Defining parameters
| Level: | \( N \) | \(=\) | \( 2340 = 2^{2} \cdot 3^{2} \cdot 5 \cdot 13 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 2340.a (trivial) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 14 \) | ||
| Sturm bound: | \(1008\) | ||
| Trace bound: | \(11\) | ||
| Distinguishing \(T_p\): | \(7\), \(11\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(2340))\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 528 | 20 | 508 |
| Cusp forms | 481 | 20 | 461 |
| Eisenstein series | 47 | 0 | 47 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
| \(2\) | \(3\) | \(5\) | \(13\) | Fricke | Total | Cusp | Eisenstein | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| All | New | Old | All | New | Old | All | New | Old | ||||||||
| \(+\) | \(+\) | \(+\) | \(+\) | \(+\) | \(31\) | \(0\) | \(31\) | \(28\) | \(0\) | \(28\) | \(3\) | \(0\) | \(3\) | |||
| \(+\) | \(+\) | \(+\) | \(-\) | \(-\) | \(35\) | \(0\) | \(35\) | \(31\) | \(0\) | \(31\) | \(4\) | \(0\) | \(4\) | |||
| \(+\) | \(+\) | \(-\) | \(+\) | \(-\) | \(35\) | \(0\) | \(35\) | \(31\) | \(0\) | \(31\) | \(4\) | \(0\) | \(4\) | |||
| \(+\) | \(+\) | \(-\) | \(-\) | \(+\) | \(31\) | \(0\) | \(31\) | \(27\) | \(0\) | \(27\) | \(4\) | \(0\) | \(4\) | |||
| \(+\) | \(-\) | \(+\) | \(+\) | \(-\) | \(34\) | \(0\) | \(34\) | \(30\) | \(0\) | \(30\) | \(4\) | \(0\) | \(4\) | |||
| \(+\) | \(-\) | \(+\) | \(-\) | \(+\) | \(34\) | \(0\) | \(34\) | \(30\) | \(0\) | \(30\) | \(4\) | \(0\) | \(4\) | |||
| \(+\) | \(-\) | \(-\) | \(+\) | \(+\) | \(34\) | \(0\) | \(34\) | \(30\) | \(0\) | \(30\) | \(4\) | \(0\) | \(4\) | |||
| \(+\) | \(-\) | \(-\) | \(-\) | \(-\) | \(34\) | \(0\) | \(34\) | \(30\) | \(0\) | \(30\) | \(4\) | \(0\) | \(4\) | |||
| \(-\) | \(+\) | \(+\) | \(+\) | \(-\) | \(35\) | \(1\) | \(34\) | \(33\) | \(1\) | \(32\) | \(2\) | \(0\) | \(2\) | |||
| \(-\) | \(+\) | \(+\) | \(-\) | \(+\) | \(31\) | \(3\) | \(28\) | \(29\) | \(3\) | \(26\) | \(2\) | \(0\) | \(2\) | |||
| \(-\) | \(+\) | \(-\) | \(+\) | \(+\) | \(31\) | \(1\) | \(30\) | \(29\) | \(1\) | \(28\) | \(2\) | \(0\) | \(2\) | |||
| \(-\) | \(+\) | \(-\) | \(-\) | \(-\) | \(35\) | \(3\) | \(32\) | \(33\) | \(3\) | \(30\) | \(2\) | \(0\) | \(2\) | |||
| \(-\) | \(-\) | \(+\) | \(+\) | \(+\) | \(32\) | \(3\) | \(29\) | \(30\) | \(3\) | \(27\) | \(2\) | \(0\) | \(2\) | |||
| \(-\) | \(-\) | \(+\) | \(-\) | \(-\) | \(32\) | \(4\) | \(28\) | \(30\) | \(4\) | \(26\) | \(2\) | \(0\) | \(2\) | |||
| \(-\) | \(-\) | \(-\) | \(+\) | \(-\) | \(32\) | \(4\) | \(28\) | \(30\) | \(4\) | \(26\) | \(2\) | \(0\) | \(2\) | |||
| \(-\) | \(-\) | \(-\) | \(-\) | \(+\) | \(32\) | \(1\) | \(31\) | \(30\) | \(1\) | \(29\) | \(2\) | \(0\) | \(2\) | |||
| Plus space | \(+\) | \(256\) | \(8\) | \(248\) | \(233\) | \(8\) | \(225\) | \(23\) | \(0\) | \(23\) | ||||||
| Minus space | \(-\) | \(272\) | \(12\) | \(260\) | \(248\) | \(12\) | \(236\) | \(24\) | \(0\) | \(24\) | ||||||
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(2340))\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(2340))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(2340)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(15))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(20))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(26))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(30))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(36))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(39))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(45))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(52))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(65))\)\(^{\oplus 9}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(78))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(90))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(117))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(130))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(156))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(180))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(195))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(234))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(260))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(390))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(468))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(585))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(780))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1170))\)\(^{\oplus 2}\)