Properties

Label 2340.2.fo.a.1601.1
Level $2340$
Weight $2$
Character 2340.1601
Analytic conductor $18.685$
Analytic rank $0$
Dimension $40$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2340,2,Mod(1241,2340)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2340, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([0, 6, 0, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2340.1241"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2340 = 2^{2} \cdot 3^{2} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2340.fo (of order \(12\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [40,0,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.6849940730\)
Analytic rank: \(0\)
Dimension: \(40\)
Relative dimension: \(10\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 1601.1
Character \(\chi\) \(=\) 2340.1601
Dual form 2340.2.fo.a.2321.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.707107 - 0.707107i) q^{5} +(-4.01056 + 1.07463i) q^{7} +(-3.52935 - 0.945687i) q^{11} +(-3.53472 - 0.711154i) q^{13} +(-0.250531 + 0.433933i) q^{17} +(-0.655804 - 2.44749i) q^{19} +(4.31373 + 7.47161i) q^{23} +1.00000i q^{25} +(1.88803 - 1.09005i) q^{29} +(7.27566 - 7.27566i) q^{31} +(3.59577 + 2.07602i) q^{35} +(-0.373943 + 1.39557i) q^{37} +(-0.600166 + 2.23985i) q^{41} +(10.4702 + 6.04499i) q^{43} +(3.63444 - 3.63444i) q^{47} +(8.86761 - 5.11972i) q^{49} -3.27937i q^{53} +(1.82693 + 3.16433i) q^{55} +(2.14790 + 8.01606i) q^{59} +(4.60699 - 7.97954i) q^{61} +(1.99656 + 3.00229i) q^{65} +(12.6951 + 3.40165i) q^{67} +(-12.8153 + 3.43386i) q^{71} +(-7.04050 - 7.04050i) q^{73} +15.1709 q^{77} +2.00972 q^{79} +(10.9028 + 10.9028i) q^{83} +(0.483989 - 0.129685i) q^{85} +(-12.3381 - 3.30598i) q^{89} +(14.9405 - 0.946382i) q^{91} +(-1.26692 + 2.19436i) q^{95} +(-2.79497 - 10.4310i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40 q - 12 q^{13} - 20 q^{19} - 28 q^{31} + 12 q^{49} + 16 q^{55} + 48 q^{61} + 16 q^{67} - 20 q^{73} + 80 q^{79} + 20 q^{85} + 4 q^{91} - 40 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2340\mathbb{Z}\right)^\times\).

\(n\) \(937\) \(1081\) \(1171\) \(2081\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{12}\right)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −0.707107 0.707107i −0.316228 0.316228i
\(6\) 0 0
\(7\) −4.01056 + 1.07463i −1.51585 + 0.406171i −0.918373 0.395715i \(-0.870497\pi\)
−0.597477 + 0.801886i \(0.703830\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −3.52935 0.945687i −1.06414 0.285135i −0.316056 0.948740i \(-0.602359\pi\)
−0.748083 + 0.663605i \(0.769026\pi\)
\(12\) 0 0
\(13\) −3.53472 0.711154i −0.980356 0.197239i
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −0.250531 + 0.433933i −0.0607628 + 0.105244i −0.894807 0.446454i \(-0.852687\pi\)
0.834044 + 0.551698i \(0.186020\pi\)
\(18\) 0 0
\(19\) −0.655804 2.44749i −0.150452 0.561494i −0.999452 0.0331012i \(-0.989462\pi\)
0.849000 0.528393i \(-0.177205\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 4.31373 + 7.47161i 0.899476 + 1.55794i 0.828166 + 0.560483i \(0.189385\pi\)
0.0713101 + 0.997454i \(0.477282\pi\)
\(24\) 0 0
\(25\) 1.00000i 0.200000i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 1.88803 1.09005i 0.350598 0.202418i −0.314351 0.949307i \(-0.601787\pi\)
0.664949 + 0.746889i \(0.268453\pi\)
\(30\) 0 0
\(31\) 7.27566 7.27566i 1.30675 1.30675i 0.382999 0.923749i \(-0.374891\pi\)
0.923749 0.382999i \(-0.125109\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 3.59577 + 2.07602i 0.607796 + 0.350911i
\(36\) 0 0
\(37\) −0.373943 + 1.39557i −0.0614758 + 0.229431i −0.989828 0.142272i \(-0.954559\pi\)
0.928352 + 0.371703i \(0.121226\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −0.600166 + 2.23985i −0.0937302 + 0.349806i −0.996824 0.0796378i \(-0.974624\pi\)
0.903094 + 0.429444i \(0.141290\pi\)
\(42\) 0 0
\(43\) 10.4702 + 6.04499i 1.59670 + 0.921853i 0.992118 + 0.125307i \(0.0399915\pi\)
0.604578 + 0.796546i \(0.293342\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 3.63444 3.63444i 0.530138 0.530138i −0.390475 0.920613i \(-0.627689\pi\)
0.920613 + 0.390475i \(0.127689\pi\)
\(48\) 0 0
\(49\) 8.86761 5.11972i 1.26680 0.731388i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 3.27937i 0.450456i −0.974306 0.225228i \(-0.927687\pi\)
0.974306 0.225228i \(-0.0723127\pi\)
\(54\) 0 0
\(55\) 1.82693 + 3.16433i 0.246343 + 0.426678i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 2.14790 + 8.01606i 0.279632 + 1.04360i 0.952673 + 0.303997i \(0.0983213\pi\)
−0.673041 + 0.739606i \(0.735012\pi\)
\(60\) 0 0
\(61\) 4.60699 7.97954i 0.589865 1.02168i −0.404385 0.914589i \(-0.632514\pi\)
0.994250 0.107087i \(-0.0341524\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 1.99656 + 3.00229i 0.247643 + 0.372388i
\(66\) 0 0
\(67\) 12.6951 + 3.40165i 1.55096 + 0.415578i 0.929787 0.368097i \(-0.119991\pi\)
0.621171 + 0.783675i \(0.286657\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −12.8153 + 3.43386i −1.52090 + 0.407524i −0.920038 0.391829i \(-0.871842\pi\)
−0.600861 + 0.799353i \(0.705176\pi\)
\(72\) 0 0
\(73\) −7.04050 7.04050i −0.824028 0.824028i 0.162655 0.986683i \(-0.447994\pi\)
−0.986683 + 0.162655i \(0.947994\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 15.1709 1.72889
\(78\) 0 0
\(79\) 2.00972 0.226111 0.113056 0.993589i \(-0.463936\pi\)
0.113056 + 0.993589i \(0.463936\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 10.9028 + 10.9028i 1.19674 + 1.19674i 0.975138 + 0.221597i \(0.0711271\pi\)
0.221597 + 0.975138i \(0.428873\pi\)
\(84\) 0 0
\(85\) 0.483989 0.129685i 0.0524960 0.0140663i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −12.3381 3.30598i −1.30783 0.350433i −0.463427 0.886135i \(-0.653380\pi\)
−0.844407 + 0.535702i \(0.820047\pi\)
\(90\) 0 0
\(91\) 14.9405 0.946382i 1.56618 0.0992078i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −1.26692 + 2.19436i −0.129983 + 0.225137i
\(96\) 0 0
\(97\) −2.79497 10.4310i −0.283786 1.05911i −0.949722 0.313096i \(-0.898634\pi\)
0.665935 0.746010i \(-0.268033\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 4.16671 + 7.21696i 0.414603 + 0.718114i 0.995387 0.0959440i \(-0.0305870\pi\)
−0.580783 + 0.814058i \(0.697254\pi\)
\(102\) 0 0
\(103\) 3.43554i 0.338514i 0.985572 + 0.169257i \(0.0541368\pi\)
−0.985572 + 0.169257i \(0.945863\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −11.2736 + 6.50880i −1.08986 + 0.629230i −0.933539 0.358477i \(-0.883296\pi\)
−0.156319 + 0.987707i \(0.549963\pi\)
\(108\) 0 0
\(109\) −7.42028 + 7.42028i −0.710734 + 0.710734i −0.966689 0.255955i \(-0.917610\pi\)
0.255955 + 0.966689i \(0.417610\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 1.29483 + 0.747569i 0.121807 + 0.0703254i 0.559666 0.828719i \(-0.310930\pi\)
−0.437858 + 0.899044i \(0.644263\pi\)
\(114\) 0 0
\(115\) 2.23295 8.33349i 0.208224 0.777102i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0.538455 2.00954i 0.0493601 0.184214i
\(120\) 0 0
\(121\) 2.03571 + 1.17532i 0.185065 + 0.106847i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 0.707107 0.707107i 0.0632456 0.0632456i
\(126\) 0 0
\(127\) 16.3998 9.46843i 1.45525 0.840187i 0.456475 0.889736i \(-0.349112\pi\)
0.998772 + 0.0495491i \(0.0157784\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 7.71300i 0.673888i −0.941525 0.336944i \(-0.890607\pi\)
0.941525 0.336944i \(-0.109393\pi\)
\(132\) 0 0
\(133\) 5.26029 + 9.11109i 0.456125 + 0.790031i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 3.17079 + 11.8336i 0.270899 + 1.01101i 0.958540 + 0.284958i \(0.0919797\pi\)
−0.687641 + 0.726051i \(0.741354\pi\)
\(138\) 0 0
\(139\) −1.74701 + 3.02591i −0.148179 + 0.256654i −0.930555 0.366153i \(-0.880675\pi\)
0.782375 + 0.622807i \(0.214008\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 11.8027 + 5.85265i 0.986995 + 0.489423i
\(144\) 0 0
\(145\) −2.10582 0.564253i −0.174879 0.0468587i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 21.8376 5.85137i 1.78901 0.479363i 0.796831 0.604202i \(-0.206508\pi\)
0.992177 + 0.124839i \(0.0398414\pi\)
\(150\) 0 0
\(151\) −15.3695 15.3695i −1.25075 1.25075i −0.955383 0.295371i \(-0.904557\pi\)
−0.295371 0.955383i \(-0.595443\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −10.2893 −0.826460
\(156\) 0 0
\(157\) −2.01108 −0.160501 −0.0802507 0.996775i \(-0.525572\pi\)
−0.0802507 + 0.996775i \(0.525572\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −25.3297 25.3297i −1.99626 1.99626i
\(162\) 0 0
\(163\) 1.46133 0.391562i 0.114460 0.0306695i −0.201134 0.979564i \(-0.564463\pi\)
0.315594 + 0.948894i \(0.397796\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 2.50924 + 0.672350i 0.194171 + 0.0520280i 0.354594 0.935020i \(-0.384619\pi\)
−0.160423 + 0.987048i \(0.551286\pi\)
\(168\) 0 0
\(169\) 11.9885 + 5.02746i 0.922194 + 0.386728i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 8.84184 15.3145i 0.672233 1.16434i −0.305037 0.952340i \(-0.598669\pi\)
0.977270 0.212000i \(-0.0679978\pi\)
\(174\) 0 0
\(175\) −1.07463 4.01056i −0.0812342 0.303170i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 9.44475 + 16.3588i 0.705934 + 1.22271i 0.966353 + 0.257218i \(0.0828058\pi\)
−0.260419 + 0.965496i \(0.583861\pi\)
\(180\) 0 0
\(181\) 8.53654i 0.634516i −0.948339 0.317258i \(-0.897238\pi\)
0.948339 0.317258i \(-0.102762\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 1.25124 0.722402i 0.0919928 0.0531121i
\(186\) 0 0
\(187\) 1.29458 1.29458i 0.0946689 0.0946689i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −3.46898 2.00282i −0.251007 0.144919i 0.369218 0.929343i \(-0.379625\pi\)
−0.620225 + 0.784424i \(0.712959\pi\)
\(192\) 0 0
\(193\) −1.73011 + 6.45685i −0.124536 + 0.464774i −0.999823 0.0188299i \(-0.994006\pi\)
0.875287 + 0.483604i \(0.160673\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −1.23033 + 4.59166i −0.0876575 + 0.327142i −0.995804 0.0915100i \(-0.970831\pi\)
0.908147 + 0.418652i \(0.137497\pi\)
\(198\) 0 0
\(199\) −0.876215 0.505883i −0.0621132 0.0358611i 0.468622 0.883399i \(-0.344751\pi\)
−0.530735 + 0.847538i \(0.678084\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −6.40065 + 6.40065i −0.449238 + 0.449238i
\(204\) 0 0
\(205\) 2.00819 1.15943i 0.140258 0.0809782i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 9.25825i 0.640407i
\(210\) 0 0
\(211\) 2.98181 + 5.16465i 0.205276 + 0.355549i 0.950221 0.311577i \(-0.100857\pi\)
−0.744944 + 0.667127i \(0.767524\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −3.12912 11.6780i −0.213404 0.796435i
\(216\) 0 0
\(217\) −21.3609 + 36.9981i −1.45007 + 2.51160i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 1.19415 1.35567i 0.0803273 0.0911920i
\(222\) 0 0
\(223\) 4.41425 + 1.18279i 0.295600 + 0.0792057i 0.403571 0.914948i \(-0.367769\pi\)
−0.107971 + 0.994154i \(0.534435\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 18.0088 4.82545i 1.19529 0.320277i 0.394315 0.918976i \(-0.370982\pi\)
0.800974 + 0.598699i \(0.204315\pi\)
\(228\) 0 0
\(229\) −5.88703 5.88703i −0.389026 0.389026i 0.485314 0.874340i \(-0.338705\pi\)
−0.874340 + 0.485314i \(0.838705\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −6.90758 −0.452531 −0.226265 0.974066i \(-0.572652\pi\)
−0.226265 + 0.974066i \(0.572652\pi\)
\(234\) 0 0
\(235\) −5.13988 −0.335289
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 14.2978 + 14.2978i 0.924848 + 0.924848i 0.997367 0.0725191i \(-0.0231038\pi\)
−0.0725191 + 0.997367i \(0.523104\pi\)
\(240\) 0 0
\(241\) 15.5944 4.17850i 1.00452 0.269161i 0.281183 0.959654i \(-0.409273\pi\)
0.723339 + 0.690493i \(0.242607\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −9.89054 2.65016i −0.631883 0.169313i
\(246\) 0 0
\(247\) 0.577541 + 9.11759i 0.0367481 + 0.580138i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −12.8248 + 22.2133i −0.809497 + 1.40209i 0.103715 + 0.994607i \(0.466927\pi\)
−0.913213 + 0.407483i \(0.866406\pi\)
\(252\) 0 0
\(253\) −8.15888 30.4494i −0.512944 1.91433i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 8.08608 + 14.0055i 0.504396 + 0.873639i 0.999987 + 0.00508346i \(0.00161812\pi\)
−0.495591 + 0.868556i \(0.665049\pi\)
\(258\) 0 0
\(259\) 5.99888i 0.372753i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −26.3248 + 15.1986i −1.62326 + 0.937188i −0.637215 + 0.770686i \(0.719914\pi\)
−0.986041 + 0.166502i \(0.946753\pi\)
\(264\) 0 0
\(265\) −2.31886 + 2.31886i −0.142447 + 0.142447i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 6.15094 + 3.55125i 0.375030 + 0.216523i 0.675653 0.737219i \(-0.263862\pi\)
−0.300624 + 0.953743i \(0.597195\pi\)
\(270\) 0 0
\(271\) 0.301356 1.12468i 0.0183061 0.0683192i −0.956169 0.292817i \(-0.905407\pi\)
0.974475 + 0.224498i \(0.0720741\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0.945687 3.52935i 0.0570270 0.212828i
\(276\) 0 0
\(277\) −0.107751 0.0622103i −0.00647415 0.00373786i 0.496759 0.867888i \(-0.334523\pi\)
−0.503234 + 0.864150i \(0.667856\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 23.1030 23.1030i 1.37821 1.37821i 0.530570 0.847641i \(-0.321978\pi\)
0.847641 0.530570i \(-0.178022\pi\)
\(282\) 0 0
\(283\) 11.0483 6.37873i 0.656753 0.379176i −0.134286 0.990943i \(-0.542874\pi\)
0.791039 + 0.611766i \(0.209541\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 9.62801i 0.568324i
\(288\) 0 0
\(289\) 8.37447 + 14.5050i 0.492616 + 0.853236i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −6.38558 23.8313i −0.373050 1.39224i −0.856174 0.516688i \(-0.827165\pi\)
0.483124 0.875552i \(-0.339502\pi\)
\(294\) 0 0
\(295\) 4.14942 7.18701i 0.241589 0.418444i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −9.93439 29.4778i −0.574521 1.70474i
\(300\) 0 0
\(301\) −48.4876 12.9922i −2.79478 0.748859i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −8.90003 + 2.38475i −0.509614 + 0.136551i
\(306\) 0 0
\(307\) 3.08427 + 3.08427i 0.176028 + 0.176028i 0.789622 0.613594i \(-0.210277\pi\)
−0.613594 + 0.789622i \(0.710277\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −1.46711 −0.0831922 −0.0415961 0.999135i \(-0.513244\pi\)
−0.0415961 + 0.999135i \(0.513244\pi\)
\(312\) 0 0
\(313\) 23.6515 1.33686 0.668430 0.743775i \(-0.266967\pi\)
0.668430 + 0.743775i \(0.266967\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 13.8476 + 13.8476i 0.777756 + 0.777756i 0.979449 0.201692i \(-0.0646441\pi\)
−0.201692 + 0.979449i \(0.564644\pi\)
\(318\) 0 0
\(319\) −7.69436 + 2.06170i −0.430801 + 0.115433i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 1.22635 + 0.328599i 0.0682358 + 0.0182837i
\(324\) 0 0
\(325\) 0.711154 3.53472i 0.0394477 0.196071i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −10.6705 + 18.4818i −0.588283 + 1.01894i
\(330\) 0 0
\(331\) 1.63770 + 6.11198i 0.0900161 + 0.335945i 0.996217 0.0869033i \(-0.0276971\pi\)
−0.906201 + 0.422848i \(0.861030\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −6.57149 11.3822i −0.359039 0.621873i
\(336\) 0 0
\(337\) 14.7494i 0.803452i 0.915760 + 0.401726i \(0.131590\pi\)
−0.915760 + 0.401726i \(0.868410\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −32.5589 + 18.7979i −1.76316 + 1.01796i
\(342\) 0 0
\(343\) −9.51078 + 9.51078i −0.513534 + 0.513534i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 9.41926 + 5.43821i 0.505653 + 0.291939i 0.731045 0.682329i \(-0.239033\pi\)
−0.225392 + 0.974268i \(0.572366\pi\)
\(348\) 0 0
\(349\) −2.31436 + 8.63731i −0.123885 + 0.462345i −0.999797 0.0201251i \(-0.993594\pi\)
0.875913 + 0.482470i \(0.160260\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −5.05346 + 18.8598i −0.268968 + 1.00380i 0.690808 + 0.723038i \(0.257255\pi\)
−0.959776 + 0.280765i \(0.909412\pi\)
\(354\) 0 0
\(355\) 11.4899 + 6.63370i 0.609821 + 0.352080i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 10.5133 10.5133i 0.554872 0.554872i −0.372971 0.927843i \(-0.621661\pi\)
0.927843 + 0.372971i \(0.121661\pi\)
\(360\) 0 0
\(361\) 10.8943 6.28985i 0.573386 0.331045i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 9.95677i 0.521161i
\(366\) 0 0
\(367\) −4.72665 8.18679i −0.246729 0.427347i 0.715887 0.698216i \(-0.246022\pi\)
−0.962616 + 0.270869i \(0.912689\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 3.52410 + 13.1521i 0.182962 + 0.682823i
\(372\) 0 0
\(373\) 6.19481 10.7297i 0.320755 0.555564i −0.659889 0.751363i \(-0.729397\pi\)
0.980644 + 0.195799i \(0.0627300\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −7.44885 + 2.51036i −0.383635 + 0.129290i
\(378\) 0 0
\(379\) 31.2262 + 8.36703i 1.60398 + 0.429785i 0.946242 0.323461i \(-0.104846\pi\)
0.657739 + 0.753246i \(0.271513\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 19.4649 5.21560i 0.994610 0.266505i 0.275424 0.961323i \(-0.411182\pi\)
0.719186 + 0.694818i \(0.244515\pi\)
\(384\) 0 0
\(385\) −10.7275 10.7275i −0.546723 0.546723i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 1.48657 0.0753720 0.0376860 0.999290i \(-0.488001\pi\)
0.0376860 + 0.999290i \(0.488001\pi\)
\(390\) 0 0
\(391\) −4.32290 −0.218618
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −1.42109 1.42109i −0.0715026 0.0715026i
\(396\) 0 0
\(397\) 2.71632 0.727836i 0.136328 0.0365290i −0.190010 0.981782i \(-0.560852\pi\)
0.326338 + 0.945253i \(0.394185\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −2.05571 0.550825i −0.102657 0.0275069i 0.207125 0.978315i \(-0.433589\pi\)
−0.309782 + 0.950808i \(0.600256\pi\)
\(402\) 0 0
\(403\) −30.8916 + 20.5433i −1.53882 + 1.02334i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 2.63955 4.57184i 0.130838 0.226617i
\(408\) 0 0
\(409\) −1.17797 4.39625i −0.0582470 0.217381i 0.930668 0.365866i \(-0.119227\pi\)
−0.988915 + 0.148485i \(0.952560\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −17.2286 29.8407i −0.847762 1.46837i
\(414\) 0 0
\(415\) 15.4189i 0.756882i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 14.0440 8.10829i 0.686093 0.396116i −0.116054 0.993243i \(-0.537025\pi\)
0.802147 + 0.597127i \(0.203691\pi\)
\(420\) 0 0
\(421\) −16.4992 + 16.4992i −0.804122 + 0.804122i −0.983737 0.179615i \(-0.942515\pi\)
0.179615 + 0.983737i \(0.442515\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −0.433933 0.250531i −0.0210488 0.0121526i
\(426\) 0 0
\(427\) −9.90160 + 36.9533i −0.479172 + 1.78829i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 3.63236 13.5561i 0.174965 0.652977i −0.821593 0.570074i \(-0.806914\pi\)
0.996558 0.0829022i \(-0.0264189\pi\)
\(432\) 0 0
\(433\) −0.186315 0.107569i −0.00895373 0.00516944i 0.495516 0.868599i \(-0.334979\pi\)
−0.504470 + 0.863429i \(0.668312\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 15.4578 15.4578i 0.739445 0.739445i
\(438\) 0 0
\(439\) −9.59192 + 5.53790i −0.457797 + 0.264309i −0.711118 0.703073i \(-0.751811\pi\)
0.253320 + 0.967382i \(0.418477\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 19.6249i 0.932408i −0.884677 0.466204i \(-0.845621\pi\)
0.884677 0.466204i \(-0.154379\pi\)
\(444\) 0 0
\(445\) 6.38666 + 11.0620i 0.302757 + 0.524390i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −4.83837 18.0571i −0.228337 0.852165i −0.981040 0.193805i \(-0.937917\pi\)
0.752703 0.658360i \(-0.228750\pi\)
\(450\) 0 0
\(451\) 4.23639 7.33765i 0.199484 0.345516i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −11.2337 9.89530i −0.526643 0.463899i
\(456\) 0 0
\(457\) −30.5132 8.17597i −1.42734 0.382456i −0.539262 0.842138i \(-0.681297\pi\)
−0.888083 + 0.459682i \(0.847963\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −23.8645 + 6.39448i −1.11148 + 0.297821i −0.767432 0.641131i \(-0.778466\pi\)
−0.344050 + 0.938951i \(0.611799\pi\)
\(462\) 0 0
\(463\) −28.7285 28.7285i −1.33513 1.33513i −0.900714 0.434413i \(-0.856956\pi\)
−0.434413 0.900714i \(-0.643044\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 34.9601 1.61776 0.808880 0.587974i \(-0.200074\pi\)
0.808880 + 0.587974i \(0.200074\pi\)
\(468\) 0 0
\(469\) −54.5702 −2.51982
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −31.2365 31.2365i −1.43625 1.43625i
\(474\) 0 0
\(475\) 2.44749 0.655804i 0.112299 0.0300904i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −7.34671 1.96854i −0.335680 0.0899451i 0.0870421 0.996205i \(-0.472259\pi\)
−0.422722 + 0.906260i \(0.638925\pi\)
\(480\) 0 0
\(481\) 2.31425 4.66703i 0.105521 0.212798i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −5.39947 + 9.35216i −0.245177 + 0.424660i
\(486\) 0 0
\(487\) 5.20417 + 19.4222i 0.235824 + 0.880106i 0.977776 + 0.209653i \(0.0672334\pi\)
−0.741952 + 0.670453i \(0.766100\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −8.72223 15.1073i −0.393629 0.681785i 0.599296 0.800527i \(-0.295447\pi\)
−0.992925 + 0.118742i \(0.962114\pi\)
\(492\) 0 0
\(493\) 1.09237i 0.0491978i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 47.7066 27.5434i 2.13993 1.23549i
\(498\) 0 0
\(499\) −14.7662 + 14.7662i −0.661028 + 0.661028i −0.955622 0.294594i \(-0.904815\pi\)
0.294594 + 0.955622i \(0.404815\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −12.3907 7.15375i −0.552472 0.318970i 0.197646 0.980273i \(-0.436670\pi\)
−0.750119 + 0.661303i \(0.770004\pi\)
\(504\) 0 0
\(505\) 2.15685 8.04947i 0.0959785 0.358197i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 8.69157 32.4374i 0.385247 1.43776i −0.452529 0.891749i \(-0.649478\pi\)
0.837777 0.546013i \(-0.183855\pi\)
\(510\) 0 0
\(511\) 35.8023 + 20.6705i 1.58380 + 0.914407i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 2.42929 2.42929i 0.107047 0.107047i
\(516\) 0 0
\(517\) −16.2643 + 9.39018i −0.715302 + 0.412980i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 40.0463i 1.75446i −0.480071 0.877229i \(-0.659389\pi\)
0.480071 0.877229i \(-0.340611\pi\)
\(522\) 0 0
\(523\) 17.1739 + 29.7461i 0.750962 + 1.30070i 0.947357 + 0.320180i \(0.103743\pi\)
−0.196395 + 0.980525i \(0.562923\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 1.33437 + 4.97993i 0.0581260 + 0.216929i
\(528\) 0 0
\(529\) −25.7166 + 44.5425i −1.11811 + 1.93663i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 3.71430 7.49044i 0.160884 0.324447i
\(534\) 0 0
\(535\) 12.5740 + 3.36920i 0.543623 + 0.145663i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −36.1386 + 9.68330i −1.55660 + 0.417089i
\(540\) 0 0
\(541\) 4.91604 + 4.91604i 0.211357 + 0.211357i 0.804844 0.593487i \(-0.202249\pi\)
−0.593487 + 0.804844i \(0.702249\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 10.4939 0.449507
\(546\) 0 0
\(547\) −9.71191 −0.415251 −0.207626 0.978208i \(-0.566574\pi\)
−0.207626 + 0.978208i \(0.566574\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −3.90607 3.90607i −0.166404 0.166404i
\(552\) 0 0
\(553\) −8.06011 + 2.15970i −0.342751 + 0.0918397i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 6.54304 + 1.75320i 0.277237 + 0.0742855i 0.394759 0.918785i \(-0.370828\pi\)
−0.117521 + 0.993070i \(0.537495\pi\)
\(558\) 0 0
\(559\) −32.7105 28.8133i −1.38350 1.21867i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −12.2808 + 21.2710i −0.517574 + 0.896464i 0.482218 + 0.876051i \(0.339831\pi\)
−0.999792 + 0.0204126i \(0.993502\pi\)
\(564\) 0 0
\(565\) −0.386970 1.44419i −0.0162800 0.0607577i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 10.2349 + 17.7274i 0.429071 + 0.743172i 0.996791 0.0800495i \(-0.0255078\pi\)
−0.567720 + 0.823222i \(0.692174\pi\)
\(570\) 0 0
\(571\) 37.1325i 1.55395i −0.629534 0.776973i \(-0.716754\pi\)
0.629534 0.776973i \(-0.283246\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −7.47161 + 4.31373i −0.311588 + 0.179895i
\(576\) 0 0
\(577\) −23.3196 + 23.3196i −0.970806 + 0.970806i −0.999586 0.0287801i \(-0.990838\pi\)
0.0287801 + 0.999586i \(0.490838\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −55.4427 32.0099i −2.30015 1.32799i
\(582\) 0 0
\(583\) −3.10125 + 11.5740i −0.128441 + 0.479348i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −10.6357 + 39.6930i −0.438983 + 1.63831i 0.292369 + 0.956306i \(0.405557\pi\)
−0.731352 + 0.682001i \(0.761110\pi\)
\(588\) 0 0
\(589\) −22.5786 13.0357i −0.930333 0.537128i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −19.4085 + 19.4085i −0.797013 + 0.797013i −0.982623 0.185611i \(-0.940574\pi\)
0.185611 + 0.982623i \(0.440574\pi\)
\(594\) 0 0
\(595\) −1.80171 + 1.04022i −0.0738628 + 0.0426447i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 12.6710i 0.517725i 0.965914 + 0.258862i \(0.0833476\pi\)
−0.965914 + 0.258862i \(0.916652\pi\)
\(600\) 0 0
\(601\) −22.0949 38.2695i −0.901270 1.56104i −0.825848 0.563893i \(-0.809303\pi\)
−0.0754220 0.997152i \(-0.524030\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −0.608390 2.27054i −0.0247346 0.0923107i
\(606\) 0 0
\(607\) −3.28574 + 5.69107i −0.133364 + 0.230993i −0.924971 0.380037i \(-0.875911\pi\)
0.791607 + 0.611030i \(0.209245\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −15.4314 + 10.2621i −0.624288 + 0.415160i
\(612\) 0 0
\(613\) 0.885895 + 0.237375i 0.0357810 + 0.00958748i 0.276665 0.960966i \(-0.410771\pi\)
−0.240884 + 0.970554i \(0.577437\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 13.5849 3.64006i 0.546908 0.146543i 0.0252230 0.999682i \(-0.491970\pi\)
0.521685 + 0.853138i \(0.325304\pi\)
\(618\) 0 0
\(619\) 23.9475 + 23.9475i 0.962532 + 0.962532i 0.999323 0.0367914i \(-0.0117137\pi\)
−0.0367914 + 0.999323i \(0.511714\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 53.0353 2.12482
\(624\) 0 0
\(625\) −1.00000 −0.0400000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −0.511901 0.511901i −0.0204108 0.0204108i
\(630\) 0 0
\(631\) 8.08096 2.16529i 0.321698 0.0861987i −0.0943562 0.995538i \(-0.530079\pi\)
0.416054 + 0.909340i \(0.363413\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −18.2916 4.90122i −0.725880 0.194499i
\(636\) 0 0
\(637\) −34.9855 + 11.7905i −1.38617 + 0.467159i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −2.01509 + 3.49023i −0.0795911 + 0.137856i −0.903074 0.429486i \(-0.858695\pi\)
0.823482 + 0.567342i \(0.192028\pi\)
\(642\) 0 0
\(643\) −0.771371 2.87880i −0.0304199 0.113529i 0.949047 0.315136i \(-0.102050\pi\)
−0.979466 + 0.201607i \(0.935383\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 10.5827 + 18.3297i 0.416048 + 0.720616i 0.995538 0.0943632i \(-0.0300815\pi\)
−0.579490 + 0.814979i \(0.696748\pi\)
\(648\) 0 0
\(649\) 30.3227i 1.19027i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −5.03699 + 2.90811i −0.197113 + 0.113803i −0.595308 0.803498i \(-0.702970\pi\)
0.398195 + 0.917301i \(0.369637\pi\)
\(654\) 0 0
\(655\) −5.45391 + 5.45391i −0.213102 + 0.213102i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 8.33083 + 4.80981i 0.324523 + 0.187363i 0.653407 0.757007i \(-0.273339\pi\)
−0.328884 + 0.944370i \(0.606672\pi\)
\(660\) 0 0
\(661\) 2.91475 10.8780i 0.113370 0.423104i −0.885789 0.464088i \(-0.846382\pi\)
0.999160 + 0.0409831i \(0.0130490\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 2.72293 10.1621i 0.105591 0.394069i
\(666\) 0 0
\(667\) 16.2889 + 9.40440i 0.630708 + 0.364140i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −23.8058 + 23.8058i −0.919014 + 0.919014i
\(672\) 0 0
\(673\) −20.4676 + 11.8170i −0.788970 + 0.455512i −0.839600 0.543206i \(-0.817210\pi\)
0.0506299 + 0.998717i \(0.483877\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 1.45196i 0.0558033i −0.999611 0.0279017i \(-0.991117\pi\)
0.999611 0.0279017i \(-0.00888253\pi\)
\(678\) 0 0
\(679\) 22.4188 + 38.8305i 0.860355 + 1.49018i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −1.94637 7.26395i −0.0744757 0.277947i 0.918638 0.395100i \(-0.129290\pi\)
−0.993114 + 0.117153i \(0.962623\pi\)
\(684\) 0 0
\(685\) 6.12550 10.6097i 0.234043 0.405375i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −2.33213 + 11.5917i −0.0888472 + 0.441607i
\(690\) 0 0
\(691\) 11.7691 + 3.15352i 0.447718 + 0.119966i 0.475631 0.879645i \(-0.342220\pi\)
−0.0279135 + 0.999610i \(0.508886\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 3.37496 0.904318i 0.128020 0.0343027i
\(696\) 0 0
\(697\) −0.821584 0.821584i −0.0311197 0.0311197i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −9.91579 −0.374514 −0.187257 0.982311i \(-0.559960\pi\)
−0.187257 + 0.982311i \(0.559960\pi\)
\(702\) 0 0
\(703\) 3.66089 0.138073
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −24.4664 24.4664i −0.920154 0.920154i
\(708\) 0 0
\(709\) 39.2772 10.5243i 1.47509 0.395248i 0.570415 0.821357i \(-0.306782\pi\)
0.904672 + 0.426108i \(0.140116\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 85.7462 + 22.9756i 3.21122 + 0.860444i
\(714\) 0 0
\(715\) −4.20735 12.4842i −0.157346 0.466884i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −15.5501 + 26.9335i −0.579920 + 1.00445i 0.415567 + 0.909562i \(0.363583\pi\)
−0.995488 + 0.0948892i \(0.969750\pi\)
\(720\) 0 0
\(721\) −3.69193 13.7785i −0.137494 0.513136i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 1.09005 + 1.88803i 0.0404835 + 0.0701196i
\(726\) 0 0
\(727\) 29.5381i 1.09551i −0.836640 0.547753i \(-0.815483\pi\)
0.836640 0.547753i \(-0.184517\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −5.24624 + 3.02892i −0.194039 + 0.112029i
\(732\) 0 0
\(733\) −15.4667 + 15.4667i −0.571275 + 0.571275i −0.932485 0.361209i \(-0.882364\pi\)
0.361209 + 0.932485i \(0.382364\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −41.5887 24.0113i −1.53194 0.884466i
\(738\) 0 0
\(739\) 12.7326 47.5186i 0.468375 1.74800i −0.177076 0.984197i \(-0.556664\pi\)
0.645451 0.763802i \(-0.276669\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −3.63939 + 13.5824i −0.133516 + 0.498289i −1.00000 0.000916616i \(-0.999708\pi\)
0.866483 + 0.499206i \(0.166375\pi\)
\(744\) 0 0
\(745\) −19.5791 11.3040i −0.717322 0.414146i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 38.2189 38.2189i 1.39649 1.39649i
\(750\) 0 0
\(751\) 28.4252 16.4113i 1.03725 0.598856i 0.118196 0.992990i \(-0.462289\pi\)
0.919053 + 0.394135i \(0.128956\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 21.7358i 0.791046i
\(756\) 0 0
\(757\) 18.6587 + 32.3179i 0.678163 + 1.17461i 0.975534 + 0.219850i \(0.0705569\pi\)
−0.297371 + 0.954762i \(0.596110\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 5.92952 + 22.1293i 0.214945 + 0.802185i 0.986186 + 0.165642i \(0.0529696\pi\)
−0.771241 + 0.636543i \(0.780364\pi\)
\(762\) 0 0
\(763\) 21.7855 37.7335i 0.788686 1.36605i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −1.89157 29.8620i −0.0683006 1.07826i
\(768\) 0 0
\(769\) 12.0913 + 3.23984i 0.436022 + 0.116832i 0.470152 0.882586i \(-0.344199\pi\)
−0.0341296 + 0.999417i \(0.510866\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 2.38066 0.637896i 0.0856264 0.0229435i −0.215752 0.976448i \(-0.569220\pi\)
0.301378 + 0.953505i \(0.402553\pi\)
\(774\) 0 0
\(775\) 7.27566 + 7.27566i 0.261350 + 0.261350i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 5.87561 0.210516
\(780\) 0 0
\(781\) 48.4771 1.73465
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 1.42205 + 1.42205i 0.0507550 + 0.0507550i
\(786\) 0 0
\(787\) 27.1713 7.28053i 0.968552 0.259523i 0.260336 0.965518i \(-0.416167\pi\)
0.708217 + 0.705995i \(0.249500\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −5.99635 1.60672i −0.213206 0.0571283i
\(792\) 0 0
\(793\) −21.9591 + 24.9292i −0.779791 + 0.885262i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −4.10345 + 7.10738i −0.145352 + 0.251756i −0.929504 0.368812i \(-0.879765\pi\)
0.784152 + 0.620568i \(0.213098\pi\)
\(798\) 0 0
\(799\) 0.666563 + 2.48765i 0.0235813 + 0.0880066i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 18.1903 + 31.5065i 0.641921 + 1.11184i
\(804\) 0 0
\(805\) 35.8216i 1.26255i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 46.0797 26.6041i 1.62008 0.935351i 0.633178 0.774006i \(-0.281750\pi\)
0.986898 0.161346i \(-0.0515834\pi\)
\(810\) 0 0
\(811\) −26.9869 + 26.9869i −0.947638 + 0.947638i −0.998696 0.0510577i \(-0.983741\pi\)
0.0510577 + 0.998696i \(0.483741\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −1.31019 0.756440i −0.0458940 0.0264969i
\(816\) 0 0
\(817\) 7.92866 29.5902i 0.277389 1.03523i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −0.0878520 + 0.327868i −0.00306606 + 0.0114427i −0.967442 0.253093i \(-0.918552\pi\)
0.964376 + 0.264536i \(0.0852187\pi\)
\(822\) 0 0
\(823\) 19.3093 + 11.1482i 0.673080 + 0.388603i 0.797243 0.603659i \(-0.206291\pi\)
−0.124162 + 0.992262i \(0.539624\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 3.10744 3.10744i 0.108056 0.108056i −0.651012 0.759068i \(-0.725655\pi\)
0.759068 + 0.651012i \(0.225655\pi\)
\(828\) 0 0
\(829\) −5.78649 + 3.34083i −0.200973 + 0.116032i −0.597109 0.802160i \(-0.703684\pi\)
0.396136 + 0.918192i \(0.370351\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 5.13060i 0.177765i
\(834\) 0 0
\(835\) −1.29888 2.24973i −0.0449496 0.0778550i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 14.2210 + 53.0734i 0.490962 + 1.83230i 0.551562 + 0.834134i \(0.314032\pi\)
−0.0605993 + 0.998162i \(0.519301\pi\)
\(840\) 0 0
\(841\) −12.1236 + 20.9986i −0.418054 + 0.724091i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −4.92221 12.0321i −0.169329 0.413917i
\(846\) 0 0
\(847\) −9.42738 2.52606i −0.323929 0.0867964i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −12.0403 + 3.22618i −0.412735 + 0.110592i
\(852\) 0 0
\(853\) 20.3851 + 20.3851i 0.697972 + 0.697972i 0.963973 0.266001i \(-0.0857024\pi\)
−0.266001 + 0.963973i \(0.585702\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −23.8038 −0.813122 −0.406561 0.913624i \(-0.633272\pi\)
−0.406561 + 0.913624i \(0.633272\pi\)
\(858\) 0 0
\(859\) 35.6823 1.21746 0.608732 0.793376i \(-0.291679\pi\)
0.608732 + 0.793376i \(0.291679\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −10.9082 10.9082i −0.371320 0.371320i 0.496638 0.867958i \(-0.334568\pi\)
−0.867958 + 0.496638i \(0.834568\pi\)
\(864\) 0 0
\(865\) −17.0811 + 4.57687i −0.580776 + 0.155618i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −7.09300 1.90056i −0.240614 0.0644722i
\(870\) 0 0
\(871\) −42.4547 21.0521i −1.43852 0.713323i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −2.07602 + 3.59577i −0.0701823 + 0.121559i
\(876\) 0 0
\(877\) −5.41299 20.2016i −0.182784 0.682158i −0.995094 0.0989328i \(-0.968457\pi\)
0.812310 0.583225i \(-0.198210\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −20.5597 35.6104i −0.692673 1.19974i −0.970959 0.239246i \(-0.923100\pi\)
0.278286 0.960498i \(-0.410234\pi\)
\(882\) 0 0
\(883\) 45.2514i 1.52283i 0.648264 + 0.761415i \(0.275495\pi\)
−0.648264 + 0.761415i \(0.724505\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −14.7677 + 8.52612i −0.495850 + 0.286279i −0.726998 0.686640i \(-0.759085\pi\)
0.231148 + 0.972919i \(0.425752\pi\)
\(888\) 0 0
\(889\) −55.5974 + 55.5974i −1.86468 + 1.86468i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −11.2788 6.51180i −0.377430 0.217909i
\(894\) 0 0
\(895\) 4.88896 18.2459i 0.163420 0.609892i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 5.80579 21.6675i 0.193634 0.722652i
\(900\) 0 0
\(901\) 1.42303 + 0.821584i 0.0474078 + 0.0273709i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −6.03624 + 6.03624i −0.200652 + 0.200652i
\(906\) 0 0
\(907\) −9.11939 + 5.26508i −0.302804 + 0.174824i −0.643702 0.765276i \(-0.722602\pi\)
0.340898 + 0.940100i \(0.389269\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 46.1066i 1.52758i −0.645465 0.763790i \(-0.723336\pi\)
0.645465 0.763790i \(-0.276664\pi\)
\(912\) 0 0
\(913\) −28.1691 48.7903i −0.932262 1.61472i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 8.28860 + 30.9335i 0.273714 + 1.02151i
\(918\) 0 0
\(919\) −2.25883 + 3.91240i −0.0745118 + 0.129058i −0.900874 0.434081i \(-0.857073\pi\)
0.826362 + 0.563139i \(0.190407\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 47.7406 3.02406i 1.57140 0.0995382i
\(924\) 0 0
\(925\) −1.39557 0.373943i −0.0458862 0.0122952i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 31.5770 8.46103i 1.03601 0.277597i 0.299550 0.954081i \(-0.403164\pi\)
0.736458 + 0.676483i \(0.236497\pi\)
\(930\) 0 0
\(931\) −18.3459 18.3459i −0.601263 0.601263i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −1.83081 −0.0598738
\(936\) 0 0
\(937\) 36.8605 1.20418 0.602090 0.798428i \(-0.294335\pi\)
0.602090 + 0.798428i \(0.294335\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −17.5417 17.5417i −0.571842 0.571842i 0.360801 0.932643i \(-0.382504\pi\)
−0.932643 + 0.360801i \(0.882504\pi\)
\(942\) 0 0
\(943\) −19.3242 + 5.17791i −0.629284 + 0.168616i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 40.7546 + 10.9202i 1.32435 + 0.354857i 0.850604 0.525807i \(-0.176237\pi\)
0.473741 + 0.880664i \(0.342903\pi\)
\(948\) 0 0
\(949\) 19.8793 + 29.8931i 0.645311 + 0.970371i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −17.2677 + 29.9085i −0.559355 + 0.968832i 0.438195 + 0.898880i \(0.355618\pi\)
−0.997550 + 0.0699518i \(0.977715\pi\)
\(954\) 0 0
\(955\) 1.03673 + 3.86915i 0.0335479 + 0.125203i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −25.4333 44.0518i −0.821285 1.42251i
\(960\) 0 0
\(961\) 74.8706i 2.41518i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 5.78905 3.34231i 0.186356 0.107593i
\(966\) 0 0
\(967\) −20.7723 + 20.7723i −0.667992 + 0.667992i −0.957251 0.289259i \(-0.906591\pi\)
0.289259 + 0.957251i \(0.406591\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 17.4856 + 10.0953i 0.561140 + 0.323974i 0.753603 0.657330i \(-0.228314\pi\)
−0.192463 + 0.981304i \(0.561648\pi\)
\(972\) 0 0
\(973\) 3.75476 14.0130i 0.120372 0.449235i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 3.38872 12.6469i 0.108415 0.404609i −0.890295 0.455383i \(-0.849502\pi\)
0.998710 + 0.0507742i \(0.0161689\pi\)
\(978\) 0 0
\(979\) 40.4190 + 23.3359i 1.29180 + 0.745819i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 18.2463 18.2463i 0.581966 0.581966i −0.353477 0.935443i \(-0.615001\pi\)
0.935443 + 0.353477i \(0.115001\pi\)
\(984\) 0 0
\(985\) 4.11677 2.37682i 0.131171 0.0757317i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 104.306i 3.31674i
\(990\) 0 0
\(991\) −16.3995 28.4047i −0.520947 0.902306i −0.999703 0.0243585i \(-0.992246\pi\)
0.478757 0.877948i \(-0.341088\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0.261864 + 0.977291i 0.00830166 + 0.0309822i
\(996\) 0 0
\(997\) 18.4237 31.9108i 0.583485 1.01063i −0.411577 0.911375i \(-0.635022\pi\)
0.995062 0.0992512i \(-0.0316447\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2340.2.fo.a.1601.1 40
3.2 odd 2 inner 2340.2.fo.a.1601.8 yes 40
13.7 odd 12 inner 2340.2.fo.a.2321.8 yes 40
39.20 even 12 inner 2340.2.fo.a.2321.1 yes 40
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2340.2.fo.a.1601.1 40 1.1 even 1 trivial
2340.2.fo.a.1601.8 yes 40 3.2 odd 2 inner
2340.2.fo.a.2321.1 yes 40 39.20 even 12 inner
2340.2.fo.a.2321.8 yes 40 13.7 odd 12 inner