Properties

Label 2340.2.dy
Level $2340$
Weight $2$
Character orbit 2340.dy
Rep. character $\chi_{2340}(49,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $168$
Sturm bound $1008$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2340 = 2^{2} \cdot 3^{2} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2340.dy (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 585 \)
Character field: \(\Q(\zeta_{6})\)
Sturm bound: \(1008\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2340, [\chi])\).

Total New Old
Modular forms 1032 168 864
Cusp forms 984 168 816
Eisenstein series 48 0 48

Trace form

\( 168 q - 2 q^{9} + 6 q^{21} + 28 q^{29} + q^{35} + 8 q^{39} + 168 q^{49} - 14 q^{51} + 24 q^{59} - 14 q^{65} - 26 q^{69} + 12 q^{71} - 10 q^{75} - 6 q^{79} - 26 q^{81} + 36 q^{85} - 30 q^{89} + 6 q^{91}+ \cdots + 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(2340, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(2340, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2340, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(585, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1170, [\chi])\)\(^{\oplus 2}\)