Properties

Label 2340.2.g.b.1691.19
Level $2340$
Weight $2$
Character 2340.1691
Analytic conductor $18.685$
Analytic rank $0$
Dimension $48$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2340,2,Mod(1691,2340)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2340, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2340.1691"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2340 = 2^{2} \cdot 3^{2} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2340.g (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [48,0,0,-4,0,0,0,0,0,-4,0,0,48] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.6849940730\)
Analytic rank: \(0\)
Dimension: \(48\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1691.19
Character \(\chi\) \(=\) 2340.1691
Dual form 2340.2.g.b.1691.20

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.405974 - 1.35469i) q^{2} +(-1.67037 + 1.09994i) q^{4} +1.00000i q^{5} +1.05331i q^{7} +(2.16820 + 1.81629i) q^{8} +(1.35469 - 0.405974i) q^{10} -2.94047 q^{11} +1.00000 q^{13} +(1.42691 - 0.427617i) q^{14} +(1.58028 - 3.67461i) q^{16} +2.82145i q^{17} -4.64725i q^{19} +(-1.09994 - 1.67037i) q^{20} +(1.19375 + 3.98343i) q^{22} +6.54399 q^{23} -1.00000 q^{25} +(-0.405974 - 1.35469i) q^{26} +(-1.15858 - 1.75942i) q^{28} +0.0387991i q^{29} -0.836825i q^{31} +(-5.61950 - 0.648991i) q^{32} +(3.82219 - 1.14544i) q^{34} -1.05331 q^{35} -3.57653 q^{37} +(-6.29559 + 1.88666i) q^{38} +(-1.81629 + 2.16820i) q^{40} +10.2580i q^{41} -5.05107i q^{43} +(4.91167 - 3.23433i) q^{44} +(-2.65669 - 8.86508i) q^{46} -1.00144 q^{47} +5.89053 q^{49} +(0.405974 + 1.35469i) q^{50} +(-1.67037 + 1.09994i) q^{52} +13.7903i q^{53} -2.94047i q^{55} +(-1.91312 + 2.28379i) q^{56} +(0.0525607 - 0.0157514i) q^{58} -5.31956 q^{59} -2.98720 q^{61} +(-1.13364 + 0.339729i) q^{62} +(1.40219 + 7.87616i) q^{64} +1.00000i q^{65} +15.1114i q^{67} +(-3.10342 - 4.71287i) q^{68} +(0.427617 + 1.42691i) q^{70} -9.53560 q^{71} -5.77827 q^{73} +(1.45198 + 4.84509i) q^{74} +(5.11169 + 7.76264i) q^{76} -3.09723i q^{77} +5.96259i q^{79} +(3.67461 + 1.58028i) q^{80} +(13.8964 - 4.16448i) q^{82} -15.8285 q^{83} -2.82145 q^{85} +(-6.84263 + 2.05060i) q^{86} +(-6.37553 - 5.34074i) q^{88} -2.96256i q^{89} +1.05331i q^{91} +(-10.9309 + 7.19798i) q^{92} +(0.406560 + 1.35665i) q^{94} +4.64725 q^{95} +6.69353 q^{97} +(-2.39140 - 7.97985i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q - 4 q^{4} - 4 q^{10} + 48 q^{13} - 36 q^{16} - 8 q^{22} - 48 q^{25} + 8 q^{28} + 8 q^{34} + 16 q^{37} + 4 q^{40} + 32 q^{46} - 64 q^{49} - 4 q^{52} + 72 q^{58} - 32 q^{61} - 28 q^{64} - 24 q^{70} - 48 q^{73}+ \cdots - 32 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2340\mathbb{Z}\right)^\times\).

\(n\) \(937\) \(1081\) \(1171\) \(2081\)
\(\chi(n)\) \(1\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.405974 1.35469i −0.287067 0.957911i
\(3\) 0 0
\(4\) −1.67037 + 1.09994i −0.835185 + 0.549969i
\(5\) 1.00000i 0.447214i
\(6\) 0 0
\(7\) 1.05331i 0.398115i 0.979988 + 0.199057i \(0.0637880\pi\)
−0.979988 + 0.199057i \(0.936212\pi\)
\(8\) 2.16820 + 1.81629i 0.766575 + 0.642155i
\(9\) 0 0
\(10\) 1.35469 0.405974i 0.428391 0.128380i
\(11\) −2.94047 −0.886585 −0.443292 0.896377i \(-0.646190\pi\)
−0.443292 + 0.896377i \(0.646190\pi\)
\(12\) 0 0
\(13\) 1.00000 0.277350
\(14\) 1.42691 0.427617i 0.381358 0.114285i
\(15\) 0 0
\(16\) 1.58028 3.67461i 0.395069 0.918651i
\(17\) 2.82145i 0.684303i 0.939645 + 0.342151i \(0.111156\pi\)
−0.939645 + 0.342151i \(0.888844\pi\)
\(18\) 0 0
\(19\) 4.64725i 1.06615i −0.846067 0.533077i \(-0.821036\pi\)
0.846067 0.533077i \(-0.178964\pi\)
\(20\) −1.09994 1.67037i −0.245953 0.373506i
\(21\) 0 0
\(22\) 1.19375 + 3.98343i 0.254509 + 0.849269i
\(23\) 6.54399 1.36452 0.682258 0.731111i \(-0.260998\pi\)
0.682258 + 0.731111i \(0.260998\pi\)
\(24\) 0 0
\(25\) −1.00000 −0.200000
\(26\) −0.405974 1.35469i −0.0796180 0.265677i
\(27\) 0 0
\(28\) −1.15858 1.75942i −0.218950 0.332499i
\(29\) 0.0387991i 0.00720481i 0.999994 + 0.00360240i \(0.00114668\pi\)
−0.999994 + 0.00360240i \(0.998853\pi\)
\(30\) 0 0
\(31\) 0.836825i 0.150298i −0.997172 0.0751491i \(-0.976057\pi\)
0.997172 0.0751491i \(-0.0239433\pi\)
\(32\) −5.61950 0.648991i −0.993397 0.114727i
\(33\) 0 0
\(34\) 3.82219 1.14544i 0.655501 0.196441i
\(35\) −1.05331 −0.178042
\(36\) 0 0
\(37\) −3.57653 −0.587978 −0.293989 0.955809i \(-0.594983\pi\)
−0.293989 + 0.955809i \(0.594983\pi\)
\(38\) −6.29559 + 1.88666i −1.02128 + 0.306057i
\(39\) 0 0
\(40\) −1.81629 + 2.16820i −0.287181 + 0.342823i
\(41\) 10.2580i 1.60203i 0.598642 + 0.801016i \(0.295707\pi\)
−0.598642 + 0.801016i \(0.704293\pi\)
\(42\) 0 0
\(43\) 5.05107i 0.770280i −0.922858 0.385140i \(-0.874153\pi\)
0.922858 0.385140i \(-0.125847\pi\)
\(44\) 4.91167 3.23433i 0.740463 0.487594i
\(45\) 0 0
\(46\) −2.65669 8.86508i −0.391707 1.30708i
\(47\) −1.00144 −0.146076 −0.0730379 0.997329i \(-0.523269\pi\)
−0.0730379 + 0.997329i \(0.523269\pi\)
\(48\) 0 0
\(49\) 5.89053 0.841505
\(50\) 0.405974 + 1.35469i 0.0574134 + 0.191582i
\(51\) 0 0
\(52\) −1.67037 + 1.09994i −0.231639 + 0.152534i
\(53\) 13.7903i 1.89424i 0.320872 + 0.947122i \(0.396024\pi\)
−0.320872 + 0.947122i \(0.603976\pi\)
\(54\) 0 0
\(55\) 2.94047i 0.396493i
\(56\) −1.91312 + 2.28379i −0.255651 + 0.305185i
\(57\) 0 0
\(58\) 0.0525607 0.0157514i 0.00690156 0.00206826i
\(59\) −5.31956 −0.692547 −0.346274 0.938134i \(-0.612553\pi\)
−0.346274 + 0.938134i \(0.612553\pi\)
\(60\) 0 0
\(61\) −2.98720 −0.382472 −0.191236 0.981544i \(-0.561250\pi\)
−0.191236 + 0.981544i \(0.561250\pi\)
\(62\) −1.13364 + 0.339729i −0.143972 + 0.0431456i
\(63\) 0 0
\(64\) 1.40219 + 7.87616i 0.175274 + 0.984520i
\(65\) 1.00000i 0.124035i
\(66\) 0 0
\(67\) 15.1114i 1.84615i 0.384614 + 0.923077i \(0.374334\pi\)
−0.384614 + 0.923077i \(0.625666\pi\)
\(68\) −3.10342 4.71287i −0.376345 0.571519i
\(69\) 0 0
\(70\) 0.427617 + 1.42691i 0.0511100 + 0.170549i
\(71\) −9.53560 −1.13167 −0.565834 0.824519i \(-0.691446\pi\)
−0.565834 + 0.824519i \(0.691446\pi\)
\(72\) 0 0
\(73\) −5.77827 −0.676295 −0.338148 0.941093i \(-0.609800\pi\)
−0.338148 + 0.941093i \(0.609800\pi\)
\(74\) 1.45198 + 4.84509i 0.168789 + 0.563231i
\(75\) 0 0
\(76\) 5.11169 + 7.76264i 0.586351 + 0.890435i
\(77\) 3.09723i 0.352962i
\(78\) 0 0
\(79\) 5.96259i 0.670844i 0.942068 + 0.335422i \(0.108879\pi\)
−0.942068 + 0.335422i \(0.891121\pi\)
\(80\) 3.67461 + 1.58028i 0.410833 + 0.176680i
\(81\) 0 0
\(82\) 13.8964 4.16448i 1.53460 0.459890i
\(83\) −15.8285 −1.73740 −0.868702 0.495335i \(-0.835045\pi\)
−0.868702 + 0.495335i \(0.835045\pi\)
\(84\) 0 0
\(85\) −2.82145 −0.306029
\(86\) −6.84263 + 2.05060i −0.737860 + 0.221122i
\(87\) 0 0
\(88\) −6.37553 5.34074i −0.679634 0.569325i
\(89\) 2.96256i 0.314031i −0.987596 0.157015i \(-0.949813\pi\)
0.987596 0.157015i \(-0.0501872\pi\)
\(90\) 0 0
\(91\) 1.05331i 0.110417i
\(92\) −10.9309 + 7.19798i −1.13962 + 0.750441i
\(93\) 0 0
\(94\) 0.406560 + 1.35665i 0.0419335 + 0.139927i
\(95\) 4.64725 0.476798
\(96\) 0 0
\(97\) 6.69353 0.679625 0.339813 0.940493i \(-0.389636\pi\)
0.339813 + 0.940493i \(0.389636\pi\)
\(98\) −2.39140 7.97985i −0.241568 0.806086i
\(99\) 0 0
\(100\) 1.67037 1.09994i 0.167037 0.109994i
\(101\) 17.9036i 1.78148i 0.454515 + 0.890739i \(0.349812\pi\)
−0.454515 + 0.890739i \(0.650188\pi\)
\(102\) 0 0
\(103\) 3.96918i 0.391095i −0.980694 0.195547i \(-0.937352\pi\)
0.980694 0.195547i \(-0.0626484\pi\)
\(104\) 2.16820 + 1.81629i 0.212610 + 0.178102i
\(105\) 0 0
\(106\) 18.6816 5.59850i 1.81452 0.543775i
\(107\) −10.0977 −0.976179 −0.488090 0.872793i \(-0.662306\pi\)
−0.488090 + 0.872793i \(0.662306\pi\)
\(108\) 0 0
\(109\) 1.00633 0.0963889 0.0481944 0.998838i \(-0.484653\pi\)
0.0481944 + 0.998838i \(0.484653\pi\)
\(110\) −3.98343 + 1.19375i −0.379805 + 0.113820i
\(111\) 0 0
\(112\) 3.87051 + 1.66452i 0.365728 + 0.157283i
\(113\) 0.938566i 0.0882929i 0.999025 + 0.0441464i \(0.0140568\pi\)
−0.999025 + 0.0441464i \(0.985943\pi\)
\(114\) 0 0
\(115\) 6.54399i 0.610230i
\(116\) −0.0426765 0.0648088i −0.00396242 0.00601735i
\(117\) 0 0
\(118\) 2.15960 + 7.20635i 0.198807 + 0.663398i
\(119\) −2.97187 −0.272431
\(120\) 0 0
\(121\) −2.35364 −0.213967
\(122\) 1.21273 + 4.04674i 0.109795 + 0.366374i
\(123\) 0 0
\(124\) 0.920455 + 1.39781i 0.0826593 + 0.125527i
\(125\) 1.00000i 0.0894427i
\(126\) 0 0
\(127\) 5.55523i 0.492947i −0.969149 0.246474i \(-0.920728\pi\)
0.969149 0.246474i \(-0.0792719\pi\)
\(128\) 10.1005 5.09704i 0.892767 0.450519i
\(129\) 0 0
\(130\) 1.35469 0.405974i 0.118814 0.0356063i
\(131\) −21.2161 −1.85366 −0.926830 0.375481i \(-0.877478\pi\)
−0.926830 + 0.375481i \(0.877478\pi\)
\(132\) 0 0
\(133\) 4.89501 0.424451
\(134\) 20.4713 6.13484i 1.76845 0.529970i
\(135\) 0 0
\(136\) −5.12457 + 6.11747i −0.439428 + 0.524569i
\(137\) 17.8350i 1.52375i 0.647723 + 0.761876i \(0.275721\pi\)
−0.647723 + 0.761876i \(0.724279\pi\)
\(138\) 0 0
\(139\) 10.7470i 0.911553i 0.890094 + 0.455776i \(0.150638\pi\)
−0.890094 + 0.455776i \(0.849362\pi\)
\(140\) 1.75942 1.15858i 0.148698 0.0979176i
\(141\) 0 0
\(142\) 3.87120 + 12.9178i 0.324864 + 1.08404i
\(143\) −2.94047 −0.245894
\(144\) 0 0
\(145\) −0.0387991 −0.00322209
\(146\) 2.34583 + 7.82776i 0.194142 + 0.647830i
\(147\) 0 0
\(148\) 5.97414 3.93396i 0.491071 0.323370i
\(149\) 19.7279i 1.61617i 0.589065 + 0.808086i \(0.299496\pi\)
−0.589065 + 0.808086i \(0.700504\pi\)
\(150\) 0 0
\(151\) 13.3532i 1.08667i 0.839516 + 0.543335i \(0.182839\pi\)
−0.839516 + 0.543335i \(0.817161\pi\)
\(152\) 8.44076 10.0762i 0.684636 0.817286i
\(153\) 0 0
\(154\) −4.19579 + 1.25739i −0.338106 + 0.101324i
\(155\) 0.836825 0.0672154
\(156\) 0 0
\(157\) 2.73873 0.218574 0.109287 0.994010i \(-0.465143\pi\)
0.109287 + 0.994010i \(0.465143\pi\)
\(158\) 8.07746 2.42065i 0.642608 0.192577i
\(159\) 0 0
\(160\) 0.648991 5.61950i 0.0513073 0.444261i
\(161\) 6.89286i 0.543234i
\(162\) 0 0
\(163\) 22.1496i 1.73489i −0.497535 0.867444i \(-0.665761\pi\)
0.497535 0.867444i \(-0.334239\pi\)
\(164\) −11.2832 17.1347i −0.881068 1.33799i
\(165\) 0 0
\(166\) 6.42596 + 21.4427i 0.498751 + 1.66428i
\(167\) 21.8513 1.69090 0.845451 0.534053i \(-0.179332\pi\)
0.845451 + 0.534053i \(0.179332\pi\)
\(168\) 0 0
\(169\) 1.00000 0.0769231
\(170\) 1.14544 + 3.82219i 0.0878509 + 0.293149i
\(171\) 0 0
\(172\) 5.55586 + 8.43715i 0.423630 + 0.643327i
\(173\) 4.32498i 0.328822i −0.986392 0.164411i \(-0.947428\pi\)
0.986392 0.164411i \(-0.0525724\pi\)
\(174\) 0 0
\(175\) 1.05331i 0.0796229i
\(176\) −4.64675 + 10.8051i −0.350262 + 0.814463i
\(177\) 0 0
\(178\) −4.01335 + 1.20272i −0.300813 + 0.0901478i
\(179\) 18.5968 1.38999 0.694996 0.719013i \(-0.255406\pi\)
0.694996 + 0.719013i \(0.255406\pi\)
\(180\) 0 0
\(181\) 3.24660 0.241318 0.120659 0.992694i \(-0.461499\pi\)
0.120659 + 0.992694i \(0.461499\pi\)
\(182\) 1.42691 0.427617i 0.105770 0.0316971i
\(183\) 0 0
\(184\) 14.1887 + 11.8858i 1.04600 + 0.876231i
\(185\) 3.57653i 0.262952i
\(186\) 0 0
\(187\) 8.29639i 0.606692i
\(188\) 1.67278 1.10153i 0.122000 0.0803371i
\(189\) 0 0
\(190\) −1.88666 6.29559i −0.136873 0.456730i
\(191\) −4.83744 −0.350025 −0.175012 0.984566i \(-0.555997\pi\)
−0.175012 + 0.984566i \(0.555997\pi\)
\(192\) 0 0
\(193\) −8.94915 −0.644174 −0.322087 0.946710i \(-0.604384\pi\)
−0.322087 + 0.946710i \(0.604384\pi\)
\(194\) −2.71740 9.06766i −0.195098 0.651020i
\(195\) 0 0
\(196\) −9.83937 + 6.47922i −0.702812 + 0.462801i
\(197\) 25.3567i 1.80659i −0.429017 0.903296i \(-0.641140\pi\)
0.429017 0.903296i \(-0.358860\pi\)
\(198\) 0 0
\(199\) 0.0844252i 0.00598474i 0.999996 + 0.00299237i \(0.000952503\pi\)
−0.999996 + 0.00299237i \(0.999047\pi\)
\(200\) −2.16820 1.81629i −0.153315 0.128431i
\(201\) 0 0
\(202\) 24.2539 7.26840i 1.70650 0.511403i
\(203\) −0.0408675 −0.00286834
\(204\) 0 0
\(205\) −10.2580 −0.716451
\(206\) −5.37701 + 1.61138i −0.374634 + 0.112270i
\(207\) 0 0
\(208\) 1.58028 3.67461i 0.109572 0.254788i
\(209\) 13.6651i 0.945235i
\(210\) 0 0
\(211\) 7.27338i 0.500720i 0.968153 + 0.250360i \(0.0805490\pi\)
−0.968153 + 0.250360i \(0.919451\pi\)
\(212\) −15.1685 23.0349i −1.04178 1.58205i
\(213\) 0 0
\(214\) 4.09939 + 13.6792i 0.280229 + 0.935093i
\(215\) 5.05107 0.344480
\(216\) 0 0
\(217\) 0.881438 0.0598359
\(218\) −0.408543 1.36326i −0.0276700 0.0923319i
\(219\) 0 0
\(220\) 3.23433 + 4.91167i 0.218059 + 0.331145i
\(221\) 2.82145i 0.189791i
\(222\) 0 0
\(223\) 11.9534i 0.800461i 0.916414 + 0.400231i \(0.131070\pi\)
−0.916414 + 0.400231i \(0.868930\pi\)
\(224\) 0.683590 5.91909i 0.0456743 0.395486i
\(225\) 0 0
\(226\) 1.27147 0.381033i 0.0845767 0.0253460i
\(227\) 10.6394 0.706164 0.353082 0.935592i \(-0.385134\pi\)
0.353082 + 0.935592i \(0.385134\pi\)
\(228\) 0 0
\(229\) 14.9630 0.988783 0.494392 0.869239i \(-0.335391\pi\)
0.494392 + 0.869239i \(0.335391\pi\)
\(230\) 8.86508 2.65669i 0.584546 0.175177i
\(231\) 0 0
\(232\) −0.0704703 + 0.0841242i −0.00462660 + 0.00552302i
\(233\) 2.57732i 0.168846i 0.996430 + 0.0844229i \(0.0269047\pi\)
−0.996430 + 0.0844229i \(0.973095\pi\)
\(234\) 0 0
\(235\) 1.00144i 0.0653271i
\(236\) 8.88563 5.85118i 0.578405 0.380879i
\(237\) 0 0
\(238\) 1.20650 + 4.02596i 0.0782058 + 0.260964i
\(239\) 2.36787 0.153165 0.0765825 0.997063i \(-0.475599\pi\)
0.0765825 + 0.997063i \(0.475599\pi\)
\(240\) 0 0
\(241\) −12.0291 −0.774861 −0.387430 0.921899i \(-0.626637\pi\)
−0.387430 + 0.921899i \(0.626637\pi\)
\(242\) 0.955516 + 3.18845i 0.0614229 + 0.204961i
\(243\) 0 0
\(244\) 4.98974 3.28574i 0.319435 0.210348i
\(245\) 5.89053i 0.376332i
\(246\) 0 0
\(247\) 4.64725i 0.295698i
\(248\) 1.51992 1.81440i 0.0965148 0.115215i
\(249\) 0 0
\(250\) −1.35469 + 0.405974i −0.0856781 + 0.0256760i
\(251\) 2.25731 0.142480 0.0712401 0.997459i \(-0.477304\pi\)
0.0712401 + 0.997459i \(0.477304\pi\)
\(252\) 0 0
\(253\) −19.2424 −1.20976
\(254\) −7.52562 + 2.25528i −0.472199 + 0.141509i
\(255\) 0 0
\(256\) −11.0055 11.6138i −0.687841 0.725862i
\(257\) 1.83970i 0.114757i −0.998352 0.0573785i \(-0.981726\pi\)
0.998352 0.0573785i \(-0.0182742\pi\)
\(258\) 0 0
\(259\) 3.76720i 0.234083i
\(260\) −1.09994 1.67037i −0.0682152 0.103592i
\(261\) 0 0
\(262\) 8.61318 + 28.7413i 0.532124 + 1.77564i
\(263\) 7.46623 0.460388 0.230194 0.973145i \(-0.426064\pi\)
0.230194 + 0.973145i \(0.426064\pi\)
\(264\) 0 0
\(265\) −13.7903 −0.847132
\(266\) −1.98724 6.63122i −0.121846 0.406586i
\(267\) 0 0
\(268\) −16.6216 25.2417i −1.01533 1.54188i
\(269\) 5.35185i 0.326308i −0.986601 0.163154i \(-0.947833\pi\)
0.986601 0.163154i \(-0.0521668\pi\)
\(270\) 0 0
\(271\) 20.8262i 1.26510i −0.774519 0.632550i \(-0.782008\pi\)
0.774519 0.632550i \(-0.217992\pi\)
\(272\) 10.3677 + 4.45867i 0.628636 + 0.270347i
\(273\) 0 0
\(274\) 24.1610 7.24056i 1.45962 0.437418i
\(275\) 2.94047 0.177317
\(276\) 0 0
\(277\) −21.6153 −1.29873 −0.649367 0.760475i \(-0.724966\pi\)
−0.649367 + 0.760475i \(0.724966\pi\)
\(278\) 14.5589 4.36302i 0.873186 0.261677i
\(279\) 0 0
\(280\) −2.28379 1.91312i −0.136483 0.114331i
\(281\) 12.2235i 0.729196i 0.931165 + 0.364598i \(0.118794\pi\)
−0.931165 + 0.364598i \(0.881206\pi\)
\(282\) 0 0
\(283\) 3.84030i 0.228282i −0.993465 0.114141i \(-0.963588\pi\)
0.993465 0.114141i \(-0.0364116\pi\)
\(284\) 15.9280 10.4886i 0.945152 0.622382i
\(285\) 0 0
\(286\) 1.19375 + 3.98343i 0.0705881 + 0.235545i
\(287\) −10.8049 −0.637793
\(288\) 0 0
\(289\) 9.03941 0.531730
\(290\) 0.0157514 + 0.0525607i 0.000924954 + 0.00308647i
\(291\) 0 0
\(292\) 9.65185 6.35573i 0.564832 0.371941i
\(293\) 13.3925i 0.782399i −0.920306 0.391199i \(-0.872060\pi\)
0.920306 0.391199i \(-0.127940\pi\)
\(294\) 0 0
\(295\) 5.31956i 0.309717i
\(296\) −7.75464 6.49602i −0.450729 0.377573i
\(297\) 0 0
\(298\) 26.7252 8.00900i 1.54815 0.463949i
\(299\) 6.54399 0.378449
\(300\) 0 0
\(301\) 5.32035 0.306660
\(302\) 18.0895 5.42106i 1.04093 0.311947i
\(303\) 0 0
\(304\) −17.0768 7.34394i −0.979423 0.421204i
\(305\) 2.98720i 0.171047i
\(306\) 0 0
\(307\) 8.99995i 0.513654i 0.966457 + 0.256827i \(0.0826771\pi\)
−0.966457 + 0.256827i \(0.917323\pi\)
\(308\) 3.40676 + 5.17353i 0.194118 + 0.294789i
\(309\) 0 0
\(310\) −0.339729 1.13364i −0.0192953 0.0643864i
\(311\) −0.931498 −0.0528204 −0.0264102 0.999651i \(-0.508408\pi\)
−0.0264102 + 0.999651i \(0.508408\pi\)
\(312\) 0 0
\(313\) 8.95381 0.506099 0.253050 0.967453i \(-0.418566\pi\)
0.253050 + 0.967453i \(0.418566\pi\)
\(314\) −1.11185 3.71013i −0.0627454 0.209375i
\(315\) 0 0
\(316\) −6.55847 9.95973i −0.368943 0.560279i
\(317\) 3.58090i 0.201124i −0.994931 0.100562i \(-0.967936\pi\)
0.994931 0.100562i \(-0.0320640\pi\)
\(318\) 0 0
\(319\) 0.114087i 0.00638767i
\(320\) −7.87616 + 1.40219i −0.440291 + 0.0783847i
\(321\) 0 0
\(322\) 9.33769 2.79832i 0.520369 0.155944i
\(323\) 13.1120 0.729571
\(324\) 0 0
\(325\) −1.00000 −0.0554700
\(326\) −30.0058 + 8.99214i −1.66187 + 0.498029i
\(327\) 0 0
\(328\) −18.6315 + 22.2414i −1.02875 + 1.22808i
\(329\) 1.05483i 0.0581549i
\(330\) 0 0
\(331\) 1.76396i 0.0969559i −0.998824 0.0484780i \(-0.984563\pi\)
0.998824 0.0484780i \(-0.0154371\pi\)
\(332\) 26.4395 17.4104i 1.45105 0.955518i
\(333\) 0 0
\(334\) −8.87104 29.6017i −0.485402 1.61973i
\(335\) −15.1114 −0.825625
\(336\) 0 0
\(337\) −10.5875 −0.576740 −0.288370 0.957519i \(-0.593113\pi\)
−0.288370 + 0.957519i \(0.593113\pi\)
\(338\) −0.405974 1.35469i −0.0220821 0.0736854i
\(339\) 0 0
\(340\) 4.71287 3.10342i 0.255591 0.168307i
\(341\) 2.46066i 0.133252i
\(342\) 0 0
\(343\) 13.5778i 0.733130i
\(344\) 9.17420 10.9517i 0.494639 0.590477i
\(345\) 0 0
\(346\) −5.85901 + 1.75583i −0.314982 + 0.0943939i
\(347\) 4.16045 0.223345 0.111672 0.993745i \(-0.464379\pi\)
0.111672 + 0.993745i \(0.464379\pi\)
\(348\) 0 0
\(349\) 5.85211 0.313256 0.156628 0.987658i \(-0.449938\pi\)
0.156628 + 0.987658i \(0.449938\pi\)
\(350\) −1.42691 + 0.427617i −0.0762716 + 0.0228571i
\(351\) 0 0
\(352\) 16.5240 + 1.90834i 0.880731 + 0.101715i
\(353\) 10.2397i 0.545004i 0.962155 + 0.272502i \(0.0878512\pi\)
−0.962155 + 0.272502i \(0.912149\pi\)
\(354\) 0 0
\(355\) 9.53560i 0.506097i
\(356\) 3.25863 + 4.94857i 0.172707 + 0.262274i
\(357\) 0 0
\(358\) −7.54982 25.1929i −0.399021 1.33149i
\(359\) −3.35259 −0.176943 −0.0884715 0.996079i \(-0.528198\pi\)
−0.0884715 + 0.996079i \(0.528198\pi\)
\(360\) 0 0
\(361\) −2.59697 −0.136683
\(362\) −1.31803 4.39813i −0.0692743 0.231161i
\(363\) 0 0
\(364\) −1.15858 1.75942i −0.0607259 0.0922187i
\(365\) 5.77827i 0.302448i
\(366\) 0 0
\(367\) 29.0091i 1.51426i −0.653262 0.757132i \(-0.726600\pi\)
0.653262 0.757132i \(-0.273400\pi\)
\(368\) 10.3413 24.0466i 0.539078 1.25351i
\(369\) 0 0
\(370\) −4.84509 + 1.45198i −0.251884 + 0.0754848i
\(371\) −14.5255 −0.754126
\(372\) 0 0
\(373\) −2.98117 −0.154359 −0.0771795 0.997017i \(-0.524591\pi\)
−0.0771795 + 0.997017i \(0.524591\pi\)
\(374\) −11.2390 + 3.36812i −0.581157 + 0.174161i
\(375\) 0 0
\(376\) −2.17133 1.81891i −0.111978 0.0938033i
\(377\) 0.0387991i 0.00199825i
\(378\) 0 0
\(379\) 27.7780i 1.42686i 0.700728 + 0.713429i \(0.252859\pi\)
−0.700728 + 0.713429i \(0.747141\pi\)
\(380\) −7.76264 + 5.11169i −0.398215 + 0.262224i
\(381\) 0 0
\(382\) 1.96387 + 6.55323i 0.100481 + 0.335293i
\(383\) −23.2824 −1.18968 −0.594838 0.803846i \(-0.702784\pi\)
−0.594838 + 0.803846i \(0.702784\pi\)
\(384\) 0 0
\(385\) 3.09723 0.157850
\(386\) 3.63312 + 12.1233i 0.184921 + 0.617061i
\(387\) 0 0
\(388\) −11.1807 + 7.36246i −0.567613 + 0.373772i
\(389\) 20.6880i 1.04892i −0.851434 0.524462i \(-0.824266\pi\)
0.851434 0.524462i \(-0.175734\pi\)
\(390\) 0 0
\(391\) 18.4636i 0.933742i
\(392\) 12.7719 + 10.6989i 0.645076 + 0.540377i
\(393\) 0 0
\(394\) −34.3505 + 10.2942i −1.73055 + 0.518613i
\(395\) −5.96259 −0.300010
\(396\) 0 0
\(397\) −30.6375 −1.53765 −0.768826 0.639458i \(-0.779159\pi\)
−0.768826 + 0.639458i \(0.779159\pi\)
\(398\) 0.114370 0.0342744i 0.00573285 0.00171802i
\(399\) 0 0
\(400\) −1.58028 + 3.67461i −0.0790138 + 0.183730i
\(401\) 9.17964i 0.458409i 0.973378 + 0.229205i \(0.0736125\pi\)
−0.973378 + 0.229205i \(0.926388\pi\)
\(402\) 0 0
\(403\) 0.836825i 0.0416852i
\(404\) −19.6929 29.9057i −0.979757 1.48786i
\(405\) 0 0
\(406\) 0.0165911 + 0.0553628i 0.000823405 + 0.00274761i
\(407\) 10.5167 0.521293
\(408\) 0 0
\(409\) 6.98980 0.345623 0.172812 0.984955i \(-0.444715\pi\)
0.172812 + 0.984955i \(0.444715\pi\)
\(410\) 4.16448 + 13.8964i 0.205669 + 0.686296i
\(411\) 0 0
\(412\) 4.36585 + 6.63000i 0.215090 + 0.326637i
\(413\) 5.60315i 0.275713i
\(414\) 0 0
\(415\) 15.8285i 0.776991i
\(416\) −5.61950 0.648991i −0.275519 0.0318194i
\(417\) 0 0
\(418\) 18.5120 5.54768i 0.905451 0.271346i
\(419\) 11.2283 0.548538 0.274269 0.961653i \(-0.411564\pi\)
0.274269 + 0.961653i \(0.411564\pi\)
\(420\) 0 0
\(421\) −9.79629 −0.477442 −0.238721 0.971088i \(-0.576728\pi\)
−0.238721 + 0.971088i \(0.576728\pi\)
\(422\) 9.85318 2.95280i 0.479645 0.143740i
\(423\) 0 0
\(424\) −25.0472 + 29.9002i −1.21640 + 1.45208i
\(425\) 2.82145i 0.136861i
\(426\) 0 0
\(427\) 3.14646i 0.152268i
\(428\) 16.8669 11.1068i 0.815291 0.536868i
\(429\) 0 0
\(430\) −2.05060 6.84263i −0.0988887 0.329981i
\(431\) 24.2060 1.16596 0.582982 0.812485i \(-0.301886\pi\)
0.582982 + 0.812485i \(0.301886\pi\)
\(432\) 0 0
\(433\) 0.782969 0.0376271 0.0188136 0.999823i \(-0.494011\pi\)
0.0188136 + 0.999823i \(0.494011\pi\)
\(434\) −0.357841 1.19408i −0.0171769 0.0573174i
\(435\) 0 0
\(436\) −1.68094 + 1.10690i −0.0805026 + 0.0530109i
\(437\) 30.4116i 1.45478i
\(438\) 0 0
\(439\) 24.4364i 1.16628i 0.812370 + 0.583142i \(0.198177\pi\)
−0.812370 + 0.583142i \(0.801823\pi\)
\(440\) 5.34074 6.37553i 0.254610 0.303941i
\(441\) 0 0
\(442\) 3.82219 1.14544i 0.181803 0.0544828i
\(443\) 15.4804 0.735495 0.367748 0.929926i \(-0.380129\pi\)
0.367748 + 0.929926i \(0.380129\pi\)
\(444\) 0 0
\(445\) 2.96256 0.140439
\(446\) 16.1932 4.85278i 0.766770 0.229786i
\(447\) 0 0
\(448\) −8.29605 + 1.47694i −0.391952 + 0.0697790i
\(449\) 26.3821i 1.24505i 0.782601 + 0.622523i \(0.213892\pi\)
−0.782601 + 0.622523i \(0.786108\pi\)
\(450\) 0 0
\(451\) 30.1634i 1.42034i
\(452\) −1.03236 1.56775i −0.0485583 0.0737409i
\(453\) 0 0
\(454\) −4.31933 14.4131i −0.202716 0.676442i
\(455\) −1.05331 −0.0493800
\(456\) 0 0
\(457\) 10.8114 0.505737 0.252868 0.967501i \(-0.418626\pi\)
0.252868 + 0.967501i \(0.418626\pi\)
\(458\) −6.07459 20.2702i −0.283847 0.947166i
\(459\) 0 0
\(460\) −7.19798 10.9309i −0.335607 0.509655i
\(461\) 31.4194i 1.46335i 0.681656 + 0.731673i \(0.261260\pi\)
−0.681656 + 0.731673i \(0.738740\pi\)
\(462\) 0 0
\(463\) 14.1971i 0.659795i −0.944017 0.329897i \(-0.892986\pi\)
0.944017 0.329897i \(-0.107014\pi\)
\(464\) 0.142571 + 0.0613132i 0.00661871 + 0.00284640i
\(465\) 0 0
\(466\) 3.49147 1.04632i 0.161739 0.0484700i
\(467\) 41.0005 1.89727 0.948637 0.316366i \(-0.102463\pi\)
0.948637 + 0.316366i \(0.102463\pi\)
\(468\) 0 0
\(469\) −15.9170 −0.734981
\(470\) −1.35665 + 0.406560i −0.0625775 + 0.0187532i
\(471\) 0 0
\(472\) −11.5339 9.66185i −0.530889 0.444723i
\(473\) 14.8525i 0.682919i
\(474\) 0 0
\(475\) 4.64725i 0.213231i
\(476\) 4.96412 3.26887i 0.227530 0.149828i
\(477\) 0 0
\(478\) −0.961294 3.20773i −0.0439686 0.146718i
\(479\) −35.5508 −1.62436 −0.812179 0.583408i \(-0.801719\pi\)
−0.812179 + 0.583408i \(0.801719\pi\)
\(480\) 0 0
\(481\) −3.57653 −0.163076
\(482\) 4.88349 + 16.2957i 0.222437 + 0.742247i
\(483\) 0 0
\(484\) 3.93145 2.58885i 0.178702 0.117675i
\(485\) 6.69353i 0.303938i
\(486\) 0 0
\(487\) 18.8833i 0.855684i 0.903853 + 0.427842i \(0.140726\pi\)
−0.903853 + 0.427842i \(0.859274\pi\)
\(488\) −6.47686 5.42563i −0.293194 0.245607i
\(489\) 0 0
\(490\) 7.97985 2.39140i 0.360493 0.108033i
\(491\) −30.8985 −1.39443 −0.697214 0.716863i \(-0.745577\pi\)
−0.697214 + 0.716863i \(0.745577\pi\)
\(492\) 0 0
\(493\) −0.109470 −0.00493027
\(494\) −6.29559 + 1.88666i −0.283252 + 0.0848850i
\(495\) 0 0
\(496\) −3.07500 1.32241i −0.138072 0.0593782i
\(497\) 10.0440i 0.450533i
\(498\) 0 0
\(499\) 14.8595i 0.665201i −0.943068 0.332601i \(-0.892074\pi\)
0.943068 0.332601i \(-0.107926\pi\)
\(500\) 1.09994 + 1.67037i 0.0491907 + 0.0747012i
\(501\) 0 0
\(502\) −0.916409 3.05796i −0.0409013 0.136483i
\(503\) 22.2041 0.990032 0.495016 0.868884i \(-0.335162\pi\)
0.495016 + 0.868884i \(0.335162\pi\)
\(504\) 0 0
\(505\) −17.9036 −0.796701
\(506\) 7.81191 + 26.0675i 0.347282 + 1.15884i
\(507\) 0 0
\(508\) 6.11041 + 9.27930i 0.271106 + 0.411702i
\(509\) 14.2922i 0.633490i 0.948511 + 0.316745i \(0.102590\pi\)
−0.948511 + 0.316745i \(0.897410\pi\)
\(510\) 0 0
\(511\) 6.08632i 0.269243i
\(512\) −11.2652 + 19.6239i −0.497854 + 0.867261i
\(513\) 0 0
\(514\) −2.49222 + 0.746868i −0.109927 + 0.0329429i
\(515\) 3.96918 0.174903
\(516\) 0 0
\(517\) 2.94472 0.129509
\(518\) −5.10340 + 1.52939i −0.224230 + 0.0671974i
\(519\) 0 0
\(520\) −1.81629 + 2.16820i −0.0796495 + 0.0950819i
\(521\) 24.6719i 1.08090i 0.841377 + 0.540449i \(0.181745\pi\)
−0.841377 + 0.540449i \(0.818255\pi\)
\(522\) 0 0
\(523\) 23.2536i 1.01681i 0.861119 + 0.508403i \(0.169764\pi\)
−0.861119 + 0.508403i \(0.830236\pi\)
\(524\) 35.4388 23.3364i 1.54815 1.01945i
\(525\) 0 0
\(526\) −3.03109 10.1144i −0.132162 0.441010i
\(527\) 2.36106 0.102849
\(528\) 0 0
\(529\) 19.8238 0.861905
\(530\) 5.59850 + 18.6816i 0.243183 + 0.811477i
\(531\) 0 0
\(532\) −8.17648 + 5.38420i −0.354495 + 0.233435i
\(533\) 10.2580i 0.444324i
\(534\) 0 0
\(535\) 10.0977i 0.436561i
\(536\) −27.4467 + 32.7646i −1.18552 + 1.41522i
\(537\) 0 0
\(538\) −7.25010 + 2.17271i −0.312574 + 0.0936723i
\(539\) −17.3209 −0.746065
\(540\) 0 0
\(541\) −41.4505 −1.78210 −0.891049 0.453908i \(-0.850030\pi\)
−0.891049 + 0.453908i \(0.850030\pi\)
\(542\) −28.2130 + 8.45488i −1.21185 + 0.363168i
\(543\) 0 0
\(544\) 1.83110 15.8552i 0.0785077 0.679784i
\(545\) 1.00633i 0.0431064i
\(546\) 0 0
\(547\) 25.6656i 1.09738i −0.836025 0.548691i \(-0.815126\pi\)
0.836025 0.548691i \(-0.184874\pi\)
\(548\) −19.6174 29.7911i −0.838015 1.27261i
\(549\) 0 0
\(550\) −1.19375 3.98343i −0.0509018 0.169854i
\(551\) 0.180309 0.00768143
\(552\) 0 0
\(553\) −6.28047 −0.267073
\(554\) 8.77523 + 29.2820i 0.372824 + 1.24407i
\(555\) 0 0
\(556\) −11.8211 17.9516i −0.501325 0.761316i
\(557\) 44.5000i 1.88553i −0.333463 0.942763i \(-0.608217\pi\)
0.333463 0.942763i \(-0.391783\pi\)
\(558\) 0 0
\(559\) 5.05107i 0.213637i
\(560\) −1.66452 + 3.87051i −0.0703390 + 0.163559i
\(561\) 0 0
\(562\) 16.5591 4.96244i 0.698504 0.209328i
\(563\) 27.5301 1.16026 0.580129 0.814525i \(-0.303002\pi\)
0.580129 + 0.814525i \(0.303002\pi\)
\(564\) 0 0
\(565\) −0.938566 −0.0394858
\(566\) −5.20241 + 1.55906i −0.218674 + 0.0655322i
\(567\) 0 0
\(568\) −20.6751 17.3194i −0.867508 0.726706i
\(569\) 16.1417i 0.676694i 0.941021 + 0.338347i \(0.109868\pi\)
−0.941021 + 0.338347i \(0.890132\pi\)
\(570\) 0 0
\(571\) 39.9657i 1.67251i 0.548337 + 0.836257i \(0.315261\pi\)
−0.548337 + 0.836257i \(0.684739\pi\)
\(572\) 4.91167 3.23433i 0.205367 0.135234i
\(573\) 0 0
\(574\) 4.38650 + 14.6373i 0.183089 + 0.610948i
\(575\) −6.54399 −0.272903
\(576\) 0 0
\(577\) −6.58765 −0.274247 −0.137124 0.990554i \(-0.543786\pi\)
−0.137124 + 0.990554i \(0.543786\pi\)
\(578\) −3.66976 12.2456i −0.152642 0.509350i
\(579\) 0 0
\(580\) 0.0648088 0.0426765i 0.00269104 0.00177205i
\(581\) 16.6724i 0.691686i
\(582\) 0 0
\(583\) 40.5500i 1.67941i
\(584\) −12.5284 10.4950i −0.518431 0.434286i
\(585\) 0 0
\(586\) −18.1427 + 5.43701i −0.749468 + 0.224601i
\(587\) −42.2691 −1.74463 −0.872316 0.488943i \(-0.837382\pi\)
−0.872316 + 0.488943i \(0.837382\pi\)
\(588\) 0 0
\(589\) −3.88894 −0.160241
\(590\) −7.20635 + 2.15960i −0.296681 + 0.0889093i
\(591\) 0 0
\(592\) −5.65191 + 13.1423i −0.232292 + 0.540147i
\(593\) 28.8146i 1.18327i −0.806205 0.591636i \(-0.798482\pi\)
0.806205 0.591636i \(-0.201518\pi\)
\(594\) 0 0
\(595\) 2.97187i 0.121835i
\(596\) −21.6994 32.9529i −0.888843 1.34980i
\(597\) 0 0
\(598\) −2.65669 8.86508i −0.108640 0.362520i
\(599\) −22.4024 −0.915338 −0.457669 0.889123i \(-0.651316\pi\)
−0.457669 + 0.889123i \(0.651316\pi\)
\(600\) 0 0
\(601\) 34.1054 1.39119 0.695594 0.718435i \(-0.255141\pi\)
0.695594 + 0.718435i \(0.255141\pi\)
\(602\) −2.15992 7.20742i −0.0880318 0.293753i
\(603\) 0 0
\(604\) −14.6877 22.3048i −0.597635 0.907571i
\(605\) 2.35364i 0.0956890i
\(606\) 0 0
\(607\) 32.7256i 1.32829i 0.747603 + 0.664146i \(0.231205\pi\)
−0.747603 + 0.664146i \(0.768795\pi\)
\(608\) −3.01603 + 26.1153i −0.122316 + 1.05911i
\(609\) 0 0
\(610\) −4.04674 + 1.21273i −0.163848 + 0.0491019i
\(611\) −1.00144 −0.0405141
\(612\) 0 0
\(613\) 25.9015 1.04615 0.523076 0.852286i \(-0.324785\pi\)
0.523076 + 0.852286i \(0.324785\pi\)
\(614\) 12.1921 3.65374i 0.492035 0.147453i
\(615\) 0 0
\(616\) 5.62547 6.71542i 0.226657 0.270572i
\(617\) 22.9070i 0.922201i −0.887348 0.461100i \(-0.847455\pi\)
0.887348 0.461100i \(-0.152545\pi\)
\(618\) 0 0
\(619\) 34.2080i 1.37494i −0.726214 0.687468i \(-0.758722\pi\)
0.726214 0.687468i \(-0.241278\pi\)
\(620\) −1.39781 + 0.920455i −0.0561373 + 0.0369664i
\(621\) 0 0
\(622\) 0.378164 + 1.26189i 0.0151630 + 0.0505972i
\(623\) 3.12050 0.125020
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) −3.63501 12.1296i −0.145284 0.484798i
\(627\) 0 0
\(628\) −4.57469 + 3.01243i −0.182550 + 0.120209i
\(629\) 10.0910i 0.402355i
\(630\) 0 0
\(631\) 41.3100i 1.64453i −0.569108 0.822263i \(-0.692711\pi\)
0.569108 0.822263i \(-0.307289\pi\)
\(632\) −10.8298 + 12.9281i −0.430786 + 0.514252i
\(633\) 0 0
\(634\) −4.85102 + 1.45375i −0.192658 + 0.0577359i
\(635\) 5.55523 0.220453
\(636\) 0 0
\(637\) 5.89053 0.233391
\(638\) −0.154553 + 0.0463165i −0.00611882 + 0.00183369i
\(639\) 0 0
\(640\) 5.09704 + 10.1005i 0.201478 + 0.399257i
\(641\) 2.36666i 0.0934776i −0.998907 0.0467388i \(-0.985117\pi\)
0.998907 0.0467388i \(-0.0148828\pi\)
\(642\) 0 0
\(643\) 8.39957i 0.331247i 0.986189 + 0.165623i \(0.0529636\pi\)
−0.986189 + 0.165623i \(0.947036\pi\)
\(644\) −7.58172 11.5136i −0.298762 0.453701i
\(645\) 0 0
\(646\) −5.32313 17.7627i −0.209436 0.698864i
\(647\) −28.4889 −1.12001 −0.560007 0.828488i \(-0.689202\pi\)
−0.560007 + 0.828488i \(0.689202\pi\)
\(648\) 0 0
\(649\) 15.6420 0.614002
\(650\) 0.405974 + 1.35469i 0.0159236 + 0.0531353i
\(651\) 0 0
\(652\) 24.3631 + 36.9980i 0.954134 + 1.44895i
\(653\) 15.1822i 0.594124i −0.954858 0.297062i \(-0.903993\pi\)
0.954858 0.297062i \(-0.0960068\pi\)
\(654\) 0 0
\(655\) 21.2161i 0.828982i
\(656\) 37.6942 + 16.2105i 1.47171 + 0.632914i
\(657\) 0 0
\(658\) −1.42897 + 0.428235i −0.0557072 + 0.0166943i
\(659\) −19.3682 −0.754480 −0.377240 0.926116i \(-0.623127\pi\)
−0.377240 + 0.926116i \(0.623127\pi\)
\(660\) 0 0
\(661\) −33.7323 −1.31203 −0.656017 0.754746i \(-0.727760\pi\)
−0.656017 + 0.754746i \(0.727760\pi\)
\(662\) −2.38962 + 0.716121i −0.0928751 + 0.0278328i
\(663\) 0 0
\(664\) −34.3194 28.7491i −1.33185 1.11568i
\(665\) 4.89501i 0.189820i
\(666\) 0 0
\(667\) 0.253901i 0.00983107i
\(668\) −36.4997 + 24.0350i −1.41222 + 0.929943i
\(669\) 0 0
\(670\) 6.13484 + 20.4713i 0.237010 + 0.790875i
\(671\) 8.78378 0.339094
\(672\) 0 0
\(673\) 26.5860 1.02482 0.512408 0.858742i \(-0.328754\pi\)
0.512408 + 0.858742i \(0.328754\pi\)
\(674\) 4.29826 + 14.3428i 0.165563 + 0.552465i
\(675\) 0 0
\(676\) −1.67037 + 1.09994i −0.0642450 + 0.0423053i
\(677\) 1.21310i 0.0466232i 0.999728 + 0.0233116i \(0.00742098\pi\)
−0.999728 + 0.0233116i \(0.992579\pi\)
\(678\) 0 0
\(679\) 7.05038i 0.270569i
\(680\) −6.11747 5.12457i −0.234594 0.196518i
\(681\) 0 0
\(682\) 3.33343 0.998963i 0.127644 0.0382523i
\(683\) −9.78586 −0.374446 −0.187223 0.982317i \(-0.559949\pi\)
−0.187223 + 0.982317i \(0.559949\pi\)
\(684\) 0 0
\(685\) −17.8350 −0.681442
\(686\) 18.3936 5.51221i 0.702273 0.210457i
\(687\) 0 0
\(688\) −18.5607 7.98208i −0.707619 0.304314i
\(689\) 13.7903i 0.525369i
\(690\) 0 0
\(691\) 13.8480i 0.526801i 0.964687 + 0.263401i \(0.0848441\pi\)
−0.964687 + 0.263401i \(0.915156\pi\)
\(692\) 4.75721 + 7.22432i 0.180842 + 0.274627i
\(693\) 0 0
\(694\) −1.68903 5.63612i −0.0641149 0.213944i
\(695\) −10.7470 −0.407659
\(696\) 0 0
\(697\) −28.9425 −1.09628
\(698\) −2.37580 7.92780i −0.0899255 0.300072i
\(699\) 0 0
\(700\) 1.15858 + 1.75942i 0.0437901 + 0.0664999i
\(701\) 15.4379i 0.583082i −0.956558 0.291541i \(-0.905832\pi\)
0.956558 0.291541i \(-0.0941680\pi\)
\(702\) 0 0
\(703\) 16.6211i 0.626875i
\(704\) −4.12309 23.1596i −0.155395 0.872860i
\(705\) 0 0
\(706\) 13.8716 4.15705i 0.522066 0.156453i
\(707\) −18.8581 −0.709232
\(708\) 0 0
\(709\) −8.23882 −0.309416 −0.154708 0.987960i \(-0.549444\pi\)
−0.154708 + 0.987960i \(0.549444\pi\)
\(710\) −12.9178 + 3.87120i −0.484796 + 0.145284i
\(711\) 0 0
\(712\) 5.38086 6.42342i 0.201656 0.240728i
\(713\) 5.47618i 0.205084i
\(714\) 0 0
\(715\) 2.94047i 0.109967i
\(716\) −31.0636 + 20.4553i −1.16090 + 0.764452i
\(717\) 0 0
\(718\) 1.36106 + 4.54172i 0.0507945 + 0.169496i
\(719\) 37.1091 1.38394 0.691969 0.721927i \(-0.256744\pi\)
0.691969 + 0.721927i \(0.256744\pi\)
\(720\) 0 0
\(721\) 4.18078 0.155701
\(722\) 1.05430 + 3.51809i 0.0392370 + 0.130930i
\(723\) 0 0
\(724\) −5.42302 + 3.57105i −0.201545 + 0.132717i
\(725\) 0.0387991i 0.00144096i
\(726\) 0 0
\(727\) 41.8540i 1.55228i 0.630561 + 0.776140i \(0.282825\pi\)
−0.630561 + 0.776140i \(0.717175\pi\)
\(728\) −1.91312 + 2.28379i −0.0709049 + 0.0846430i
\(729\) 0 0
\(730\) −7.82776 + 2.34583i −0.289719 + 0.0868229i
\(731\) 14.2513 0.527105
\(732\) 0 0
\(733\) −17.6558 −0.652131 −0.326066 0.945347i \(-0.605723\pi\)
−0.326066 + 0.945347i \(0.605723\pi\)
\(734\) −39.2984 + 11.7769i −1.45053 + 0.434695i
\(735\) 0 0
\(736\) −36.7740 4.24699i −1.35551 0.156546i
\(737\) 44.4347i 1.63677i
\(738\) 0 0
\(739\) 26.6870i 0.981697i −0.871245 0.490848i \(-0.836687\pi\)
0.871245 0.490848i \(-0.163313\pi\)
\(740\) 3.93396 + 5.97414i 0.144615 + 0.219614i
\(741\) 0 0
\(742\) 5.89697 + 19.6776i 0.216485 + 0.722386i
\(743\) 22.2196 0.815158 0.407579 0.913170i \(-0.366373\pi\)
0.407579 + 0.913170i \(0.366373\pi\)
\(744\) 0 0
\(745\) −19.7279 −0.722774
\(746\) 1.21028 + 4.03856i 0.0443114 + 0.147862i
\(747\) 0 0
\(748\) 9.12551 + 13.8581i 0.333662 + 0.506701i
\(749\) 10.6360i 0.388631i
\(750\) 0 0
\(751\) 26.1685i 0.954902i −0.878658 0.477451i \(-0.841561\pi\)
0.878658 0.477451i \(-0.158439\pi\)
\(752\) −1.58256 + 3.67991i −0.0577100 + 0.134193i
\(753\) 0 0
\(754\) 0.0525607 0.0157514i 0.00191415 0.000573632i
\(755\) −13.3532 −0.485974
\(756\) 0 0
\(757\) 26.3551 0.957892 0.478946 0.877844i \(-0.341019\pi\)
0.478946 + 0.877844i \(0.341019\pi\)
\(758\) 37.6305 11.2771i 1.36680 0.409604i
\(759\) 0 0
\(760\) 10.0762 + 8.44076i 0.365501 + 0.306178i
\(761\) 20.7186i 0.751048i 0.926813 + 0.375524i \(0.122537\pi\)
−0.926813 + 0.375524i \(0.877463\pi\)
\(762\) 0 0
\(763\) 1.05998i 0.0383738i
\(764\) 8.08032 5.32088i 0.292336 0.192503i
\(765\) 0 0
\(766\) 9.45205 + 31.5405i 0.341517 + 1.13960i
\(767\) −5.31956 −0.192078
\(768\) 0 0
\(769\) 43.2023 1.55791 0.778957 0.627077i \(-0.215749\pi\)
0.778957 + 0.627077i \(0.215749\pi\)
\(770\) −1.25739 4.19579i −0.0453134 0.151206i
\(771\) 0 0
\(772\) 14.9484 9.84351i 0.538005 0.354276i
\(773\) 2.06517i 0.0742791i 0.999310 + 0.0371395i \(0.0118246\pi\)
−0.999310 + 0.0371395i \(0.988175\pi\)
\(774\) 0 0
\(775\) 0.836825i 0.0300596i
\(776\) 14.5129 + 12.1574i 0.520983 + 0.436425i
\(777\) 0 0
\(778\) −28.0259 + 8.39880i −1.00478 + 0.301112i
\(779\) 47.6716 1.70801
\(780\) 0 0
\(781\) 28.0391 1.00332
\(782\) 25.0124 7.49572i 0.894441 0.268046i
\(783\) 0 0
\(784\) 9.30867 21.6454i 0.332453 0.773050i
\(785\) 2.73873i 0.0977494i
\(786\) 0 0
\(787\) 21.5366i 0.767697i −0.923396 0.383848i \(-0.874599\pi\)
0.923396 0.383848i \(-0.125401\pi\)
\(788\) 27.8908 + 42.3552i 0.993569 + 1.50884i
\(789\) 0 0
\(790\) 2.42065 + 8.07746i 0.0861230 + 0.287383i
\(791\) −0.988603 −0.0351507
\(792\) 0 0
\(793\) −2.98720 −0.106079
\(794\) 12.4380 + 41.5043i 0.441409 + 1.47293i
\(795\) 0 0
\(796\) −0.0928624 0.141021i −0.00329142 0.00499837i
\(797\) 23.8557i 0.845014i −0.906360 0.422507i \(-0.861150\pi\)
0.906360 0.422507i \(-0.138850\pi\)
\(798\) 0 0
\(799\) 2.82553i 0.0999600i
\(800\) 5.61950 + 0.648991i 0.198679 + 0.0229453i
\(801\) 0 0
\(802\) 12.4356 3.72669i 0.439115 0.131594i
\(803\) 16.9908 0.599593
\(804\) 0 0
\(805\) −6.89286 −0.242942
\(806\) −1.13364 + 0.339729i −0.0399307 + 0.0119664i
\(807\) 0 0
\(808\) −32.5182 + 38.8187i −1.14399 + 1.36564i
\(809\) 6.23599i 0.219246i −0.993973 0.109623i \(-0.965036\pi\)
0.993973 0.109623i \(-0.0349643\pi\)
\(810\) 0 0
\(811\) 32.1270i 1.12813i −0.825730 0.564066i \(-0.809236\pi\)
0.825730 0.564066i \(-0.190764\pi\)
\(812\) 0.0682639 0.0449517i 0.00239559 0.00157750i
\(813\) 0 0
\(814\) −4.26950 14.2468i −0.149646 0.499352i
\(815\) 22.1496 0.775866
\(816\) 0 0
\(817\) −23.4736 −0.821237
\(818\) −2.83767 9.46901i −0.0992169 0.331076i
\(819\) 0 0
\(820\) 17.1347 11.2832i 0.598369 0.394025i
\(821\) 16.6273i 0.580297i 0.956982 + 0.290148i \(0.0937046\pi\)
−0.956982 + 0.290148i \(0.906295\pi\)
\(822\) 0 0
\(823\) 14.7242i 0.513254i −0.966510 0.256627i \(-0.917389\pi\)
0.966510 0.256627i \(-0.0826112\pi\)
\(824\) 7.20918 8.60598i 0.251144 0.299803i
\(825\) 0 0
\(826\) −7.59054 + 2.27473i −0.264109 + 0.0791481i
\(827\) 53.5217 1.86113 0.930566 0.366125i \(-0.119316\pi\)
0.930566 + 0.366125i \(0.119316\pi\)
\(828\) 0 0
\(829\) 42.9301 1.49102 0.745511 0.666493i \(-0.232205\pi\)
0.745511 + 0.666493i \(0.232205\pi\)
\(830\) −21.4427 + 6.42596i −0.744288 + 0.223048i
\(831\) 0 0
\(832\) 1.40219 + 7.87616i 0.0486121 + 0.273057i
\(833\) 16.6199i 0.575844i
\(834\) 0 0
\(835\) 21.8513i 0.756195i
\(836\) −15.0308 22.8258i −0.519850 0.789447i
\(837\) 0 0
\(838\) −4.55840 15.2109i −0.157467 0.525451i
\(839\) −16.1309 −0.556900 −0.278450 0.960451i \(-0.589821\pi\)
−0.278450 + 0.960451i \(0.589821\pi\)
\(840\) 0 0
\(841\) 28.9985 0.999948
\(842\) 3.97704 + 13.2709i 0.137058 + 0.457347i
\(843\) 0 0
\(844\) −8.00027 12.1492i −0.275381 0.418194i
\(845\) 1.00000i 0.0344010i
\(846\) 0 0
\(847\) 2.47912i 0.0851834i
\(848\) 50.6740 + 21.7925i 1.74015 + 0.748358i
\(849\) 0 0
\(850\) −3.82219 + 1.14544i −0.131100 + 0.0392881i
\(851\) −23.4048 −0.802306
\(852\) 0 0
\(853\) 39.9874 1.36914 0.684572 0.728945i \(-0.259989\pi\)
0.684572 + 0.728945i \(0.259989\pi\)
\(854\) −4.26248 + 1.27738i −0.145859 + 0.0437110i
\(855\) 0 0
\(856\) −21.8938 18.3403i −0.748314 0.626859i
\(857\) 39.7421i 1.35756i −0.734340 0.678782i \(-0.762508\pi\)
0.734340 0.678782i \(-0.237492\pi\)
\(858\) 0 0
\(859\) 31.8271i 1.08593i 0.839757 + 0.542963i \(0.182698\pi\)
−0.839757 + 0.542963i \(0.817302\pi\)
\(860\) −8.43715 + 5.55586i −0.287705 + 0.189453i
\(861\) 0 0
\(862\) −9.82701 32.7917i −0.334709 1.11689i
\(863\) −36.4117 −1.23947 −0.619734 0.784812i \(-0.712759\pi\)
−0.619734 + 0.784812i \(0.712759\pi\)
\(864\) 0 0
\(865\) 4.32498 0.147054
\(866\) −0.317865 1.06068i −0.0108015 0.0360434i
\(867\) 0 0
\(868\) −1.47233 + 0.969526i −0.0499741 + 0.0329079i
\(869\) 17.5328i 0.594760i
\(870\) 0 0
\(871\) 15.1114i 0.512031i
\(872\) 2.18192 + 1.82779i 0.0738893 + 0.0618966i
\(873\) 0 0
\(874\) −41.1983 + 12.3463i −1.39355 + 0.417620i
\(875\) 1.05331 0.0356084
\(876\) 0 0
\(877\) −55.9168 −1.88817 −0.944087 0.329695i \(-0.893054\pi\)
−0.944087 + 0.329695i \(0.893054\pi\)
\(878\) 33.1037 9.92052i 1.11720 0.334801i
\(879\) 0 0
\(880\) −10.8051 4.64675i −0.364239 0.156642i
\(881\) 26.8470i 0.904498i −0.891892 0.452249i \(-0.850622\pi\)
0.891892 0.452249i \(-0.149378\pi\)
\(882\) 0 0
\(883\) 35.7176i 1.20199i 0.799252 + 0.600996i \(0.205229\pi\)
−0.799252 + 0.600996i \(0.794771\pi\)
\(884\) −3.10342 4.71287i −0.104379 0.158511i
\(885\) 0 0
\(886\) −6.28463 20.9711i −0.211136 0.704539i
\(887\) 24.9974 0.839329 0.419665 0.907679i \(-0.362148\pi\)
0.419665 + 0.907679i \(0.362148\pi\)
\(888\) 0 0
\(889\) 5.85139 0.196249
\(890\) −1.20272 4.01335i −0.0403153 0.134528i
\(891\) 0 0
\(892\) −13.1480 19.9667i −0.440229 0.668534i
\(893\) 4.65397i 0.155739i
\(894\) 0 0
\(895\) 18.5968i 0.621623i
\(896\) 5.36878 + 10.6390i 0.179358 + 0.355423i
\(897\) 0 0
\(898\) 35.7395 10.7104i 1.19264 0.357412i
\(899\) 0.0324680 0.00108287
\(900\) 0 0
\(901\) −38.9087 −1.29624
\(902\) −40.8620 + 12.2455i −1.36056 + 0.407732i
\(903\) 0 0
\(904\) −1.70471 + 2.03500i −0.0566977 + 0.0676831i
\(905\) 3.24660i 0.107921i
\(906\) 0 0
\(907\) 2.80328i 0.0930813i −0.998916 0.0465407i \(-0.985180\pi\)
0.998916 0.0465407i \(-0.0148197\pi\)
\(908\) −17.7718 + 11.7027i −0.589778 + 0.388368i
\(909\) 0 0
\(910\) 0.427617 + 1.42691i 0.0141754 + 0.0473017i
\(911\) 10.8021 0.357889 0.178944 0.983859i \(-0.442732\pi\)
0.178944 + 0.983859i \(0.442732\pi\)
\(912\) 0 0
\(913\) 46.5432 1.54036
\(914\) −4.38915 14.6461i −0.145180 0.484451i
\(915\) 0 0
\(916\) −24.9938 + 16.4584i −0.825817 + 0.543800i
\(917\) 22.3472i 0.737969i
\(918\) 0 0
\(919\) 8.18284i 0.269927i 0.990851 + 0.134964i \(0.0430917\pi\)
−0.990851 + 0.134964i \(0.956908\pi\)
\(920\) −11.8858 + 14.1887i −0.391862 + 0.467787i
\(921\) 0 0
\(922\) 42.5635 12.7554i 1.40175 0.420078i
\(923\) −9.53560 −0.313868
\(924\) 0 0
\(925\) 3.57653 0.117596
\(926\) −19.2327 + 5.76365i −0.632024 + 0.189405i
\(927\) 0 0
\(928\) 0.0251803 0.218031i 0.000826582 0.00715723i
\(929\) 2.05904i 0.0675550i −0.999429 0.0337775i \(-0.989246\pi\)
0.999429 0.0337775i \(-0.0107538\pi\)
\(930\) 0 0
\(931\) 27.3748i 0.897173i
\(932\) −2.83489 4.30508i −0.0928599 0.141018i
\(933\) 0 0
\(934\) −16.6451 55.5429i −0.544645 1.81742i
\(935\) 8.29639 0.271321
\(936\) 0 0
\(937\) −30.9393 −1.01074 −0.505372 0.862902i \(-0.668645\pi\)
−0.505372 + 0.862902i \(0.668645\pi\)
\(938\) 6.46190 + 21.5627i 0.210989 + 0.704046i
\(939\) 0 0
\(940\) 1.10153 + 1.67278i 0.0359278 + 0.0545602i
\(941\) 0.795560i 0.0259345i −0.999916 0.0129673i \(-0.995872\pi\)
0.999916 0.0129673i \(-0.00412772\pi\)
\(942\) 0 0
\(943\) 67.1283i 2.18600i
\(944\) −8.40637 + 19.5473i −0.273604 + 0.636210i
\(945\) 0 0
\(946\) 20.1205 6.02973i 0.654175 0.196043i
\(947\) 34.2536 1.11309 0.556547 0.830816i \(-0.312126\pi\)
0.556547 + 0.830816i \(0.312126\pi\)
\(948\) 0 0
\(949\) −5.77827 −0.187571
\(950\) 6.29559 1.88666i 0.204256 0.0612114i
\(951\) 0 0
\(952\) −6.44361 5.39777i −0.208839 0.174943i
\(953\) 5.88066i 0.190493i 0.995454 + 0.0952467i \(0.0303640\pi\)
−0.995454 + 0.0952467i \(0.969636\pi\)
\(954\) 0 0
\(955\) 4.83744i 0.156536i
\(956\) −3.95523 + 2.60451i −0.127921 + 0.0842359i
\(957\) 0 0
\(958\) 14.4327 + 48.1603i 0.466299 + 1.55599i
\(959\) −18.7859 −0.606627
\(960\) 0 0
\(961\) 30.2997 0.977410
\(962\) 1.45198 + 4.84509i 0.0468137 + 0.156212i
\(963\) 0 0
\(964\) 20.0930 13.2312i 0.647152 0.426149i
\(965\) 8.94915i 0.288083i
\(966\) 0 0
\(967\) 0.248778i 0.00800015i 0.999992 + 0.00400007i \(0.00127327\pi\)
−0.999992 + 0.00400007i \(0.998727\pi\)
\(968\) −5.10316 4.27489i −0.164022 0.137400i
\(969\) 0 0
\(970\) 9.06766 2.71740i 0.291145 0.0872504i
\(971\) 26.8071 0.860280 0.430140 0.902762i \(-0.358464\pi\)
0.430140 + 0.902762i \(0.358464\pi\)
\(972\) 0 0
\(973\) −11.3200 −0.362902
\(974\) 25.5810 7.66613i 0.819669 0.245639i
\(975\) 0 0
\(976\) −4.72061 + 10.9768i −0.151103 + 0.351359i
\(977\) 20.6746i 0.661439i 0.943729 + 0.330720i \(0.107291\pi\)
−0.943729 + 0.330720i \(0.892709\pi\)
\(978\) 0 0
\(979\) 8.71132i 0.278415i
\(980\) −6.47922 9.83937i −0.206971 0.314307i
\(981\) 0 0
\(982\) 12.5440 + 41.8578i 0.400294 + 1.33574i
\(983\) −5.06227 −0.161461 −0.0807306 0.996736i \(-0.525725\pi\)
−0.0807306 + 0.996736i \(0.525725\pi\)
\(984\) 0 0
\(985\) 25.3567 0.807933
\(986\) 0.0444418 + 0.148298i 0.00141532 + 0.00472276i
\(987\) 0 0
\(988\) 5.11169 + 7.76264i 0.162624 + 0.246962i
\(989\) 33.0541i 1.05106i
\(990\) 0 0
\(991\) 39.5125i 1.25516i 0.778554 + 0.627578i \(0.215953\pi\)
−0.778554 + 0.627578i \(0.784047\pi\)
\(992\) −0.543092 + 4.70254i −0.0172432 + 0.149306i
\(993\) 0 0
\(994\) −13.6065 + 4.07759i −0.431571 + 0.129333i
\(995\) −0.0844252 −0.00267646
\(996\) 0 0
\(997\) 49.8485 1.57872 0.789360 0.613931i \(-0.210413\pi\)
0.789360 + 0.613931i \(0.210413\pi\)
\(998\) −20.1300 + 6.03256i −0.637204 + 0.190957i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2340.2.g.b.1691.19 48
3.2 odd 2 inner 2340.2.g.b.1691.30 yes 48
4.3 odd 2 inner 2340.2.g.b.1691.29 yes 48
12.11 even 2 inner 2340.2.g.b.1691.20 yes 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2340.2.g.b.1691.19 48 1.1 even 1 trivial
2340.2.g.b.1691.20 yes 48 12.11 even 2 inner
2340.2.g.b.1691.29 yes 48 4.3 odd 2 inner
2340.2.g.b.1691.30 yes 48 3.2 odd 2 inner