Properties

Label 2340.2.cz
Level $2340$
Weight $2$
Character orbit 2340.cz
Rep. character $\chi_{2340}(131,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $576$
Sturm bound $1008$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2340 = 2^{2} \cdot 3^{2} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2340.cz (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 36 \)
Character field: \(\Q(\zeta_{6})\)
Sturm bound: \(1008\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2340, [\chi])\).

Total New Old
Modular forms 1024 576 448
Cusp forms 992 576 416
Eisenstein series 32 0 32

Trace form

\( 576 q - 8 q^{9} + 20 q^{12} + 60 q^{14} + 20 q^{18} + 8 q^{21} + 40 q^{24} + 288 q^{25} + 24 q^{29} + 88 q^{33} + 12 q^{34} - 40 q^{36} - 60 q^{38} + 12 q^{40} + 120 q^{41} + 16 q^{42} + 16 q^{45} + 24 q^{46}+ \cdots + 24 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(2340, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(2340, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2340, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(36, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(180, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(468, [\chi])\)\(^{\oplus 2}\)