Properties

Label 234.6.b.c.181.5
Level $234$
Weight $6$
Character 234.181
Analytic conductor $37.530$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [234,6,Mod(181,234)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(234, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("234.181");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 234 = 2 \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 234.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(37.5298138362\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} + 2x^{4} - 2946x^{3} + 131769x^{2} - 1332936x + 6741792 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{11}\cdot 3^{2} \)
Twist minimal: no (minimal twist has level 78)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 181.5
Root \(-15.0768 + 15.0768i\) of defining polynomial
Character \(\chi\) \(=\) 234.181
Dual form 234.6.b.c.181.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+4.00000i q^{2} -16.0000 q^{4} +9.73803i q^{5} +105.184i q^{7} -64.0000i q^{8} +O(q^{10})\) \(q+4.00000i q^{2} -16.0000 q^{4} +9.73803i q^{5} +105.184i q^{7} -64.0000i q^{8} -38.9521 q^{10} -269.350i q^{11} +(227.464 - 565.290i) q^{13} -420.736 q^{14} +256.000 q^{16} -1663.75 q^{17} -2.82742i q^{19} -155.809i q^{20} +1077.40 q^{22} -2151.14 q^{23} +3030.17 q^{25} +(2261.16 + 909.856i) q^{26} -1682.95i q^{28} -220.829 q^{29} -788.106i q^{31} +1024.00i q^{32} -6654.98i q^{34} -1024.29 q^{35} -980.445i q^{37} +11.3097 q^{38} +623.234 q^{40} -14809.7i q^{41} +14142.2 q^{43} +4309.61i q^{44} -8604.55i q^{46} -25181.2i q^{47} +5743.31 q^{49} +12120.7i q^{50} +(-3639.42 + 9044.65i) q^{52} +30900.9 q^{53} +2622.94 q^{55} +6731.78 q^{56} -883.317i q^{58} -25094.7i q^{59} +12060.8 q^{61} +3152.42 q^{62} -4096.00 q^{64} +(5504.81 + 2215.05i) q^{65} +14450.5i q^{67} +26619.9 q^{68} -4097.14i q^{70} +33547.5i q^{71} -25805.7i q^{73} +3921.78 q^{74} +45.2388i q^{76} +28331.4 q^{77} +15620.3 q^{79} +2492.94i q^{80} +59238.7 q^{82} -2819.78i q^{83} -16201.6i q^{85} +56568.8i q^{86} -17238.4 q^{88} +16227.2i q^{89} +(59459.6 + 23925.6i) q^{91} +34418.2 q^{92} +100725. q^{94} +27.5335 q^{95} -126289. i q^{97} +22973.2i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 96 q^{4}+O(q^{10}) \) Copy content Toggle raw display \( 6 q - 96 q^{4} + 320 q^{10} + 530 q^{13} + 1360 q^{14} + 1536 q^{16} + 836 q^{17} - 1296 q^{22} + 416 q^{23} + 718 q^{25} + 1360 q^{26} - 18788 q^{29} - 6112 q^{35} - 528 q^{38} - 5120 q^{40} - 24200 q^{43} - 3038 q^{49} - 8480 q^{52} + 42396 q^{53} + 124656 q^{55} - 21760 q^{56} - 3196 q^{61} + 59344 q^{62} - 24576 q^{64} + 17168 q^{65} - 13376 q^{68} + 62240 q^{74} + 114024 q^{77} - 169328 q^{79} + 145120 q^{82} + 20736 q^{88} + 236152 q^{91} - 6656 q^{92} - 32688 q^{94} - 567168 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/234\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(209\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 4.00000i 0.707107i
\(3\) 0 0
\(4\) −16.0000 −0.500000
\(5\) 9.73803i 0.174199i 0.996200 + 0.0870996i \(0.0277598\pi\)
−0.996200 + 0.0870996i \(0.972240\pi\)
\(6\) 0 0
\(7\) 105.184i 0.811344i 0.914019 + 0.405672i \(0.132962\pi\)
−0.914019 + 0.405672i \(0.867038\pi\)
\(8\) 64.0000i 0.353553i
\(9\) 0 0
\(10\) −38.9521 −0.123177
\(11\) 269.350i 0.671175i −0.942009 0.335588i \(-0.891065\pi\)
0.942009 0.335588i \(-0.108935\pi\)
\(12\) 0 0
\(13\) 227.464 565.290i 0.373297 0.927712i
\(14\) −420.736 −0.573707
\(15\) 0 0
\(16\) 256.000 0.250000
\(17\) −1663.75 −1.39625 −0.698127 0.715974i \(-0.745983\pi\)
−0.698127 + 0.715974i \(0.745983\pi\)
\(18\) 0 0
\(19\) 2.82742i 0.00179683i −1.00000 0.000898415i \(-0.999714\pi\)
1.00000 0.000898415i \(-0.000285974\pi\)
\(20\) 155.809i 0.0870996i
\(21\) 0 0
\(22\) 1077.40 0.474592
\(23\) −2151.14 −0.847908 −0.423954 0.905684i \(-0.639358\pi\)
−0.423954 + 0.905684i \(0.639358\pi\)
\(24\) 0 0
\(25\) 3030.17 0.969655
\(26\) 2261.16 + 909.856i 0.655991 + 0.263961i
\(27\) 0 0
\(28\) 1682.95i 0.405672i
\(29\) −220.829 −0.0487598 −0.0243799 0.999703i \(-0.507761\pi\)
−0.0243799 + 0.999703i \(0.507761\pi\)
\(30\) 0 0
\(31\) 788.106i 0.147292i −0.997284 0.0736462i \(-0.976536\pi\)
0.997284 0.0736462i \(-0.0234636\pi\)
\(32\) 1024.00i 0.176777i
\(33\) 0 0
\(34\) 6654.98i 0.987301i
\(35\) −1024.29 −0.141335
\(36\) 0 0
\(37\) 980.445i 0.117739i −0.998266 0.0588693i \(-0.981250\pi\)
0.998266 0.0588693i \(-0.0187495\pi\)
\(38\) 11.3097 0.00127055
\(39\) 0 0
\(40\) 623.234 0.0615887
\(41\) 14809.7i 1.37590i −0.725759 0.687949i \(-0.758511\pi\)
0.725759 0.687949i \(-0.241489\pi\)
\(42\) 0 0
\(43\) 14142.2 1.16640 0.583198 0.812330i \(-0.301801\pi\)
0.583198 + 0.812330i \(0.301801\pi\)
\(44\) 4309.61i 0.335588i
\(45\) 0 0
\(46\) 8604.55i 0.599561i
\(47\) 25181.2i 1.66277i −0.555699 0.831383i \(-0.687549\pi\)
0.555699 0.831383i \(-0.312451\pi\)
\(48\) 0 0
\(49\) 5743.31 0.341721
\(50\) 12120.7i 0.685649i
\(51\) 0 0
\(52\) −3639.42 + 9044.65i −0.186648 + 0.463856i
\(53\) 30900.9 1.51106 0.755530 0.655114i \(-0.227379\pi\)
0.755530 + 0.655114i \(0.227379\pi\)
\(54\) 0 0
\(55\) 2622.94 0.116918
\(56\) 6731.78 0.286853
\(57\) 0 0
\(58\) 883.317i 0.0344784i
\(59\) 25094.7i 0.938538i −0.883055 0.469269i \(-0.844517\pi\)
0.883055 0.469269i \(-0.155483\pi\)
\(60\) 0 0
\(61\) 12060.8 0.415003 0.207501 0.978235i \(-0.433467\pi\)
0.207501 + 0.978235i \(0.433467\pi\)
\(62\) 3152.42 0.104151
\(63\) 0 0
\(64\) −4096.00 −0.125000
\(65\) 5504.81 + 2215.05i 0.161607 + 0.0650280i
\(66\) 0 0
\(67\) 14450.5i 0.393276i 0.980476 + 0.196638i \(0.0630023\pi\)
−0.980476 + 0.196638i \(0.936998\pi\)
\(68\) 26619.9 0.698127
\(69\) 0 0
\(70\) 4097.14i 0.0999393i
\(71\) 33547.5i 0.789795i 0.918725 + 0.394897i \(0.129220\pi\)
−0.918725 + 0.394897i \(0.870780\pi\)
\(72\) 0 0
\(73\) 25805.7i 0.566772i −0.959006 0.283386i \(-0.908542\pi\)
0.959006 0.283386i \(-0.0914578\pi\)
\(74\) 3921.78 0.0832538
\(75\) 0 0
\(76\) 45.2388i 0.000898415i
\(77\) 28331.4 0.544554
\(78\) 0 0
\(79\) 15620.3 0.281593 0.140797 0.990039i \(-0.455034\pi\)
0.140797 + 0.990039i \(0.455034\pi\)
\(80\) 2492.94i 0.0435498i
\(81\) 0 0
\(82\) 59238.7 0.972906
\(83\) 2819.78i 0.0449284i −0.999748 0.0224642i \(-0.992849\pi\)
0.999748 0.0224642i \(-0.00715117\pi\)
\(84\) 0 0
\(85\) 16201.6i 0.243226i
\(86\) 56568.8i 0.824766i
\(87\) 0 0
\(88\) −17238.4 −0.237296
\(89\) 16227.2i 0.217154i 0.994088 + 0.108577i \(0.0346294\pi\)
−0.994088 + 0.108577i \(0.965371\pi\)
\(90\) 0 0
\(91\) 59459.6 + 23925.6i 0.752693 + 0.302872i
\(92\) 34418.2 0.423954
\(93\) 0 0
\(94\) 100725. 1.17575
\(95\) 27.5335 0.000313006
\(96\) 0 0
\(97\) 126289.i 1.36281i −0.731906 0.681406i \(-0.761369\pi\)
0.731906 0.681406i \(-0.238631\pi\)
\(98\) 22973.2i 0.241633i
\(99\) 0 0
\(100\) −48482.7 −0.484827
\(101\) −92398.8 −0.901287 −0.450643 0.892704i \(-0.648805\pi\)
−0.450643 + 0.892704i \(0.648805\pi\)
\(102\) 0 0
\(103\) 148091. 1.37542 0.687711 0.725985i \(-0.258616\pi\)
0.687711 + 0.725985i \(0.258616\pi\)
\(104\) −36178.6 14557.7i −0.327996 0.131980i
\(105\) 0 0
\(106\) 123604.i 1.06848i
\(107\) −88180.1 −0.744580 −0.372290 0.928117i \(-0.621427\pi\)
−0.372290 + 0.928117i \(0.621427\pi\)
\(108\) 0 0
\(109\) 61467.2i 0.495538i −0.968819 0.247769i \(-0.920303\pi\)
0.968819 0.247769i \(-0.0796974\pi\)
\(110\) 10491.8i 0.0826736i
\(111\) 0 0
\(112\) 26927.1i 0.202836i
\(113\) 82256.1 0.605999 0.303000 0.952991i \(-0.402012\pi\)
0.303000 + 0.952991i \(0.402012\pi\)
\(114\) 0 0
\(115\) 20947.8i 0.147705i
\(116\) 3533.27 0.0243799
\(117\) 0 0
\(118\) 100379. 0.663647
\(119\) 175000.i 1.13284i
\(120\) 0 0
\(121\) 88501.4 0.549524
\(122\) 48243.1i 0.293451i
\(123\) 0 0
\(124\) 12609.7i 0.0736462i
\(125\) 59939.2i 0.343112i
\(126\) 0 0
\(127\) −143150. −0.787556 −0.393778 0.919206i \(-0.628832\pi\)
−0.393778 + 0.919206i \(0.628832\pi\)
\(128\) 16384.0i 0.0883883i
\(129\) 0 0
\(130\) −8860.20 + 22019.3i −0.0459817 + 0.114273i
\(131\) 141329. 0.719539 0.359769 0.933041i \(-0.382855\pi\)
0.359769 + 0.933041i \(0.382855\pi\)
\(132\) 0 0
\(133\) 297.400 0.00145785
\(134\) −57802.2 −0.278088
\(135\) 0 0
\(136\) 106480.i 0.493650i
\(137\) 3958.33i 0.0180182i −0.999959 0.00900909i \(-0.997132\pi\)
0.999959 0.00900909i \(-0.00286772\pi\)
\(138\) 0 0
\(139\) −445579. −1.95608 −0.978042 0.208408i \(-0.933172\pi\)
−0.978042 + 0.208408i \(0.933172\pi\)
\(140\) 16388.6 0.0706677
\(141\) 0 0
\(142\) −134190. −0.558469
\(143\) −152261. 61267.5i −0.622657 0.250547i
\(144\) 0 0
\(145\) 2150.44i 0.00849391i
\(146\) 103223. 0.400769
\(147\) 0 0
\(148\) 15687.1i 0.0588693i
\(149\) 49619.3i 0.183098i 0.995801 + 0.0915492i \(0.0291819\pi\)
−0.995801 + 0.0915492i \(0.970818\pi\)
\(150\) 0 0
\(151\) 402323.i 1.43593i −0.696081 0.717964i \(-0.745074\pi\)
0.696081 0.717964i \(-0.254926\pi\)
\(152\) −180.955 −0.000635275
\(153\) 0 0
\(154\) 113325.i 0.385058i
\(155\) 7674.60 0.0256582
\(156\) 0 0
\(157\) −562429. −1.82104 −0.910519 0.413468i \(-0.864317\pi\)
−0.910519 + 0.413468i \(0.864317\pi\)
\(158\) 62481.3i 0.199116i
\(159\) 0 0
\(160\) −9971.74 −0.0307944
\(161\) 226265.i 0.687945i
\(162\) 0 0
\(163\) 313878.i 0.925319i 0.886536 + 0.462659i \(0.153105\pi\)
−0.886536 + 0.462659i \(0.846895\pi\)
\(164\) 236955.i 0.687949i
\(165\) 0 0
\(166\) 11279.1 0.0317691
\(167\) 602228.i 1.67097i −0.549510 0.835487i \(-0.685186\pi\)
0.549510 0.835487i \(-0.314814\pi\)
\(168\) 0 0
\(169\) −267813. 257166.i −0.721299 0.692624i
\(170\) 64806.4 0.171987
\(171\) 0 0
\(172\) −226275. −0.583198
\(173\) −304021. −0.772304 −0.386152 0.922435i \(-0.626196\pi\)
−0.386152 + 0.922435i \(0.626196\pi\)
\(174\) 0 0
\(175\) 318726.i 0.786723i
\(176\) 68953.7i 0.167794i
\(177\) 0 0
\(178\) −64908.7 −0.153551
\(179\) −406190. −0.947539 −0.473769 0.880649i \(-0.657107\pi\)
−0.473769 + 0.880649i \(0.657107\pi\)
\(180\) 0 0
\(181\) −240967. −0.546714 −0.273357 0.961913i \(-0.588134\pi\)
−0.273357 + 0.961913i \(0.588134\pi\)
\(182\) −95702.4 + 237838.i −0.214163 + 0.532235i
\(183\) 0 0
\(184\) 137673.i 0.299781i
\(185\) 9547.60 0.0205100
\(186\) 0 0
\(187\) 448130.i 0.937131i
\(188\) 402899.i 0.831383i
\(189\) 0 0
\(190\) 110.134i 0.000221329i
\(191\) −226140. −0.448532 −0.224266 0.974528i \(-0.571999\pi\)
−0.224266 + 0.974528i \(0.571999\pi\)
\(192\) 0 0
\(193\) 406075.i 0.784717i 0.919812 + 0.392359i \(0.128341\pi\)
−0.919812 + 0.392359i \(0.871659\pi\)
\(194\) 505156. 0.963653
\(195\) 0 0
\(196\) −91892.9 −0.170861
\(197\) 407390.i 0.747902i −0.927449 0.373951i \(-0.878003\pi\)
0.927449 0.373951i \(-0.121997\pi\)
\(198\) 0 0
\(199\) 202865. 0.363140 0.181570 0.983378i \(-0.441882\pi\)
0.181570 + 0.983378i \(0.441882\pi\)
\(200\) 193931.i 0.342825i
\(201\) 0 0
\(202\) 369595.i 0.637306i
\(203\) 23227.7i 0.0395609i
\(204\) 0 0
\(205\) 144217. 0.239680
\(206\) 592364.i 0.972570i
\(207\) 0 0
\(208\) 58230.8 144714.i 0.0933242 0.231928i
\(209\) −761.568 −0.00120599
\(210\) 0 0
\(211\) 657970. 1.01742 0.508710 0.860938i \(-0.330123\pi\)
0.508710 + 0.860938i \(0.330123\pi\)
\(212\) −494415. −0.755530
\(213\) 0 0
\(214\) 352720.i 0.526497i
\(215\) 137717.i 0.203185i
\(216\) 0 0
\(217\) 82896.2 0.119505
\(218\) 245869. 0.350398
\(219\) 0 0
\(220\) −41967.1 −0.0584591
\(221\) −378442. + 940499.i −0.521217 + 1.29532i
\(222\) 0 0
\(223\) 978060.i 1.31705i 0.752558 + 0.658527i \(0.228820\pi\)
−0.752558 + 0.658527i \(0.771180\pi\)
\(224\) −107709. −0.143427
\(225\) 0 0
\(226\) 329024.i 0.428506i
\(227\) 812137.i 1.04608i 0.852308 + 0.523040i \(0.175202\pi\)
−0.852308 + 0.523040i \(0.824798\pi\)
\(228\) 0 0
\(229\) 1.36329e6i 1.71790i −0.512058 0.858951i \(-0.671117\pi\)
0.512058 0.858951i \(-0.328883\pi\)
\(230\) 83791.4 0.104443
\(231\) 0 0
\(232\) 14133.1i 0.0172392i
\(233\) −931926. −1.12458 −0.562292 0.826939i \(-0.690080\pi\)
−0.562292 + 0.826939i \(0.690080\pi\)
\(234\) 0 0
\(235\) 245215. 0.289653
\(236\) 401515.i 0.469269i
\(237\) 0 0
\(238\) 699998. 0.801041
\(239\) 885874.i 1.00318i −0.865107 0.501588i \(-0.832749\pi\)
0.865107 0.501588i \(-0.167251\pi\)
\(240\) 0 0
\(241\) 1.32690e6i 1.47161i −0.677191 0.735807i \(-0.736803\pi\)
0.677191 0.735807i \(-0.263197\pi\)
\(242\) 354006.i 0.388572i
\(243\) 0 0
\(244\) −192973. −0.207501
\(245\) 55928.5i 0.0595275i
\(246\) 0 0
\(247\) −1598.32 643.137i −0.00166694 0.000670751i
\(248\) −50438.8 −0.0520757
\(249\) 0 0
\(250\) −239757. −0.242617
\(251\) 547596. 0.548625 0.274313 0.961641i \(-0.411550\pi\)
0.274313 + 0.961641i \(0.411550\pi\)
\(252\) 0 0
\(253\) 579409.i 0.569094i
\(254\) 572599.i 0.556886i
\(255\) 0 0
\(256\) 65536.0 0.0625000
\(257\) 1.65509e6 1.56311 0.781554 0.623837i \(-0.214427\pi\)
0.781554 + 0.623837i \(0.214427\pi\)
\(258\) 0 0
\(259\) 103127. 0.0955265
\(260\) −88077.0 35440.8i −0.0808033 0.0325140i
\(261\) 0 0
\(262\) 565317.i 0.508791i
\(263\) 668188. 0.595675 0.297838 0.954617i \(-0.403735\pi\)
0.297838 + 0.954617i \(0.403735\pi\)
\(264\) 0 0
\(265\) 300914.i 0.263226i
\(266\) 1189.60i 0.00103085i
\(267\) 0 0
\(268\) 231209.i 0.196638i
\(269\) 384942. 0.324350 0.162175 0.986762i \(-0.448149\pi\)
0.162175 + 0.986762i \(0.448149\pi\)
\(270\) 0 0
\(271\) 1.05344e6i 0.871334i 0.900108 + 0.435667i \(0.143487\pi\)
−0.900108 + 0.435667i \(0.856513\pi\)
\(272\) −425919. −0.349064
\(273\) 0 0
\(274\) 15833.3 0.0127408
\(275\) 816177.i 0.650808i
\(276\) 0 0
\(277\) −1.62051e6 −1.26897 −0.634485 0.772936i \(-0.718788\pi\)
−0.634485 + 0.772936i \(0.718788\pi\)
\(278\) 1.78231e6i 1.38316i
\(279\) 0 0
\(280\) 65554.3i 0.0499696i
\(281\) 563009.i 0.425353i 0.977123 + 0.212677i \(0.0682181\pi\)
−0.977123 + 0.212677i \(0.931782\pi\)
\(282\) 0 0
\(283\) 361892. 0.268604 0.134302 0.990940i \(-0.457121\pi\)
0.134302 + 0.990940i \(0.457121\pi\)
\(284\) 536760.i 0.394897i
\(285\) 0 0
\(286\) 245070. 609045.i 0.177164 0.440285i
\(287\) 1.55774e6 1.11633
\(288\) 0 0
\(289\) 1.34819e6 0.949526
\(290\) 8601.77 0.00600610
\(291\) 0 0
\(292\) 412891.i 0.283386i
\(293\) 757318.i 0.515358i 0.966231 + 0.257679i \(0.0829577\pi\)
−0.966231 + 0.257679i \(0.917042\pi\)
\(294\) 0 0
\(295\) 244373. 0.163493
\(296\) −62748.5 −0.0416269
\(297\) 0 0
\(298\) −198477. −0.129470
\(299\) −489306. + 1.21602e6i −0.316521 + 0.786614i
\(300\) 0 0
\(301\) 1.48753e6i 0.946348i
\(302\) 1.60929e6 1.01535
\(303\) 0 0
\(304\) 723.821i 0.000449207i
\(305\) 117448.i 0.0722932i
\(306\) 0 0
\(307\) 1.96280e6i 1.18858i −0.804249 0.594292i \(-0.797432\pi\)
0.804249 0.594292i \(-0.202568\pi\)
\(308\) −453302. −0.272277
\(309\) 0 0
\(310\) 30698.4i 0.0181431i
\(311\) −834419. −0.489197 −0.244598 0.969624i \(-0.578656\pi\)
−0.244598 + 0.969624i \(0.578656\pi\)
\(312\) 0 0
\(313\) 1.61834e6 0.933703 0.466851 0.884336i \(-0.345388\pi\)
0.466851 + 0.884336i \(0.345388\pi\)
\(314\) 2.24972e6i 1.28767i
\(315\) 0 0
\(316\) −249925. −0.140797
\(317\) 660304.i 0.369059i −0.982827 0.184529i \(-0.940924\pi\)
0.982827 0.184529i \(-0.0590761\pi\)
\(318\) 0 0
\(319\) 59480.4i 0.0327263i
\(320\) 39887.0i 0.0217749i
\(321\) 0 0
\(322\) 905062. 0.486450
\(323\) 4704.11i 0.00250883i
\(324\) 0 0
\(325\) 689255. 1.71293e6i 0.361969 0.899560i
\(326\) −1.25551e6 −0.654299
\(327\) 0 0
\(328\) −947819. −0.486453
\(329\) 2.64866e6 1.34908
\(330\) 0 0
\(331\) 2.73497e6i 1.37209i −0.727558 0.686046i \(-0.759345\pi\)
0.727558 0.686046i \(-0.240655\pi\)
\(332\) 45116.5i 0.0224642i
\(333\) 0 0
\(334\) 2.40891e6 1.18156
\(335\) −140720. −0.0685083
\(336\) 0 0
\(337\) −880707. −0.422432 −0.211216 0.977439i \(-0.567742\pi\)
−0.211216 + 0.977439i \(0.567742\pi\)
\(338\) 1.02867e6 1.07125e6i 0.489759 0.510035i
\(339\) 0 0
\(340\) 259226.i 0.121613i
\(341\) −212277. −0.0988590
\(342\) 0 0
\(343\) 2.37193e6i 1.08860i
\(344\) 905101.i 0.412383i
\(345\) 0 0
\(346\) 1.21608e6i 0.546102i
\(347\) 33079.1 0.0147479 0.00737395 0.999973i \(-0.497653\pi\)
0.00737395 + 0.999973i \(0.497653\pi\)
\(348\) 0 0
\(349\) 4.06448e6i 1.78624i −0.449814 0.893122i \(-0.648510\pi\)
0.449814 0.893122i \(-0.351490\pi\)
\(350\) −1.27490e6 −0.556297
\(351\) 0 0
\(352\) 275815. 0.118648
\(353\) 3.57770e6i 1.52815i −0.645125 0.764077i \(-0.723195\pi\)
0.645125 0.764077i \(-0.276805\pi\)
\(354\) 0 0
\(355\) −326686. −0.137582
\(356\) 259635.i 0.108577i
\(357\) 0 0
\(358\) 1.62476e6i 0.670011i
\(359\) 3.31455e6i 1.35734i 0.734444 + 0.678669i \(0.237443\pi\)
−0.734444 + 0.678669i \(0.762557\pi\)
\(360\) 0 0
\(361\) 2.47609e6 0.999997
\(362\) 963867.i 0.386585i
\(363\) 0 0
\(364\) −951353. 382809.i −0.376347 0.151436i
\(365\) 251297. 0.0987313
\(366\) 0 0
\(367\) 192406. 0.0745681 0.0372840 0.999305i \(-0.488129\pi\)
0.0372840 + 0.999305i \(0.488129\pi\)
\(368\) −550691. −0.211977
\(369\) 0 0
\(370\) 38190.4i 0.0145027i
\(371\) 3.25029e6i 1.22599i
\(372\) 0 0
\(373\) 1.60161e6 0.596053 0.298027 0.954558i \(-0.403672\pi\)
0.298027 + 0.954558i \(0.403672\pi\)
\(374\) −1.79252e6 −0.662652
\(375\) 0 0
\(376\) −1.61160e6 −0.587877
\(377\) −50230.7 + 124833.i −0.0182019 + 0.0452350i
\(378\) 0 0
\(379\) 3.76006e6i 1.34461i 0.740274 + 0.672305i \(0.234696\pi\)
−0.740274 + 0.672305i \(0.765304\pi\)
\(380\) −440.537 −0.000156503
\(381\) 0 0
\(382\) 904560.i 0.317160i
\(383\) 4.69693e6i 1.63613i 0.575128 + 0.818063i \(0.304952\pi\)
−0.575128 + 0.818063i \(0.695048\pi\)
\(384\) 0 0
\(385\) 275892.i 0.0948608i
\(386\) −1.62430e6 −0.554879
\(387\) 0 0
\(388\) 2.02062e6i 0.681406i
\(389\) −4.85881e6 −1.62801 −0.814003 0.580860i \(-0.802716\pi\)
−0.814003 + 0.580860i \(0.802716\pi\)
\(390\) 0 0
\(391\) 3.57894e6 1.18389
\(392\) 367572.i 0.120817i
\(393\) 0 0
\(394\) 1.62956e6 0.528846
\(395\) 152111.i 0.0490533i
\(396\) 0 0
\(397\) 3.91926e6i 1.24804i 0.781409 + 0.624019i \(0.214501\pi\)
−0.781409 + 0.624019i \(0.785499\pi\)
\(398\) 811460.i 0.256779i
\(399\) 0 0
\(400\) 775724. 0.242414
\(401\) 5.01898e6i 1.55867i −0.626606 0.779336i \(-0.715557\pi\)
0.626606 0.779336i \(-0.284443\pi\)
\(402\) 0 0
\(403\) −445509. 179266.i −0.136645 0.0549838i
\(404\) 1.47838e6 0.450643
\(405\) 0 0
\(406\) 92910.9 0.0279738
\(407\) −264083. −0.0790232
\(408\) 0 0
\(409\) 2.97886e6i 0.880526i 0.897869 + 0.440263i \(0.145115\pi\)
−0.897869 + 0.440263i \(0.854885\pi\)
\(410\) 576868.i 0.169480i
\(411\) 0 0
\(412\) −2.36946e6 −0.687711
\(413\) 2.63956e6 0.761477
\(414\) 0 0
\(415\) 27459.1 0.00782648
\(416\) 578857. + 232923.i 0.163998 + 0.0659902i
\(417\) 0 0
\(418\) 3046.27i 0.000852762i
\(419\) 4.76887e6 1.32703 0.663515 0.748163i \(-0.269064\pi\)
0.663515 + 0.748163i \(0.269064\pi\)
\(420\) 0 0
\(421\) 651294.i 0.179090i −0.995983 0.0895451i \(-0.971459\pi\)
0.995983 0.0895451i \(-0.0285413\pi\)
\(422\) 2.63188e6i 0.719424i
\(423\) 0 0
\(424\) 1.97766e6i 0.534241i
\(425\) −5.04143e6 −1.35388
\(426\) 0 0
\(427\) 1.26860e6i 0.336710i
\(428\) 1.41088e6 0.372290
\(429\) 0 0
\(430\) −550869. −0.143674
\(431\) 5.22621e6i 1.35517i 0.735444 + 0.677585i \(0.236973\pi\)
−0.735444 + 0.677585i \(0.763027\pi\)
\(432\) 0 0
\(433\) −6.33506e6 −1.62379 −0.811897 0.583801i \(-0.801565\pi\)
−0.811897 + 0.583801i \(0.801565\pi\)
\(434\) 331585.i 0.0845026i
\(435\) 0 0
\(436\) 983475.i 0.247769i
\(437\) 6082.18i 0.00152355i
\(438\) 0 0
\(439\) −7.44321e6 −1.84331 −0.921657 0.388006i \(-0.873164\pi\)
−0.921657 + 0.388006i \(0.873164\pi\)
\(440\) 167868.i 0.0413368i
\(441\) 0 0
\(442\) −3.76200e6 1.51377e6i −0.915931 0.368556i
\(443\) −327031. −0.0791734 −0.0395867 0.999216i \(-0.512604\pi\)
−0.0395867 + 0.999216i \(0.512604\pi\)
\(444\) 0 0
\(445\) −158021. −0.0378281
\(446\) −3.91224e6 −0.931297
\(447\) 0 0
\(448\) 430834.i 0.101418i
\(449\) 5.82118e6i 1.36268i −0.731965 0.681342i \(-0.761396\pi\)
0.731965 0.681342i \(-0.238604\pi\)
\(450\) 0 0
\(451\) −3.98899e6 −0.923468
\(452\) −1.31610e6 −0.303000
\(453\) 0 0
\(454\) −3.24855e6 −0.739690
\(455\) −232988. + 579019.i −0.0527601 + 0.131119i
\(456\) 0 0
\(457\) 8.15788e6i 1.82720i 0.406612 + 0.913601i \(0.366710\pi\)
−0.406612 + 0.913601i \(0.633290\pi\)
\(458\) 5.45315e6 1.21474
\(459\) 0 0
\(460\) 335165.i 0.0738524i
\(461\) 3.15011e6i 0.690357i 0.938537 + 0.345179i \(0.112182\pi\)
−0.938537 + 0.345179i \(0.887818\pi\)
\(462\) 0 0
\(463\) 202622.i 0.0439273i −0.999759 0.0219637i \(-0.993008\pi\)
0.999759 0.0219637i \(-0.00699182\pi\)
\(464\) −56532.3 −0.0121899
\(465\) 0 0
\(466\) 3.72771e6i 0.795201i
\(467\) −91749.8 −0.0194676 −0.00973382 0.999953i \(-0.503098\pi\)
−0.00973382 + 0.999953i \(0.503098\pi\)
\(468\) 0 0
\(469\) −1.51997e6 −0.319082
\(470\) 980860.i 0.204815i
\(471\) 0 0
\(472\) −1.60606e6 −0.331823
\(473\) 3.80921e6i 0.782856i
\(474\) 0 0
\(475\) 8567.58i 0.00174230i
\(476\) 2.79999e6i 0.566421i
\(477\) 0 0
\(478\) 3.54350e6 0.709353
\(479\) 2.82910e6i 0.563390i 0.959504 + 0.281695i \(0.0908967\pi\)
−0.959504 + 0.281695i \(0.909103\pi\)
\(480\) 0 0
\(481\) −554236. 223016.i −0.109228 0.0439514i
\(482\) 5.30758e6 1.04059
\(483\) 0 0
\(484\) −1.41602e6 −0.274762
\(485\) 1.22981e6 0.237401
\(486\) 0 0
\(487\) 1.30176e6i 0.248719i 0.992237 + 0.124359i \(0.0396876\pi\)
−0.992237 + 0.124359i \(0.960312\pi\)
\(488\) 771890.i 0.146726i
\(489\) 0 0
\(490\) −223714. −0.0420923
\(491\) 6.07696e6 1.13758 0.568791 0.822482i \(-0.307412\pi\)
0.568791 + 0.822482i \(0.307412\pi\)
\(492\) 0 0
\(493\) 367404. 0.0680810
\(494\) 2572.55 6393.26i 0.000474292 0.00117870i
\(495\) 0 0
\(496\) 201755.i 0.0368231i
\(497\) −3.52866e6 −0.640795
\(498\) 0 0
\(499\) 3.78708e6i 0.680853i −0.940271 0.340426i \(-0.889429\pi\)
0.940271 0.340426i \(-0.110571\pi\)
\(500\) 959028.i 0.171556i
\(501\) 0 0
\(502\) 2.19038e6i 0.387937i
\(503\) −2.28832e6 −0.403271 −0.201636 0.979461i \(-0.564626\pi\)
−0.201636 + 0.979461i \(0.564626\pi\)
\(504\) 0 0
\(505\) 899783.i 0.157003i
\(506\) −2.31764e6 −0.402410
\(507\) 0 0
\(508\) 2.29040e6 0.393778
\(509\) 3.70029e6i 0.633055i −0.948583 0.316528i \(-0.897483\pi\)
0.948583 0.316528i \(-0.102517\pi\)
\(510\) 0 0
\(511\) 2.71435e6 0.459847
\(512\) 262144.i 0.0441942i
\(513\) 0 0
\(514\) 6.62037e6i 1.10528i
\(515\) 1.44212e6i 0.239597i
\(516\) 0 0
\(517\) −6.78256e6 −1.11601
\(518\) 412509.i 0.0675474i
\(519\) 0 0
\(520\) 141763. 352308.i 0.0229909 0.0571366i
\(521\) −6.13756e6 −0.990608 −0.495304 0.868720i \(-0.664943\pi\)
−0.495304 + 0.868720i \(0.664943\pi\)
\(522\) 0 0
\(523\) 4.10572e6 0.656349 0.328175 0.944617i \(-0.393567\pi\)
0.328175 + 0.944617i \(0.393567\pi\)
\(524\) −2.26127e6 −0.359769
\(525\) 0 0
\(526\) 2.67275e6i 0.421206i
\(527\) 1.31121e6i 0.205658i
\(528\) 0 0
\(529\) −1.80895e6 −0.281053
\(530\) −1.20366e6 −0.186129
\(531\) 0 0
\(532\) −4758.40 −0.000728923
\(533\) −8.37177e6 3.36867e6i −1.27644 0.513618i
\(534\) 0 0
\(535\) 858701.i 0.129705i
\(536\) 924834. 0.139044
\(537\) 0 0
\(538\) 1.53977e6i 0.229350i
\(539\) 1.54696e6i 0.229355i
\(540\) 0 0
\(541\) 2.51266e6i 0.369098i −0.982823 0.184549i \(-0.940918\pi\)
0.982823 0.184549i \(-0.0590824\pi\)
\(542\) −4.21374e6 −0.616126
\(543\) 0 0
\(544\) 1.70368e6i 0.246825i
\(545\) 598569. 0.0863223
\(546\) 0 0
\(547\) −2.29454e6 −0.327889 −0.163945 0.986470i \(-0.552422\pi\)
−0.163945 + 0.986470i \(0.552422\pi\)
\(548\) 63333.4i 0.00900909i
\(549\) 0 0
\(550\) 3.26471e6 0.460191
\(551\) 624.378i 8.76130e-5i
\(552\) 0 0
\(553\) 1.64301e6i 0.228469i
\(554\) 6.48202e6i 0.897297i
\(555\) 0 0
\(556\) 7.12926e6 0.978042
\(557\) 5.96324e6i 0.814412i −0.913336 0.407206i \(-0.866503\pi\)
0.913336 0.407206i \(-0.133497\pi\)
\(558\) 0 0
\(559\) 3.21684e6 7.99445e6i 0.435412 1.08208i
\(560\) −262217. −0.0353339
\(561\) 0 0
\(562\) −2.25204e6 −0.300770
\(563\) 7.37754e6 0.980935 0.490468 0.871459i \(-0.336826\pi\)
0.490468 + 0.871459i \(0.336826\pi\)
\(564\) 0 0
\(565\) 801012.i 0.105565i
\(566\) 1.44757e6i 0.189932i
\(567\) 0 0
\(568\) 2.14704e6 0.279235
\(569\) −2.60845e6 −0.337756 −0.168878 0.985637i \(-0.554014\pi\)
−0.168878 + 0.985637i \(0.554014\pi\)
\(570\) 0 0
\(571\) 1.09867e7 1.41019 0.705095 0.709113i \(-0.250905\pi\)
0.705095 + 0.709113i \(0.250905\pi\)
\(572\) 2.43618e6 + 980280.i 0.311329 + 0.125274i
\(573\) 0 0
\(574\) 6.23097e6i 0.789362i
\(575\) −6.51831e6 −0.822177
\(576\) 0 0
\(577\) 1.10048e7i 1.37607i −0.725677 0.688036i \(-0.758473\pi\)
0.725677 0.688036i \(-0.241527\pi\)
\(578\) 5.39276e6i 0.671416i
\(579\) 0 0
\(580\) 34407.1i 0.00424696i
\(581\) 296596. 0.0364523
\(582\) 0 0
\(583\) 8.32318e6i 1.01419i
\(584\) −1.65157e6 −0.200384
\(585\) 0 0
\(586\) −3.02927e6 −0.364413
\(587\) 1.09851e7i 1.31586i 0.753080 + 0.657929i \(0.228567\pi\)
−0.753080 + 0.657929i \(0.771433\pi\)
\(588\) 0 0
\(589\) −2228.31 −0.000264659
\(590\) 977492.i 0.115607i
\(591\) 0 0
\(592\) 250994.i 0.0294347i
\(593\) 3.90620e6i 0.456161i −0.973642 0.228081i \(-0.926755\pi\)
0.973642 0.228081i \(-0.0732449\pi\)
\(594\) 0 0
\(595\) 1.70415e6 0.197340
\(596\) 793908.i 0.0915492i
\(597\) 0 0
\(598\) −4.86407e6 1.95722e6i −0.556220 0.223814i
\(599\) 1.69973e7 1.93559 0.967797 0.251733i \(-0.0810005\pi\)
0.967797 + 0.251733i \(0.0810005\pi\)
\(600\) 0 0
\(601\) 1.07099e7 1.20948 0.604739 0.796424i \(-0.293278\pi\)
0.604739 + 0.796424i \(0.293278\pi\)
\(602\) −5.95014e6 −0.669169
\(603\) 0 0
\(604\) 6.43717e6i 0.717964i
\(605\) 861829.i 0.0957267i
\(606\) 0 0
\(607\) −1.43102e7 −1.57642 −0.788212 0.615404i \(-0.788993\pi\)
−0.788212 + 0.615404i \(0.788993\pi\)
\(608\) 2895.28 0.000317638
\(609\) 0 0
\(610\) −469793. −0.0511190
\(611\) −1.42347e7 5.72781e6i −1.54257 0.620705i
\(612\) 0 0
\(613\) 1.67594e7i 1.80139i −0.434450 0.900696i \(-0.643057\pi\)
0.434450 0.900696i \(-0.356943\pi\)
\(614\) 7.85120e6 0.840456
\(615\) 0 0
\(616\) 1.81321e6i 0.192529i
\(617\) 1.26793e7i 1.34085i −0.741976 0.670427i \(-0.766111\pi\)
0.741976 0.670427i \(-0.233889\pi\)
\(618\) 0 0
\(619\) 5.43928e6i 0.570577i 0.958442 + 0.285289i \(0.0920895\pi\)
−0.958442 + 0.285289i \(0.907911\pi\)
\(620\) −122794. −0.0128291
\(621\) 0 0
\(622\) 3.33768e6i 0.345914i
\(623\) −1.70684e6 −0.176187
\(624\) 0 0
\(625\) 8.88559e6 0.909885
\(626\) 6.47335e6i 0.660227i
\(627\) 0 0
\(628\) 8.99887e6 0.910519
\(629\) 1.63121e6i 0.164393i
\(630\) 0 0
\(631\) 5.28439e6i 0.528350i 0.964475 + 0.264175i \(0.0850996\pi\)
−0.964475 + 0.264175i \(0.914900\pi\)
\(632\) 999700.i 0.0995582i
\(633\) 0 0
\(634\) 2.64121e6 0.260964
\(635\) 1.39400e6i 0.137192i
\(636\) 0 0
\(637\) 1.30639e6 3.24664e6i 0.127563 0.317019i
\(638\) −237922. −0.0231410
\(639\) 0 0
\(640\) 159548. 0.0153972
\(641\) −8.01855e6 −0.770816 −0.385408 0.922746i \(-0.625939\pi\)
−0.385408 + 0.922746i \(0.625939\pi\)
\(642\) 0 0
\(643\) 1.39227e7i 1.32799i 0.747735 + 0.663997i \(0.231141\pi\)
−0.747735 + 0.663997i \(0.768859\pi\)
\(644\) 3.62025e6i 0.343972i
\(645\) 0 0
\(646\) −18816.5 −0.00177401
\(647\) 9.55517e6 0.897383 0.448692 0.893687i \(-0.351890\pi\)
0.448692 + 0.893687i \(0.351890\pi\)
\(648\) 0 0
\(649\) −6.75926e6 −0.629923
\(650\) 6.85170e6 + 2.75702e6i 0.636085 + 0.255951i
\(651\) 0 0
\(652\) 5.02204e6i 0.462659i
\(653\) 1.87340e7 1.71928 0.859640 0.510901i \(-0.170688\pi\)
0.859640 + 0.510901i \(0.170688\pi\)
\(654\) 0 0
\(655\) 1.37627e6i 0.125343i
\(656\) 3.79128e6i 0.343974i
\(657\) 0 0
\(658\) 1.05946e7i 0.953941i
\(659\) 3.39787e6 0.304785 0.152392 0.988320i \(-0.451302\pi\)
0.152392 + 0.988320i \(0.451302\pi\)
\(660\) 0 0
\(661\) 1.81823e7i 1.61862i −0.587382 0.809310i \(-0.699841\pi\)
0.587382 0.809310i \(-0.300159\pi\)
\(662\) 1.09399e7 0.970215
\(663\) 0 0
\(664\) −180466. −0.0158846
\(665\) 2896.09i 0.000253956i
\(666\) 0 0
\(667\) 475034. 0.0413438
\(668\) 9.63564e6i 0.835487i
\(669\) 0 0
\(670\) 562879.i 0.0484427i
\(671\) 3.24858e6i 0.278540i
\(672\) 0 0
\(673\) 686844. 0.0584548 0.0292274 0.999573i \(-0.490695\pi\)
0.0292274 + 0.999573i \(0.490695\pi\)
\(674\) 3.52283e6i 0.298704i
\(675\) 0 0
\(676\) 4.28501e6 + 4.11466e6i 0.360650 + 0.346312i
\(677\) 6.64858e6 0.557516 0.278758 0.960361i \(-0.410077\pi\)
0.278758 + 0.960361i \(0.410077\pi\)
\(678\) 0 0
\(679\) 1.32836e7 1.10571
\(680\) −1.03690e6 −0.0859935
\(681\) 0 0
\(682\) 849106.i 0.0699038i
\(683\) 1.66853e7i 1.36862i 0.729193 + 0.684308i \(0.239896\pi\)
−0.729193 + 0.684308i \(0.760104\pi\)
\(684\) 0 0
\(685\) 38546.4 0.00313875
\(686\) −9.48773e6 −0.769754
\(687\) 0 0
\(688\) 3.62040e6 0.291599
\(689\) 7.02885e6 1.74680e7i 0.564074 1.40183i
\(690\) 0 0
\(691\) 1.75290e7i 1.39657i 0.715822 + 0.698283i \(0.246052\pi\)
−0.715822 + 0.698283i \(0.753948\pi\)
\(692\) 4.86434e6 0.386152
\(693\) 0 0
\(694\) 132317.i 0.0104283i
\(695\) 4.33906e6i 0.340748i
\(696\) 0 0
\(697\) 2.46395e7i 1.92110i
\(698\) 1.62579e7 1.26307
\(699\) 0 0
\(700\) 5.09961e6i 0.393362i
\(701\) −7.06379e6 −0.542929 −0.271464 0.962449i \(-0.587508\pi\)
−0.271464 + 0.962449i \(0.587508\pi\)
\(702\) 0 0
\(703\) −2772.13 −0.000211556
\(704\) 1.10326e6i 0.0838969i
\(705\) 0 0
\(706\) 1.43108e7 1.08057
\(707\) 9.71889e6i 0.731253i
\(708\) 0 0
\(709\) 9.07731e6i 0.678175i −0.940755 0.339087i \(-0.889882\pi\)
0.940755 0.339087i \(-0.110118\pi\)
\(710\) 1.30675e6i 0.0972849i
\(711\) 0 0
\(712\) 1.03854e6 0.0767755
\(713\) 1.69532e6i 0.124890i
\(714\) 0 0
\(715\) 596625. 1.48272e6i 0.0436452 0.108466i
\(716\) 6.49904e6 0.473769
\(717\) 0 0
\(718\) −1.32582e7 −0.959783
\(719\) 1.03755e7 0.748492 0.374246 0.927330i \(-0.377902\pi\)
0.374246 + 0.927330i \(0.377902\pi\)
\(720\) 0 0
\(721\) 1.55768e7i 1.11594i
\(722\) 9.90436e6i 0.707104i
\(723\) 0 0
\(724\) 3.85547e6 0.273357
\(725\) −669150. −0.0472801
\(726\) 0 0
\(727\) −2.94915e6 −0.206948 −0.103474 0.994632i \(-0.532996\pi\)
−0.103474 + 0.994632i \(0.532996\pi\)
\(728\) 1.53124e6 3.80541e6i 0.107081 0.266117i
\(729\) 0 0
\(730\) 1.00519e6i 0.0698136i
\(731\) −2.35290e7 −1.62858
\(732\) 0 0
\(733\) 1.71605e7i 1.17970i −0.807513 0.589849i \(-0.799187\pi\)
0.807513 0.589849i \(-0.200813\pi\)
\(734\) 769623.i 0.0527276i
\(735\) 0 0
\(736\) 2.20276e6i 0.149890i
\(737\) 3.89226e6 0.263957
\(738\) 0 0
\(739\) 2.20849e7i 1.48760i −0.668405 0.743798i \(-0.733023\pi\)
0.668405 0.743798i \(-0.266977\pi\)
\(740\) −152762. −0.0102550
\(741\) 0 0
\(742\) −1.30011e7 −0.866906
\(743\) 2.21459e7i 1.47171i 0.677140 + 0.735854i \(0.263219\pi\)
−0.677140 + 0.735854i \(0.736781\pi\)
\(744\) 0 0
\(745\) −483194. −0.0318956
\(746\) 6.40644e6i 0.421473i
\(747\) 0 0
\(748\) 7.17008e6i 0.468565i
\(749\) 9.27514e6i 0.604110i
\(750\) 0 0
\(751\) 6.38710e6 0.413242 0.206621 0.978421i \(-0.433753\pi\)
0.206621 + 0.978421i \(0.433753\pi\)
\(752\) 6.44638e6i 0.415692i
\(753\) 0 0
\(754\) −499331. 200923.i −0.0319860 0.0128707i
\(755\) 3.91783e6 0.250137
\(756\) 0 0
\(757\) −2.47266e6 −0.156828 −0.0784141 0.996921i \(-0.524986\pi\)
−0.0784141 + 0.996921i \(0.524986\pi\)
\(758\) −1.50402e7 −0.950783
\(759\) 0 0
\(760\) 1762.15i 0.000110664i
\(761\) 1.59009e7i 0.995315i −0.867374 0.497657i \(-0.834194\pi\)
0.867374 0.497657i \(-0.165806\pi\)
\(762\) 0 0
\(763\) 6.46537e6 0.402052
\(764\) 3.61824e6 0.224266
\(765\) 0 0
\(766\) −1.87877e7 −1.15692
\(767\) −1.41858e7 5.70814e6i −0.870693 0.350353i
\(768\) 0 0
\(769\) 4.80537e6i 0.293029i −0.989209 0.146515i \(-0.953194\pi\)
0.989209 0.146515i \(-0.0468055\pi\)
\(770\) −1.10357e6 −0.0670767
\(771\) 0 0
\(772\) 6.49720e6i 0.392359i
\(773\) 2.22008e7i 1.33635i 0.744004 + 0.668175i \(0.232924\pi\)
−0.744004 + 0.668175i \(0.767076\pi\)
\(774\) 0 0
\(775\) 2.38810e6i 0.142823i
\(776\) −8.08249e6 −0.481827
\(777\) 0 0
\(778\) 1.94353e7i 1.15117i
\(779\) −41873.2 −0.00247225
\(780\) 0 0
\(781\) 9.03603e6 0.530090
\(782\) 1.43158e7i 0.837140i
\(783\) 0 0
\(784\) 1.47029e6 0.0854303
\(785\) 5.47695e6i 0.317223i</