# Properties

 Label 2340.2.a.n Level $2340$ Weight $2$ Character orbit 2340.a Self dual yes Analytic conductor $18.685$ Analytic rank $0$ Dimension $3$ CM no Inner twists $1$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [2340,2,Mod(1,2340)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(2340, base_ring=CyclotomicField(2))

chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))

N = Newforms(chi, 2, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("2340.1");

S:= CuspForms(chi, 2);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$2340 = 2^{2} \cdot 3^{2} \cdot 5 \cdot 13$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 2340.a (trivial)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: yes Analytic conductor: $$18.6849940730$$ Analytic rank: $$0$$ Dimension: $$3$$ Coefficient field: 3.3.564.1 comment: defining polynomial  gp: f.mod \\ as an extension of the character field Defining polynomial: $$x^{3} - x^{2} - 5x + 3$$ x^3 - x^2 - 5*x + 3 Coefficient ring: $$\Z[a_1, \ldots, a_{11}]$$ Coefficient ring index: $$2$$ Twist minimal: no (minimal twist has level 260) Fricke sign: $$-1$$ Sato-Tate group: $\mathrm{SU}(2)$

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

Coefficients of the $$q$$-expansion are expressed in terms of a basis $$1,\beta_1,\beta_2$$ for the coefficient ring described below. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q - q^{5} + ( - \beta_1 - 1) q^{7}+O(q^{10})$$ q - q^5 + (-b1 - 1) * q^7 $$q - q^{5} + ( - \beta_1 - 1) q^{7} + (\beta_{2} - \beta_1) q^{11} + q^{13} + 2 \beta_{2} q^{17} + ( - \beta_{2} - \beta_1 + 2) q^{19} + ( - \beta_{2} + 3) q^{23} + q^{25} + (\beta_1 - 3) q^{29} + ( - \beta_{2} + \beta_1 - 4) q^{31} + (\beta_1 + 1) q^{35} + ( - 2 \beta_{2} + \beta_1 - 1) q^{37} - 2 \beta_{2} q^{41} + ( - \beta_{2} - 1) q^{43} + ( - \beta_1 + 3) q^{47} + (4 \beta_{2} + 9) q^{49} + ( - 2 \beta_{2} + 2 \beta_1 + 6) q^{53} + ( - \beta_{2} + \beta_1) q^{55} + (3 \beta_{2} - \beta_1 + 6) q^{59} + (\beta_1 + 5) q^{61} - q^{65} + (2 \beta_{2} - \beta_1 + 5) q^{67} + (\beta_{2} - \beta_1) q^{71} + ( - 2 \beta_{2} + 3 \beta_1 + 5) q^{73} + (2 \beta_{2} - 2 \beta_1 + 12) q^{77} + ( - 2 \beta_{2} + 2) q^{79} + (4 \beta_{2} - \beta_1 + 3) q^{83} - 2 \beta_{2} q^{85} + ( - 4 \beta_{2} + 2 \beta_1) q^{89} + ( - \beta_1 - 1) q^{91} + (\beta_{2} + \beta_1 - 2) q^{95} + ( - 2 \beta_1 + 8) q^{97}+O(q^{100})$$ q - q^5 + (-b1 - 1) * q^7 + (b2 - b1) * q^11 + q^13 + 2*b2 * q^17 + (-b2 - b1 + 2) * q^19 + (-b2 + 3) * q^23 + q^25 + (b1 - 3) * q^29 + (-b2 + b1 - 4) * q^31 + (b1 + 1) * q^35 + (-2*b2 + b1 - 1) * q^37 - 2*b2 * q^41 + (-b2 - 1) * q^43 + (-b1 + 3) * q^47 + (4*b2 + 9) * q^49 + (-2*b2 + 2*b1 + 6) * q^53 + (-b2 + b1) * q^55 + (3*b2 - b1 + 6) * q^59 + (b1 + 5) * q^61 - q^65 + (2*b2 - b1 + 5) * q^67 + (b2 - b1) * q^71 + (-2*b2 + 3*b1 + 5) * q^73 + (2*b2 - 2*b1 + 12) * q^77 + (-2*b2 + 2) * q^79 + (4*b2 - b1 + 3) * q^83 - 2*b2 * q^85 + (-4*b2 + 2*b1) * q^89 + (-b1 - 1) * q^91 + (b2 + b1 - 2) * q^95 + (-2*b1 + 8) * q^97 $$\operatorname{Tr}(f)(q)$$ $$=$$ $$3 q - 3 q^{5} - 2 q^{7}+O(q^{10})$$ 3 * q - 3 * q^5 - 2 * q^7 $$3 q - 3 q^{5} - 2 q^{7} + 3 q^{13} - 2 q^{17} + 8 q^{19} + 10 q^{23} + 3 q^{25} - 10 q^{29} - 12 q^{31} + 2 q^{35} - 2 q^{37} + 2 q^{41} - 2 q^{43} + 10 q^{47} + 23 q^{49} + 18 q^{53} + 16 q^{59} + 14 q^{61} - 3 q^{65} + 14 q^{67} + 14 q^{73} + 36 q^{77} + 8 q^{79} + 6 q^{83} + 2 q^{85} + 2 q^{89} - 2 q^{91} - 8 q^{95} + 26 q^{97}+O(q^{100})$$ 3 * q - 3 * q^5 - 2 * q^7 + 3 * q^13 - 2 * q^17 + 8 * q^19 + 10 * q^23 + 3 * q^25 - 10 * q^29 - 12 * q^31 + 2 * q^35 - 2 * q^37 + 2 * q^41 - 2 * q^43 + 10 * q^47 + 23 * q^49 + 18 * q^53 + 16 * q^59 + 14 * q^61 - 3 * q^65 + 14 * q^67 + 14 * q^73 + 36 * q^77 + 8 * q^79 + 6 * q^83 + 2 * q^85 + 2 * q^89 - 2 * q^91 - 8 * q^95 + 26 * q^97

Basis of coefficient ring in terms of a root $$\nu$$ of $$x^{3} - x^{2} - 5x + 3$$ :

 $$\beta_{1}$$ $$=$$ $$2\nu - 1$$ 2*v - 1 $$\beta_{2}$$ $$=$$ $$\nu^{2} - 4$$ v^2 - 4
 $$\nu$$ $$=$$ $$( \beta _1 + 1 ) / 2$$ (b1 + 1) / 2 $$\nu^{2}$$ $$=$$ $$\beta_{2} + 4$$ b2 + 4

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field

gp: mfembed(f)

Label   $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1.1
 2.51414 0.571993 −2.08613
0 0 0 −1.00000 0 −5.02827 0 0 0
1.2 0 0 0 −1.00000 0 −1.14399 0 0 0
1.3 0 0 0 −1.00000 0 4.17226 0 0 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Atkin-Lehner signs

$$p$$ Sign
$$2$$ $$-1$$
$$3$$ $$-1$$
$$5$$ $$+1$$
$$13$$ $$-1$$

## Inner twists

This newform does not admit any (nontrivial) inner twists.

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2340.2.a.n 3
3.b odd 2 1 260.2.a.b 3
4.b odd 2 1 9360.2.a.da 3
12.b even 2 1 1040.2.a.o 3
15.d odd 2 1 1300.2.a.i 3
15.e even 4 2 1300.2.c.f 6
24.f even 2 1 4160.2.a.br 3
24.h odd 2 1 4160.2.a.bo 3
39.d odd 2 1 3380.2.a.o 3
39.f even 4 2 3380.2.f.h 6
60.h even 2 1 5200.2.a.ci 3

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
260.2.a.b 3 3.b odd 2 1
1040.2.a.o 3 12.b even 2 1
1300.2.a.i 3 15.d odd 2 1
1300.2.c.f 6 15.e even 4 2
2340.2.a.n 3 1.a even 1 1 trivial
3380.2.a.o 3 39.d odd 2 1
3380.2.f.h 6 39.f even 4 2
4160.2.a.bo 3 24.h odd 2 1
4160.2.a.br 3 24.f even 2 1
5200.2.a.ci 3 60.h even 2 1
9360.2.a.da 3 4.b odd 2 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(\Gamma_0(2340))$$:

 $$T_{7}^{3} + 2T_{7}^{2} - 20T_{7} - 24$$ T7^3 + 2*T7^2 - 20*T7 - 24 $$T_{11}^{3} - 24T_{11} - 36$$ T11^3 - 24*T11 - 36

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T^{3}$$
$3$ $$T^{3}$$
$5$ $$(T + 1)^{3}$$
$7$ $$T^{3} + 2 T^{2} + \cdots - 24$$
$11$ $$T^{3} - 24T - 36$$
$13$ $$(T - 1)^{3}$$
$17$ $$T^{3} + 2 T^{2} + \cdots + 24$$
$19$ $$T^{3} - 8 T^{2} + \cdots + 164$$
$23$ $$T^{3} - 10 T^{2} + \cdots - 12$$
$29$ $$T^{3} + 10 T^{2} + \cdots - 24$$
$31$ $$T^{3} + 12 T^{2} + \cdots + 4$$
$37$ $$T^{3} + 2 T^{2} + \cdots - 72$$
$41$ $$T^{3} - 2 T^{2} + \cdots - 24$$
$43$ $$T^{3} + 2 T^{2} + \cdots - 12$$
$47$ $$T^{3} - 10 T^{2} + \cdots + 24$$
$53$ $$T^{3} - 18 T^{2} + \cdots + 648$$
$59$ $$T^{3} - 16T^{2} + 564$$
$61$ $$T^{3} - 14 T^{2} + \cdots + 8$$
$67$ $$T^{3} - 14 T^{2} + \cdots + 152$$
$71$ $$T^{3} - 24T - 36$$
$73$ $$T^{3} - 14 T^{2} + \cdots + 1784$$
$79$ $$T^{3} - 8 T^{2} + \cdots + 32$$
$83$ $$T^{3} - 6 T^{2} + \cdots + 936$$
$89$ $$T^{3} - 2 T^{2} + \cdots - 216$$
$97$ $$T^{3} - 26 T^{2} + \cdots + 8$$