−0.662540 + 0.749027i \(0.730521\pi\)
\(432\) 0 0
\(433\) 31.5459 1.51600 0.757999 0.652256i \(-0.226177\pi\)
0.757999 + 0.652256i \(0.226177\pi\)
\(434\) 4.63219 + 23.4583i 0.222352 + 1.12603i
\(435\) 0 0
\(436\) −15.4933 + 6.36703i −0.741994 + 0.304925i
\(437\) 15.0340i 0.719173i
\(438\) 0 0
\(439\) 4.09067i 0.195237i 0.995224 + 0.0976186i \(0.0311225\pi\)
−0.995224 + 0.0976186i \(0.968877\pi\)
\(440\) 10.3037 6.82261i 0.491209 0.325255i
\(441\) 0 0
\(442\) −0.0993610 + 0.0196203i −0.00472612 + 0.000933243i
\(443\) −28.1549 −1.33768 −0.668840 0.743406i \(-0.733209\pi\)
−0.668840 + 0.743406i \(0.733209\pi\)
\(444\) 0 0
\(445\) −6.62764 −0.314180
\(446\) 34.8279 6.87729i 1.64915 0.325649i
\(447\) 0 0
\(448\) −14.4810 6.14051i −0.684165 0.290112i
\(449\) 22.3195i 1.05332i −0.850076 0.526660i \(-0.823444\pi\)
0.850076 0.526660i \(-0.176556\pi\)
\(450\) 0 0
\(451\) 0.919748i 0.0433093i
\(452\) −1.23299 3.00032i −0.0579951 0.141123i
\(453\) 0 0
\(454\) −6.22665 31.5330i −0.292231 1.47992i
\(455\) −1.96615 −0.0921743
\(456\) 0 0
\(457\) −15.4945 −0.724800 −0.362400 0.932023i \(-0.618043\pi\)
−0.362400 + 0.932023i \(0.618043\pi\)
\(458\) 6.19015 + 31.3481i 0.289247 + 1.46480i
\(459\) 0 0
\(460\) −1.91234 4.65342i −0.0891633 0.216967i
\(461\) 7.45662i 0.347290i −0.984808 0.173645i \(-0.944446\pi\)
0.984808 0.173645i \(-0.0555545\pi\)
\(462\) 0 0
\(463\) 32.9618i 1.53186i −0.642922 0.765931i \(-0.722278\pi\)
0.642922 0.765931i \(-0.277722\pi\)
\(464\) 25.2503 + 25.5332i 1.17222 + 1.18535i
\(465\) 0 0
\(466\) 31.4341 6.20712i 1.45615 0.287539i
\(467\) −2.89190 −0.133821 −0.0669105 0.997759i \(-0.521314\pi\)
−0.0669105 + 0.997759i \(0.521314\pi\)
\(468\) 0 0
\(469\) 2.78362 0.128536
\(470\) 8.95393 1.76809i 0.413014 0.0815558i
\(471\) 0 0
\(472\) 7.47675 + 11.2916i 0.344145 + 0.519738i
\(473\) 15.2305i 0.700301i
\(474\) 0 0
\(475\) 5.97650i 0.274221i
\(476\) 0.260476 0.107043i 0.0119389 0.00490633i
\(477\) 0 0
\(478\) −3.58694 18.1649i −0.164063 0.830845i
\(479\) −32.3122 −1.47638 −0.738191 0.674591i \(-0.764320\pi\)
−0.738191 + 0.674591i \(0.764320\pi\)
\(480\) 0 0
\(481\) 7.61005 0.346988
\(482\) 1.26020 + 6.38191i 0.0574007 + 0.290688i
\(483\) 0 0
\(484\) −14.9642 + 6.14958i −0.680189 + 0.279526i
\(485\) 9.32275i 0.423324i
\(486\) 0 0
\(487\) 35.2835i 1.59885i 0.600766 + 0.799425i \(0.294862\pi\)
−0.600766 + 0.799425i \(0.705138\pi\)
\(488\) 2.91722 + 4.40567i 0.132056 + 0.199435i
\(489\) 0 0
\(490\) −4.34856 + 0.858688i −0.196448 + 0.0387916i
\(491\) 37.3751 1.68672 0.843358 0.537353i \(-0.180576\pi\)
0.843358 + 0.537353i \(0.180576\pi\)
\(492\) 0 0
\(493\) −0.642927 −0.0289560
\(494\) −8.29193 + 1.63737i −0.373072 + 0.0736686i
\(495\) 0 0
\(496\) −24.1871 24.4581i −1.08603 1.09820i
\(497\) 9.87413i 0.442915i
\(498\) 0 0
\(499\) 22.3917i 1.00239i 0.865334 + 0.501196i \(0.167106\pi\)
−0.865334 + 0.501196i \(0.832894\pi\)
\(500\) 0.760217 + 1.84988i 0.0339979 + 0.0827293i
\(501\) 0 0
\(502\) 7.91713 + 40.0939i 0.353359 + 1.78948i
\(503\) 11.2378 0.501069 0.250534 0.968108i \(-0.419394\pi\)
0.250534 + 0.968108i \(0.419394\pi\)
\(504\) 0 0
\(505\) 3.75790 0.167224
\(506\) 3.01107 + 15.2486i 0.133858 + 0.677884i
\(507\) 0 0
\(508\) −4.91551 11.9612i −0.218091 0.530694i
\(509\) 17.1041i 0.758128i −0.925371 0.379064i \(-0.876246\pi\)
0.925371 0.379064i \(-0.123754\pi\)
\(510\) 0 0
\(511\) 2.77138i 0.122599i
\(512\) 22.2462 4.13587i 0.983154 0.182781i
\(513\) 0 0
\(514\) −17.5095 + 3.45750i −0.772309 + 0.152504i
\(515\) 14.8434 0.654077
\(516\) 0 0
\(517\) −28.1968 −1.24009
\(518\) −20.7593 + 4.09922i −0.912109 + 0.180110i
\(519\) 0 0
\(520\) 2.35830 1.56155i 0.103418 0.0684785i
\(521\) 1.92405i 0.0842940i −0.999111 0.0421470i \(-0.986580\pi\)
0.999111 0.0421470i \(-0.0134198\pi\)
\(522\) 0 0
\(523\) 22.4875i 0.983308i 0.870791 + 0.491654i \(0.163607\pi\)
−0.870791 + 0.491654i \(0.836393\pi\)
\(524\) −6.93431 + 2.84968i −0.302927 + 0.124489i
\(525\) 0 0
\(526\) 2.52894 + 12.8070i 0.110267 + 0.558413i
\(527\) 0.615855 0.0268271
\(528\) 0 0
\(529\) −16.6722 −0.724877
\(530\) −3.40184 17.2276i −0.147767 0.748318i
\(531\) 0 0
\(532\) 21.7374 8.93306i 0.942435 0.387297i
\(533\) 0.210511i 0.00911824i
\(534\) 0 0
\(535\) 14.1755i 0.612859i
\(536\) −3.33882 + 2.21081i −0.144215 + 0.0954923i
\(537\) 0 0
\(538\) 41.9583 8.28530i 1.80895 0.357204i
\(539\) 13.6940 0.589843
\(540\) 0 0
\(541\) 4.58442 0.197099 0.0985497 0.995132i \(-0.468580\pi\)
0.0985497 + 0.995132i \(0.468580\pi\)
\(542\) −19.5667 + 3.86373i −0.840460 + 0.165961i
\(543\) 0 0
\(544\) −0.227412 + 0.335268i −0.00975021 + 0.0143745i
\(545\) 8.37528i 0.358758i
\(546\) 0 0
\(547\) 2.52726i 0.108058i −0.998539 0.0540289i \(-0.982794\pi\)
0.998539 0.0540289i \(-0.0172063\pi\)
\(548\) −15.3048 37.2420i −0.653787 1.59090i
\(549\) 0 0
\(550\) −1.19700 6.06182i −0.0510401 0.258477i
\(551\) −53.6540 −2.28574
\(552\) 0 0
\(553\) 16.9327 0.720052
\(554\) 3.59350 + 18.1982i 0.152673 + 0.773167i
\(555\) 0 0
\(556\) 16.7781 + 40.8271i 0.711548 + 1.73146i
\(557\) 35.7483i 1.51470i 0.653007 + 0.757352i \(0.273507\pi\)
−0.653007 + 0.757352i \(0.726493\pi\)
\(558\) 0 0
\(559\) 3.48595i 0.147440i
\(560\) −5.59199 + 5.53003i −0.236305 + 0.233687i
\(561\) 0 0
\(562\) 11.2617 2.22379i 0.475045 0.0938047i
\(563\) −1.75915 −0.0741392 −0.0370696 0.999313i \(-0.511802\pi\)
−0.0370696 + 0.999313i \(0.511802\pi\)
\(564\) 0 0
\(565\) −1.62190 −0.0682337
\(566\) −1.51138 + 0.298444i −0.0635279 + 0.0125445i
\(567\) 0 0
\(568\) 7.84222 + 11.8435i 0.329052 + 0.496944i
\(569\) 10.1398i 0.425083i 0.977152 + 0.212541i \(0.0681740\pi\)
−0.977152 + 0.212541i \(0.931826\pi\)
\(570\) 0 0
\(571\) 19.5224i 0.816986i 0.912762 + 0.408493i \(0.133946\pi\)
−0.912762 + 0.408493i \(0.866054\pi\)
\(572\) −8.08237 + 3.32148i −0.337941 + 0.138878i
\(573\) 0 0
\(574\) 0.113394 + 0.574247i 0.00473296 + 0.0239686i
\(575\) −2.51552 −0.104904
\(576\) 0 0
\(577\) 3.12050 0.129908 0.0649541 0.997888i \(-0.479310\pi\)
0.0649541 + 0.997888i \(0.479310\pi\)
\(578\) 4.65604 + 23.5791i 0.193666 + 0.980760i
\(579\) 0 0
\(580\) 16.6073 6.82484i 0.689581 0.283386i
\(581\) 11.5681i 0.479928i
\(582\) 0 0
\(583\) 54.2513i 2.24686i
\(584\) 2.20108 + 3.32414i 0.0910814 + 0.137554i
\(585\) 0 0
\(586\) −31.8400 + 6.28728i −1.31530 + 0.259725i
\(587\) 24.6002 1.01536 0.507679 0.861546i \(-0.330504\pi\)
0.507679 + 0.861546i \(0.330504\pi\)
\(588\) 0 0
\(589\) 51.3947 2.11768
\(590\) 6.64302 1.31176i 0.273489 0.0540045i
\(591\) 0 0
\(592\) 21.6440 21.4042i 0.889565 0.879708i
\(593\) 18.2108i 0.747826i −0.927464 0.373913i \(-0.878016\pi\)
0.927464 0.373913i \(-0.121984\pi\)
\(594\) 0 0
\(595\) 0.140806i 0.00577250i
\(596\) −5.09785 12.4049i −0.208816 0.508125i
\(597\) 0 0
\(598\) 0.689170 + 3.49009i 0.0281822 + 0.142720i
\(599\) −12.0439 −0.492102 −0.246051 0.969257i \(-0.579133\pi\)
−0.246051 + 0.969257i \(0.579133\pi\)
\(600\) 0 0
\(601\) −14.6433 −0.597312 −0.298656 0.954361i \(-0.596538\pi\)
−0.298656 + 0.954361i \(0.596538\pi\)
\(602\) −1.87774 9.50922i −0.0765309 0.387567i
\(603\) 0 0
\(604\) −11.1321 27.0884i −0.452958 1.10221i
\(605\) 8.08925i 0.328875i
\(606\) 0 0
\(607\) 35.1183i 1.42541i 0.701465 + 0.712703i \(0.252529\pi\)
−0.701465 + 0.712703i \(0.747471\pi\)
\(608\) −18.9781 + 27.9790i −0.769665 + 1.13470i
\(609\) 0 0
\(610\) 2.59192 0.511814i 0.104944 0.0207227i
\(611\) −6.45364 −0.261087
\(612\) 0 0
\(613\) −15.3549 −0.620180 −0.310090 0.950707i \(-0.600359\pi\)
−0.310090 + 0.950707i \(0.600359\pi\)
\(614\) 34.0120 6.71617i 1.37261 0.271043i
\(615\) 0 0
\(616\) 20.2586 13.4142i 0.816240 0.540475i
\(617\) 36.4231i 1.46634i 0.680046 + 0.733170i \(0.261960\pi\)
−0.680046 + 0.733170i \(0.738040\pi\)
\(618\) 0 0
\(619\) 18.6214i 0.748459i 0.927336 + 0.374230i \(0.122093\pi\)
−0.927336 + 0.374230i \(0.877907\pi\)
\(620\) −15.9080 + 6.53746i −0.638881 + 0.262551i
\(621\) 0 0
\(622\) 7.96726 + 40.3477i 0.319458 + 1.61780i
\(623\) −13.0309 −0.522072
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 1.95112 + 9.88083i 0.0779823 + 0.394917i
\(627\) 0 0
\(628\) 14.3493 5.89692i 0.572601 0.235313i
\(629\) 0.544997i 0.0217305i
\(630\) 0 0
\(631\) 46.0313i 1.83248i −0.400635 0.916238i \(-0.631210\pi\)
0.400635 0.916238i \(-0.368790\pi\)
\(632\) −20.3100 + 13.4483i −0.807886 + 0.534943i
\(633\) 0 0
\(634\) −18.5415 + 3.66130i −0.736379 + 0.145409i
\(635\) −6.46594 −0.256593
\(636\) 0 0
\(637\) 3.13427 0.124184
\(638\) −54.4199 + 10.7460i −2.15451 + 0.425439i
\(639\) 0 0
\(640\) 2.31527 11.0743i 0.0915191 0.437749i
\(641\) 27.4870i 1.08567i −0.839840 0.542835i \(-0.817351\pi\)
0.839840 0.542835i \(-0.182649\pi\)
\(642\) 0 0
\(643\) 10.8672i 0.428561i 0.976772 + 0.214280i \(0.0687406\pi\)
−0.976772 + 0.214280i \(0.931259\pi\)
\(644\) −3.75994 9.14929i −0.148162 0.360533i
\(645\) 0 0
\(646\) −0.117261 0.593831i −0.00461356 0.0233640i
\(647\) −31.4787 −1.23756 −0.618778 0.785566i \(-0.712372\pi\)
−0.618778 + 0.785566i \(0.712372\pi\)
\(648\) 0 0
\(649\) −20.9195 −0.821162
\(650\) −0.273967 1.38742i −0.0107459 0.0544192i
\(651\) 0 0
\(652\) −2.78006 6.76490i −0.108876 0.264934i
\(653\) 3.96525i 0.155172i −0.996986 0.0775861i \(-0.975279\pi\)
0.996986 0.0775861i \(-0.0247213\pi\)
\(654\) 0 0
\(655\) 3.74851i 0.146466i
\(656\) −0.592088 0.598722i −0.0231172 0.0233762i
\(657\) 0 0
\(658\) 17.6047 3.47632i 0.686304 0.135521i
\(659\) −3.47093 −0.135208 −0.0676041 0.997712i \(-0.521535\pi\)
−0.0676041 + 0.997712i \(0.521535\pi\)
\(660\) 0 0
\(661\) 28.5987 1.11236 0.556180 0.831062i \(-0.312267\pi\)
0.556180 + 0.831062i \(0.312267\pi\)
\(662\) 37.0376 7.31364i 1.43951 0.284253i
\(663\) 0 0
\(664\) 9.18764 + 13.8754i 0.356550 + 0.538471i
\(665\) 11.7507i 0.455671i
\(666\) 0 0
\(667\) 22.5830i 0.874418i
\(668\) −27.5280 + 11.3127i −1.06509 + 0.437702i
\(669\) 0 0
\(670\) 0.387877 + 1.96428i 0.0149850 + 0.0758868i
\(671\) −8.16221 −0.315099
\(672\) 0 0
\(673\) −18.7837 −0.724059 −0.362029 0.932167i \(-0.617916\pi\)
−0.362029 + 0.932167i \(0.617916\pi\)
\(674\) −6.93599 35.1252i −0.267164 1.35297i
\(675\) 0 0
\(676\) −1.84988 + 0.760217i −0.0711494 + 0.0292391i
\(677\) 27.7053i 1.06480i 0.846493 + 0.532400i \(0.178710\pi\)
−0.846493 + 0.532400i \(0.821290\pi\)
\(678\) 0 0
\(679\) 18.3299i 0.703437i
\(680\) 0.111831 + 0.168891i 0.00428853 + 0.00647666i
\(681\) 0 0
\(682\) 52.1284 10.2935i 1.99610 0.394160i
\(683\) 20.1958 0.772771 0.386386 0.922337i \(-0.373723\pi\)
0.386386 + 0.922337i \(0.373723\pi\)
\(684\) 0 0
\(685\) −20.1321 −0.769208
\(686\) −27.6450 + 5.45892i −1.05549 + 0.208423i
\(687\) 0 0
\(688\) 9.80466 + 9.91452i 0.373799 + 0.377988i
\(689\) 12.4170i 0.473049i
\(690\) 0 0
\(691\) 9.80840i 0.373129i −0.982443 0.186565i \(-0.940265\pi\)
0.982443 0.186565i \(-0.0597354\pi\)
\(692\) −2.02045 4.91649i −0.0768061 0.186897i
\(693\) 0 0
\(694\) −4.52621 22.9216i −0.171813 0.870092i
\(695\) 22.0701 0.837167
\(696\) 0 0
\(697\) 0.0150758 0.000571038
\(698\) 5.95634 + 30.1641i 0.225451 + 1.14173i
\(699\) 0 0
\(700\) 1.49470 + 3.63714i 0.0564942 + 0.137471i
\(701\) 30.5947i 1.15555i −0.816198 0.577773i \(-0.803922\pi\)
0.816198 0.577773i \(-0.196078\pi\)
\(702\) 0 0
\(703\) 45.4814i 1.71537i
\(704\) −13.6453 + 32.1795i −0.514277 + 1.21281i
\(705\) 0 0
\(706\) −40.2648 + 7.95088i −1.51538 + 0.299235i
\(707\) 7.38858 0.277876
\(708\) 0 0
\(709\) 13.1974 0.495639 0.247819 0.968806i \(-0.420286\pi\)
0.247819 + 0.968806i \(0.420286\pi\)
\(710\) 6.96774 1.37588i 0.261495 0.0516360i
\(711\) 0 0
\(712\) 15.6299 10.3494i 0.585757 0.387860i
\(713\) 21.6321i 0.810129i
\(714\) 0 0
\(715\) 4.36912i 0.163396i
\(716\) 7.69315 3.16153i 0.287507 0.118152i
\(717\) 0 0
\(718\) 8.51916 + 43.1427i 0.317932 + 1.61007i
\(719\) −4.65845 −0.173731 −0.0868654 0.996220i \(-0.527685\pi\)
−0.0868654 + 0.996220i \(0.527685\pi\)
\(720\) 0 0
\(721\) 29.1842 1.08688
\(722\) −4.58034 23.1957i −0.170463 0.863255i
\(723\) 0 0
\(724\) 11.5656 4.75293i 0.429832 0.176641i
\(725\) 8.97749i 0.333416i
\(726\) 0 0
\(727\) 24.8319i 0.920966i −0.887669 0.460483i \(-0.847676\pi\)
0.887669 0.460483i \(-0.152324\pi\)
\(728\) 4.63675 3.07023i 0.171850 0.113790i
\(729\) 0 0
\(730\) 1.95564 0.386170i 0.0723815 0.0142928i
\(731\) −0.249648 −0.00923356
\(732\) 0 0
\(733\) 33.3378 1.23136 0.615680 0.787996i \(-0.288881\pi\)
0.615680 + 0.787996i \(0.288881\pi\)
\(734\) 29.1497 5.75605i 1.07594 0.212460i
\(735\) 0 0
\(736\) 11.7764 + 7.98792i 0.434084 + 0.294439i
\(737\) 6.18571i 0.227853i
\(738\) 0 0
\(739\) 37.3362i 1.37343i −0.726925 0.686717i \(-0.759051\pi\)
0.726925 0.686717i \(-0.240949\pi\)
\(740\) −5.78529 14.0777i −0.212671 0.517507i
\(741\) 0 0
\(742\) −6.68852 33.8719i −0.245543 1.24348i
\(743\) −20.2606 −0.743290 −0.371645 0.928375i \(-0.621206\pi\)
−0.371645 + 0.928375i \(0.621206\pi\)
\(744\) 0 0
\(745\) −6.70578 −0.245681
\(746\) 5.76723 + 29.2063i 0.211153 + 1.06932i
\(747\) 0 0
\(748\) −0.237870 0.578823i −0.00869737 0.0211639i
\(749\) 27.8710i 1.01839i
\(750\) 0 0
\(751\) 20.3727i 0.743410i −0.928351 0.371705i \(-0.878773\pi\)
0.928351 0.371705i \(-0.121227\pi\)
\(752\) −18.3551 + 18.1517i −0.669341 + 0.661924i
\(753\) 0 0
\(754\) −12.4556 + 2.45954i −0.453605 + 0.0895711i
\(755\) −14.6433 −0.532924
\(756\) 0 0
\(757\) −23.6535 −0.859702 −0.429851 0.902900i \(-0.641434\pi\)
−0.429851 + 0.902900i \(0.641434\pi\)
\(758\) 16.0795 3.17513i 0.584032 0.115326i
\(759\) 0 0
\(760\) 9.33260 + 14.0944i 0.338529 + 0.511256i
\(761\) 21.7465i 0.788311i 0.919044 + 0.394156i \(0.128963\pi\)
−0.919044 + 0.394156i \(0.871037\pi\)
\(762\) 0 0
\(763\) 16.4670i 0.596146i
\(764\) −20.4414 + 8.40046i −0.739543 + 0.303918i
\(765\) 0 0
\(766\) 2.70642 + 13.7058i 0.0977870 + 0.495212i
\(767\) −4.78803 −0.172886
\(768\) 0 0
\(769\) −18.5715 −0.669705 −0.334852 0.942271i \(-0.608686\pi\)
−0.334852 + 0.942271i \(0.608686\pi\)
\(770\) −2.35347 11.9184i −0.0848132 0.429510i
\(771\) 0 0
\(772\) 31.4023 12.9049i 1.13019 0.464458i
\(773\) 18.5196i 0.666102i −0.942909 0.333051i \(-0.891922\pi\)
0.942909 0.333051i \(-0.108078\pi\)
\(774\) 0 0
\(775\) 8.59947i 0.308902i
\(776\) 14.5579 + 21.9858i 0.522600 + 0.789245i
\(777\) 0 0
\(778\) 1.48237 0.292715i 0.0531454 0.0104944i
\(779\) 1.25812 0.0450768
\(780\) 0 0
\(781\) −21.9421 −0.785149
\(782\) −0.249944 + 0.0493552i −0.00893799 + 0.00176494i
\(783\) 0 0
\(784\) 8.91431 8.81553i 0.318368 0.314841i
\(785\) 7.75689i 0.276855i
\(786\) 0 0
\(787\) 0.0382658i 0.00136403i −1.00000 0.000682015i \(-0.999783\pi\)
1.00000 0.000682015i \(-0.000217092\pi\)
\(788\) −4.95638 12.0607i −0.176564 0.429644i
\(789\) 0 0
\(790\) 2.35944 + 11.9487i 0.0839452 + 0.425114i
\(791\) −3.18888 −0.113384
\(792\) 0 0
\(793\) −1.86816 −0.0663402
\(794\) 8.96519 + 45.4014i 0.318163 + 1.61124i
\(795\) 0 0
\(796\) −8.64957 21.0475i −0.306576 0.746010i
\(797\) 15.3623i 0.544160i −0.962275 0.272080i \(-0.912288\pi\)
0.962275 0.272080i \(-0.0877115\pi\)
\(798\) 0 0
\(799\) 0.462181i 0.0163508i
\(800\) −4.68150 3.17546i −0.165516 0.112269i
\(801\) 0 0
\(802\) 32.6524 6.44770i 1.15300 0.227676i
\(803\) −6.15850 −0.217329
\(804\) 0 0
\(805\) −4.94587 −0.174319
\(806\) 11.9311 2.35597i 0.420255 0.0829856i
\(807\) 0 0
\(808\) −8.86224 + 5.86815i −0.311773 + 0.206441i
\(809\) 15.0561i 0.529344i −0.964338 0.264672i \(-0.914736\pi\)
0.964338 0.264672i \(-0.0852637\pi\)
\(810\) 0 0
\(811\) 22.8262i 0.801537i −0.916179 0.400769i \(-0.868743\pi\)
0.916179 0.400769i \(-0.131257\pi\)
\(812\) 32.6524 13.4186i 1.14587 0.470901i
\(813\) 0 0
\(814\) 9.10920 + 46.1307i 0.319277 + 1.61688i
\(815\) −3.65693 −0.128097
\(816\) 0 0
\(817\) −20.8338 −0.728881
\(818\) 5.06441 + 25.6471i 0.177073 + 0.896731i
\(819\) 0 0
\(820\) −0.389421 + 0.160034i −0.0135992 + 0.00558863i
\(821\) 4.29951i 0.150054i 0.997181 + 0.0750271i \(0.0239043\pi\)
−0.997181 + 0.0750271i \(0.976096\pi\)
\(822\) 0 0
\(823\) 36.9597i 1.28833i −0.764885 0.644167i \(-0.777204\pi\)
0.764885 0.644167i \(-0.222796\pi\)
\(824\) −35.0051 + 23.1787i −1.21946 + 0.807467i
\(825\) 0 0
\(826\) 13.0611 2.57912i 0.454456 0.0897390i
\(827\) 41.1068 1.42942 0.714711 0.699419i \(-0.246558\pi\)
0.714711 + 0.699419i \(0.246558\pi\)
\(828\) 0 0
\(829\) 50.0130 1.73702 0.868512 0.495668i \(-0.165077\pi\)
0.868512 + 0.495668i \(0.165077\pi\)
\(830\) 8.16314 1.61193i 0.283347 0.0559510i
\(831\) 0 0
\(832\) −3.12312 + 7.36520i −0.108275 + 0.255342i
\(833\) 0.224462i 0.00777716i
\(834\) 0 0
\(835\) 14.8809i 0.514975i
\(836\) −19.8508 48.3043i −0.686556 1.67064i
\(837\) 0 0
\(838\) 0.777021 + 3.93498i 0.0268418 + 0.135932i
\(839\) 31.5788 1.09022 0.545111 0.838364i \(-0.316488\pi\)
0.545111 + 0.838364i \(0.316488\pi\)
\(840\) 0 0
\(841\) −51.5953 −1.77915
\(842\) 6.39783 + 32.3998i 0.220484 + 1.11657i
\(843\) 0 0
\(844\) −16.3778 39.8531i −0.563747 1.37180i
\(845\) 1.00000i 0.0344010i
\(846\) 0 0
\(847\) 15.9046i 0.546490i
\(848\) 34.9243 + 35.3156i 1.19930 + 1.21274i
\(849\) 0 0
\(850\) 0.0993610 0.0196203i 0.00340805 0.000672971i
\(851\) 19.1432 0.656221
\(852\) 0 0
\(853\) −7.10627 −0.243314 −0.121657 0.992572i \(-0.538821\pi\)
−0.121657 + 0.992572i \(0.538821\pi\)
\(854\) 5.09610 1.00630i 0.174385 0.0344349i
\(855\) 0 0
\(856\) 22.1357 + 33.4300i 0.756583 + 1.14261i
\(857\) 9.93212i 0.339275i −0.985507 0.169637i \(-0.945740\pi\)
0.985507 0.169637i \(-0.0542597\pi\)
\(858\) 0 0
\(859\) 49.8487i 1.70082i −0.526123 0.850408i \(-0.676355\pi\)
0.526123 0.850408i \(-0.323645\pi\)
\(860\) 6.44859 2.65008i 0.219895 0.0903668i
\(861\) 0 0
\(862\) −7.53667 38.1671i −0.256700 1.29998i
\(863\) 10.5237 0.358232 0.179116 0.983828i \(-0.442676\pi\)
0.179116 + 0.983828i \(0.442676\pi\)
\(864\) 0 0
\(865\) −2.65773 −0.0903656
\(866\) 8.64253 + 43.7674i 0.293685 + 1.48728i
\(867\) 0 0
\(868\) −31.2775 + 12.8536i −1.06163 + 0.436280i
\(869\) 37.6275i 1.27642i
\(870\) 0 0
\(871\) 1.41578i 0.0479718i
\(872\) −13.0784 19.7514i −0.442891 0.668866i
\(873\) 0 0
\(874\) −20.8585 + 4.11882i −0.705549 + 0.139321i
\(875\) 1.96615 0.0664679
\(876\) 0 0
\(877\) 20.6188 0.696248 0.348124 0.937448i \(-0.386819\pi\)
0.348124 + 0.937448i \(0.386819\pi\)
\(878\) −5.67549 + 1.12071i −0.191539 + 0.0378221i
\(879\) 0 0
\(880\) 12.2887 + 12.4264i 0.414252 + 0.418894i
\(881\) 44.6191i 1.50326i 0.659587 + 0.751628i \(0.270731\pi\)
−0.659587 + 0.751628i \(0.729269\pi\)
\(882\) 0 0
\(883\) 39.5436i 1.33075i −0.746510 0.665374i \(-0.768272\pi\)
0.746510 0.665374i \(-0.231728\pi\)
\(884\) −0.0544433 0.132480i −0.00183113 0.00445580i
\(885\) 0 0
\(886\) −7.71352 39.0628i −0.259141 1.31234i
\(887\) 13.9851 0.469572 0.234786 0.972047i \(-0.424561\pi\)
0.234786 + 0.972047i \(0.424561\pi\)
\(888\) 0 0
\(889\) −12.7130 −0.426379
\(890\) −1.81576 9.19534i −0.0608643 0.308228i
\(891\) 0 0
\(892\) 19.0834 + 46.4369i 0.638960 + 1.55482i
\(893\) 38.5702i 1.29070i
\(894\) 0 0
\(895\) 4.15872i 0.139011i
\(896\) 4.55216 21.7736i 0.152077 0.727406i
\(897\) 0 0
\(898\) 30.9665 6.11480i 1.03337 0.204054i
\(899\) 77.2016 2.57482
\(900\) 0 0
\(901\) −0.889247 −0.0296251
\(902\) 1.27608 0.251981i 0.0424888 0.00839005i
\(903\) 0 0
\(904\) 3.82491 2.53267i 0.127215 0.0842354i
\(905\) 6.25207i 0.207826i
\(906\) 0 0
\(907\) 20.0084i 0.664369i −0.943215 0.332184i \(-0.892214\pi\)
0.943215 0.332184i \(-0.107786\pi\)
\(908\) 42.0437 17.2780i 1.39527 0.573391i
\(909\) 0 0
\(910\) −0.538660 2.72788i −0.0178564 0.0904282i
\(911\) 25.4179 0.842133 0.421067 0.907030i \(-0.361656\pi\)
0.421067 + 0.907030i \(0.361656\pi\)
\(912\) 0 0
\(913\) −25.7065 −0.850760
\(914\) −4.24497 21.4974i −0.140411 0.711069i
\(915\) 0 0
\(916\) −41.7972 + 17.1767i −1.38102 + 0.567534i
\(917\) 7.37012i 0.243383i
\(918\) 0 0
\(919\) 29.8031i 0.983113i 0.870846 + 0.491556i \(0.163572\pi\)
−0.870846 + 0.491556i \(0.836428\pi\)
\(920\) 5.93234 3.92811i 0.195583 0.129506i
\(921\) 0 0
\(922\) 10.3455 2.04287i 0.340711 0.0672784i
\(923\) −5.02207 −0.165304
\(924\) 0 0
\(925\) −7.61005 −0.250217
\(926\) 45.7319 9.03044i 1.50284 0.296759i
\(927\) 0 0
\(928\) −28.5076 + 42.0281i −0.935809 + 1.37964i
\(929\) 29.4051i 0.964751i −0.875965 0.482375i \(-0.839774\pi\)
0.875965 0.482375i \(-0.160226\pi\)
\(930\) 0 0
\(931\) 18.7320i 0.613916i
\(932\) 17.2238 + 41.9118i 0.564185 + 1.37287i
\(933\) 0 0
\(934\) −0.792285 4.01228i −0.0259244 0.131286i
\(935\) −0.312897 −0.0102328
\(936\) 0 0
\(937\) −53.4921 −1.74751 −0.873755 0.486366i \(-0.838322\pi\)
−0.873755 + 0.486366i \(0.838322\pi\)
\(938\) 0.762622 + 3.86206i 0.0249005 + 0.126101i
\(939\) 0 0
\(940\) 4.90617 + 11.9385i 0.160022 + 0.389391i
\(941\) 1.22264i 0.0398570i −0.999801 0.0199285i \(-0.993656\pi\)
0.999801 0.0199285i \(-0.00634385\pi\)
\(942\) 0 0
\(943\) 0.529544i 0.0172443i
\(944\) −13.6178 + 13.4669i −0.443223 + 0.438312i
\(945\) 0 0
\(946\) −21.1312 + 4.17267i −0.687034 + 0.135665i
\(947\) −20.3261 −0.660510 −0.330255 0.943892i \(-0.607135\pi\)
−0.330255 + 0.943892i \(0.607135\pi\)
\(948\) 0 0
\(949\) −1.40955 −0.0457559
\(950\) 8.29193 1.63737i 0.269026 0.0531232i
\(951\) 0 0
\(952\) 0.219876 + 0.332063i 0.00712623 + 0.0107622i
\(953\) 28.0582i 0.908895i −0.890774 0.454448i \(-0.849837\pi\)
0.890774 0.454448i \(-0.150163\pi\)
\(954\) 0 0
\(955\) 11.0501i 0.357572i
\(956\) 24.2198 9.95320i 0.783323 0.321910i
\(957\) 0 0
\(958\) −8.85249 44.8307i −0.286011 1.44841i
\(959\) −39.5826 −1.27819
\(960\) 0 0
\(961\) −42.9508 −1.38551
\(962\) 2.08490 + 10.5584i 0.0672200 + 0.340415i
\(963\) 0 0
\(964\) −8.50915 + 3.49687i −0.274061 + 0.112627i
\(965\) 16.9753i 0.546454i
\(966\) 0 0
\(967\) 2.24165i 0.0720867i −0.999350 0.0360433i \(-0.988525\pi\)
0.999350 0.0360433i \(-0.0114754\pi\)
\(968\) −12.6318 19.0768i −0.406000 0.613153i
\(969\) 0 0
\(970\) 12.9346 2.55413i 0.415305 0.0820082i
\(971\) 33.9202 1.08855 0.544275 0.838907i \(-0.316805\pi\)
0.544275 + 0.838907i \(0.316805\pi\)
\(972\) 0 0
\(973\) 43.3930 1.39112
\(974\) −48.9532 + 9.66653i −1.56856 + 0.309736i
\(975\) 0 0
\(976\) −5.31330 + 5.25443i −0.170075 + 0.168190i
\(977\) 54.6863i 1.74957i 0.484510 + 0.874786i \(0.338998\pi\)
−0.484510 + 0.874786i \(0.661002\pi\)
\(978\) 0 0
\(979\) 28.9570i 0.925469i
\(980\) −2.38273 5.79804i −0.0761134 0.185212i
\(981\) 0 0
\(982\) 10.2396 + 51.8551i 0.326757 + 1.65476i
\(983\) 22.4014 0.714495 0.357247 0.934010i \(-0.383715\pi\)
0.357247 + 0.934010i \(0.383715\pi\)
\(984\) 0 0
\(985\) −6.51969 −0.207735
\(986\) −0.176141 0.892012i −0.00560947 0.0284074i
\(987\) 0 0
\(988\) −4.54344 11.0558i −0.144546 0.351733i
\(989\) 8.76896i 0.278837i
\(990\) 0 0
\(991\) 28.1329i 0.893671i −0.894616 0.446835i \(-0.852551\pi\)
0.894616 0.446835i \(-0.147449\pi\)
\(992\) 27.3072 40.2584i 0.867006 1.27821i
\(993\) 0 0
\(994\) 13.6996 2.70519i 0.434525 0.0858034i
\(995\) −11.3778 −0.360699
\(996\) 0 0
\(997\) −34.5199 −1.09326 −0.546628 0.837375i \(-0.684089\pi\)
−0.546628 + 0.837375i \(0.684089\pi\)
\(998\) −31.0668 + 6.13460i −0.983403 + 0.194187i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2340.2.g.b.1691.26 yes 48
3.2 odd 2 inner 2340.2.g.b.1691.23 48
4.3 odd 2 inner 2340.2.g.b.1691.24 yes 48
12.11 even 2 inner 2340.2.g.b.1691.25 yes 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2340.2.g.b.1691.23 48 3.2 odd 2 inner
2340.2.g.b.1691.24 yes 48 4.3 odd 2 inner
2340.2.g.b.1691.25 yes 48 12.11 even 2 inner
2340.2.g.b.1691.26 yes 48 1.1 even 1 trivial