Properties

Label 2340.2.a
Level $2340$
Weight $2$
Character orbit 2340.a
Rep. character $\chi_{2340}(1,\cdot)$
Character field $\Q$
Dimension $20$
Newform subspaces $14$
Sturm bound $1008$
Trace bound $11$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2340 = 2^{2} \cdot 3^{2} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2340.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 14 \)
Sturm bound: \(1008\)
Trace bound: \(11\)
Distinguishing \(T_p\): \(7\), \(11\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(2340))\).

Total New Old
Modular forms 528 20 508
Cusp forms 481 20 461
Eisenstein series 47 0 47

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(3\)\(5\)\(13\)FrickeTotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
\(+\)\(+\)\(+\)\(+\)\(+\)\(31\)\(0\)\(31\)\(28\)\(0\)\(28\)\(3\)\(0\)\(3\)
\(+\)\(+\)\(+\)\(-\)\(-\)\(35\)\(0\)\(35\)\(31\)\(0\)\(31\)\(4\)\(0\)\(4\)
\(+\)\(+\)\(-\)\(+\)\(-\)\(35\)\(0\)\(35\)\(31\)\(0\)\(31\)\(4\)\(0\)\(4\)
\(+\)\(+\)\(-\)\(-\)\(+\)\(31\)\(0\)\(31\)\(27\)\(0\)\(27\)\(4\)\(0\)\(4\)
\(+\)\(-\)\(+\)\(+\)\(-\)\(34\)\(0\)\(34\)\(30\)\(0\)\(30\)\(4\)\(0\)\(4\)
\(+\)\(-\)\(+\)\(-\)\(+\)\(34\)\(0\)\(34\)\(30\)\(0\)\(30\)\(4\)\(0\)\(4\)
\(+\)\(-\)\(-\)\(+\)\(+\)\(34\)\(0\)\(34\)\(30\)\(0\)\(30\)\(4\)\(0\)\(4\)
\(+\)\(-\)\(-\)\(-\)\(-\)\(34\)\(0\)\(34\)\(30\)\(0\)\(30\)\(4\)\(0\)\(4\)
\(-\)\(+\)\(+\)\(+\)\(-\)\(35\)\(1\)\(34\)\(33\)\(1\)\(32\)\(2\)\(0\)\(2\)
\(-\)\(+\)\(+\)\(-\)\(+\)\(31\)\(3\)\(28\)\(29\)\(3\)\(26\)\(2\)\(0\)\(2\)
\(-\)\(+\)\(-\)\(+\)\(+\)\(31\)\(1\)\(30\)\(29\)\(1\)\(28\)\(2\)\(0\)\(2\)
\(-\)\(+\)\(-\)\(-\)\(-\)\(35\)\(3\)\(32\)\(33\)\(3\)\(30\)\(2\)\(0\)\(2\)
\(-\)\(-\)\(+\)\(+\)\(+\)\(32\)\(3\)\(29\)\(30\)\(3\)\(27\)\(2\)\(0\)\(2\)
\(-\)\(-\)\(+\)\(-\)\(-\)\(32\)\(4\)\(28\)\(30\)\(4\)\(26\)\(2\)\(0\)\(2\)
\(-\)\(-\)\(-\)\(+\)\(-\)\(32\)\(4\)\(28\)\(30\)\(4\)\(26\)\(2\)\(0\)\(2\)
\(-\)\(-\)\(-\)\(-\)\(+\)\(32\)\(1\)\(31\)\(30\)\(1\)\(29\)\(2\)\(0\)\(2\)
Plus space\(+\)\(256\)\(8\)\(248\)\(233\)\(8\)\(225\)\(23\)\(0\)\(23\)
Minus space\(-\)\(272\)\(12\)\(260\)\(248\)\(12\)\(236\)\(24\)\(0\)\(24\)

Trace form

\( 20 q - 2 q^{5} - 4 q^{11} + 2 q^{13} - 4 q^{17} + 8 q^{19} + 8 q^{23} + 20 q^{25} - 8 q^{29} + 4 q^{31} - 4 q^{35} - 8 q^{37} + 4 q^{41} + 16 q^{43} - 16 q^{47} + 12 q^{49} + 16 q^{53} + 4 q^{55} + 8 q^{59}+ \cdots - 20 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(2340))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 3 5 13
2340.2.a.a 2340.a 1.a $1$ $18.685$ \(\Q\) None 780.2.a.a \(0\) \(0\) \(-1\) \(-2\) $-$ $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{5}-2q^{7}+2q^{11}-q^{13}+2q^{17}+\cdots\)
2340.2.a.b 2340.a 1.a $1$ $18.685$ \(\Q\) None 2340.2.a.b \(0\) \(0\) \(-1\) \(-1\) $-$ $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{5}-q^{7}+q^{11}-q^{13}+5q^{17}+\cdots\)
2340.2.a.c 2340.a 1.a $1$ $18.685$ \(\Q\) None 2340.2.a.c \(0\) \(0\) \(-1\) \(0\) $-$ $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{5}-6q^{11}+q^{13}+4q^{17}+4q^{19}+\cdots\)
2340.2.a.d 2340.a 1.a $1$ $18.685$ \(\Q\) None 780.2.a.b \(0\) \(0\) \(-1\) \(3\) $-$ $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{5}+3q^{7}-q^{11}+q^{13}+3q^{17}+\cdots\)
2340.2.a.e 2340.a 1.a $1$ $18.685$ \(\Q\) None 780.2.a.c \(0\) \(0\) \(1\) \(-2\) $-$ $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{5}-2q^{7}+6q^{11}-q^{13}+2q^{17}+\cdots\)
2340.2.a.f 2340.a 1.a $1$ $18.685$ \(\Q\) None 780.2.a.d \(0\) \(0\) \(1\) \(-1\) $-$ $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{5}-q^{7}-3q^{11}+q^{13}-3q^{17}+\cdots\)
2340.2.a.g 2340.a 1.a $1$ $18.685$ \(\Q\) None 2340.2.a.b \(0\) \(0\) \(1\) \(-1\) $-$ $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{5}-q^{7}-q^{11}-q^{13}-5q^{17}+\cdots\)
2340.2.a.h 2340.a 1.a $1$ $18.685$ \(\Q\) None 2340.2.a.c \(0\) \(0\) \(1\) \(0\) $-$ $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{5}+6q^{11}+q^{13}-4q^{17}+4q^{19}+\cdots\)
2340.2.a.i 2340.a 1.a $1$ $18.685$ \(\Q\) None 260.2.a.a \(0\) \(0\) \(1\) \(2\) $-$ $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{5}+2q^{7}-4q^{11}-q^{13}-2q^{17}+\cdots\)
2340.2.a.j 2340.a 1.a $2$ $18.685$ \(\Q(\sqrt{33}) \) None 2340.2.a.j \(0\) \(0\) \(-2\) \(1\) $-$ $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{5}+\beta q^{7}+(2-\beta )q^{11}+q^{13}+(-4+\cdots)q^{17}+\cdots\)
2340.2.a.k 2340.a 1.a $2$ $18.685$ \(\Q(\sqrt{17}) \) None 780.2.a.f \(0\) \(0\) \(-2\) \(3\) $-$ $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{5}+(1+\beta )q^{7}+(-1-\beta )q^{11}-q^{13}+\cdots\)
2340.2.a.l 2340.a 1.a $2$ $18.685$ \(\Q(\sqrt{73}) \) None 780.2.a.e \(0\) \(0\) \(2\) \(-1\) $-$ $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{5}-\beta q^{7}-\beta q^{11}-q^{13}+\beta q^{17}+\cdots\)
2340.2.a.m 2340.a 1.a $2$ $18.685$ \(\Q(\sqrt{33}) \) None 2340.2.a.j \(0\) \(0\) \(2\) \(1\) $-$ $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{5}+\beta q^{7}+(-2+\beta )q^{11}+q^{13}+\cdots\)
2340.2.a.n 2340.a 1.a $3$ $18.685$ 3.3.564.1 None 260.2.a.b \(0\) \(0\) \(-3\) \(-2\) $-$ $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{5}+(-1-\beta _{1})q^{7}+(-\beta _{1}+\beta _{2})q^{11}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(2340))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_0(2340)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(15))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(20))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(26))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(30))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(36))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(39))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(45))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(52))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(65))\)\(^{\oplus 9}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(78))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(90))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(117))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(130))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(156))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(180))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(195))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(234))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(260))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(390))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(468))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(585))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(780))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1170))\)\(^{\oplus 2}\)