Properties

Label 234.6.b.c.181.3
Level $234$
Weight $6$
Character 234.181
Analytic conductor $37.530$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [234,6,Mod(181,234)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(234, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("234.181");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 234 = 2 \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 234.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(37.5298138362\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} + 2x^{4} - 2946x^{3} + 131769x^{2} - 1332936x + 6741792 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{11}\cdot 3^{2} \)
Twist minimal: no (minimal twist has level 78)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 181.3
Root \(9.96927 + 9.96927i\) of defining polynomial
Character \(\chi\) \(=\) 234.181
Dual form 234.6.b.c.181.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4.00000i q^{2} -16.0000 q^{4} +86.8538i q^{5} +98.7774i q^{7} +64.0000i q^{8} +O(q^{10})\) \(q-4.00000i q^{2} -16.0000 q^{4} +86.8538i q^{5} +98.7774i q^{7} +64.0000i q^{8} +347.415 q^{10} -610.754i q^{11} +(592.276 - 143.186i) q^{13} +395.109 q^{14} +256.000 q^{16} +1148.60 q^{17} +2267.14i q^{19} -1389.66i q^{20} -2443.02 q^{22} -433.224 q^{23} -4418.59 q^{25} +(-572.744 - 2369.10i) q^{26} -1580.44i q^{28} -7669.59 q^{29} +7367.13i q^{31} -1024.00i q^{32} -4594.42i q^{34} -8579.19 q^{35} +10575.0i q^{37} +9068.57 q^{38} -5558.65 q^{40} +3699.17i q^{41} -6061.57 q^{43} +9772.07i q^{44} +1732.89i q^{46} -8740.69i q^{47} +7050.03 q^{49} +17674.4i q^{50} +(-9476.42 + 2290.97i) q^{52} -34784.8 q^{53} +53046.3 q^{55} -6321.75 q^{56} +30678.4i q^{58} +11949.6i q^{59} -45400.2 q^{61} +29468.5 q^{62} -4096.00 q^{64} +(12436.2 + 51441.4i) q^{65} -45698.1i q^{67} -18377.7 q^{68} +34316.8i q^{70} +23826.9i q^{71} +37759.1i q^{73} +42299.9 q^{74} -36274.3i q^{76} +60328.7 q^{77} -35307.0 q^{79} +22234.6i q^{80} +14796.7 q^{82} -31484.4i q^{83} +99760.7i q^{85} +24246.3i q^{86} +39088.3 q^{88} -59051.5i q^{89} +(14143.5 + 58503.5i) q^{91} +6931.58 q^{92} -34962.7 q^{94} -196910. q^{95} +4965.78i q^{97} -28200.1i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 96 q^{4}+O(q^{10}) \) Copy content Toggle raw display \( 6 q - 96 q^{4} + 320 q^{10} + 530 q^{13} + 1360 q^{14} + 1536 q^{16} + 836 q^{17} - 1296 q^{22} + 416 q^{23} + 718 q^{25} + 1360 q^{26} - 18788 q^{29} - 6112 q^{35} - 528 q^{38} - 5120 q^{40} - 24200 q^{43} - 3038 q^{49} - 8480 q^{52} + 42396 q^{53} + 124656 q^{55} - 21760 q^{56} - 3196 q^{61} + 59344 q^{62} - 24576 q^{64} + 17168 q^{65} - 13376 q^{68} + 62240 q^{74} + 114024 q^{77} - 169328 q^{79} + 145120 q^{82} + 20736 q^{88} + 236152 q^{91} - 6656 q^{92} - 32688 q^{94} - 567168 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/234\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(209\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 4.00000i 0.707107i
\(3\) 0 0
\(4\) −16.0000 −0.500000
\(5\) 86.8538i 1.55369i 0.629693 + 0.776844i \(0.283181\pi\)
−0.629693 + 0.776844i \(0.716819\pi\)
\(6\) 0 0
\(7\) 98.7774i 0.761925i 0.924590 + 0.380963i \(0.124407\pi\)
−0.924590 + 0.380963i \(0.875593\pi\)
\(8\) 64.0000i 0.353553i
\(9\) 0 0
\(10\) 347.415 1.09862
\(11\) 610.754i 1.52190i −0.648813 0.760948i \(-0.724734\pi\)
0.648813 0.760948i \(-0.275266\pi\)
\(12\) 0 0
\(13\) 592.276 143.186i 0.971999 0.234986i
\(14\) 395.109 0.538762
\(15\) 0 0
\(16\) 256.000 0.250000
\(17\) 1148.60 0.963936 0.481968 0.876189i \(-0.339922\pi\)
0.481968 + 0.876189i \(0.339922\pi\)
\(18\) 0 0
\(19\) 2267.14i 1.44077i 0.693574 + 0.720386i \(0.256035\pi\)
−0.693574 + 0.720386i \(0.743965\pi\)
\(20\) 1389.66i 0.776844i
\(21\) 0 0
\(22\) −2443.02 −1.07614
\(23\) −433.224 −0.170763 −0.0853813 0.996348i \(-0.527211\pi\)
−0.0853813 + 0.996348i \(0.527211\pi\)
\(24\) 0 0
\(25\) −4418.59 −1.41395
\(26\) −572.744 2369.10i −0.166160 0.687307i
\(27\) 0 0
\(28\) 1580.44i 0.380963i
\(29\) −7669.59 −1.69347 −0.846734 0.532016i \(-0.821434\pi\)
−0.846734 + 0.532016i \(0.821434\pi\)
\(30\) 0 0
\(31\) 7367.13i 1.37687i 0.725296 + 0.688437i \(0.241703\pi\)
−0.725296 + 0.688437i \(0.758297\pi\)
\(32\) 1024.00i 0.176777i
\(33\) 0 0
\(34\) 4594.42i 0.681606i
\(35\) −8579.19 −1.18379
\(36\) 0 0
\(37\) 10575.0i 1.26991i 0.772547 + 0.634957i \(0.218982\pi\)
−0.772547 + 0.634957i \(0.781018\pi\)
\(38\) 9068.57 1.01878
\(39\) 0 0
\(40\) −5558.65 −0.549312
\(41\) 3699.17i 0.343672i 0.985126 + 0.171836i \(0.0549700\pi\)
−0.985126 + 0.171836i \(0.945030\pi\)
\(42\) 0 0
\(43\) −6061.57 −0.499936 −0.249968 0.968254i \(-0.580420\pi\)
−0.249968 + 0.968254i \(0.580420\pi\)
\(44\) 9772.07i 0.760948i
\(45\) 0 0
\(46\) 1732.89i 0.120747i
\(47\) 8740.69i 0.577166i −0.957455 0.288583i \(-0.906816\pi\)
0.957455 0.288583i \(-0.0931841\pi\)
\(48\) 0 0
\(49\) 7050.03 0.419470
\(50\) 17674.4i 0.999812i
\(51\) 0 0
\(52\) −9476.42 + 2290.97i −0.485999 + 0.117493i
\(53\) −34784.8 −1.70098 −0.850491 0.525990i \(-0.823695\pi\)
−0.850491 + 0.525990i \(0.823695\pi\)
\(54\) 0 0
\(55\) 53046.3 2.36455
\(56\) −6321.75 −0.269381
\(57\) 0 0
\(58\) 30678.4i 1.19746i
\(59\) 11949.6i 0.446915i 0.974714 + 0.223457i \(0.0717344\pi\)
−0.974714 + 0.223457i \(0.928266\pi\)
\(60\) 0 0
\(61\) −45400.2 −1.56219 −0.781094 0.624414i \(-0.785338\pi\)
−0.781094 + 0.624414i \(0.785338\pi\)
\(62\) 29468.5 0.973597
\(63\) 0 0
\(64\) −4096.00 −0.125000
\(65\) 12436.2 + 51441.4i 0.365095 + 1.51018i
\(66\) 0 0
\(67\) 45698.1i 1.24369i −0.783141 0.621844i \(-0.786384\pi\)
0.783141 0.621844i \(-0.213616\pi\)
\(68\) −18377.7 −0.481968
\(69\) 0 0
\(70\) 34316.8i 0.837069i
\(71\) 23826.9i 0.560946i 0.959862 + 0.280473i \(0.0904913\pi\)
−0.959862 + 0.280473i \(0.909509\pi\)
\(72\) 0 0
\(73\) 37759.1i 0.829305i 0.909980 + 0.414653i \(0.136097\pi\)
−0.909980 + 0.414653i \(0.863903\pi\)
\(74\) 42299.9 0.897965
\(75\) 0 0
\(76\) 36274.3i 0.720386i
\(77\) 60328.7 1.15957
\(78\) 0 0
\(79\) −35307.0 −0.636492 −0.318246 0.948008i \(-0.603094\pi\)
−0.318246 + 0.948008i \(0.603094\pi\)
\(80\) 22234.6i 0.388422i
\(81\) 0 0
\(82\) 14796.7 0.243013
\(83\) 31484.4i 0.501649i −0.968033 0.250824i \(-0.919298\pi\)
0.968033 0.250824i \(-0.0807017\pi\)
\(84\) 0 0
\(85\) 99760.7i 1.49766i
\(86\) 24246.3i 0.353508i
\(87\) 0 0
\(88\) 39088.3 0.538071
\(89\) 59051.5i 0.790235i −0.918631 0.395117i \(-0.870704\pi\)
0.918631 0.395117i \(-0.129296\pi\)
\(90\) 0 0
\(91\) 14143.5 + 58503.5i 0.179042 + 0.740590i
\(92\) 6931.58 0.0853813
\(93\) 0 0
\(94\) −34962.7 −0.408118
\(95\) −196910. −2.23851
\(96\) 0 0
\(97\) 4965.78i 0.0535868i 0.999641 + 0.0267934i \(0.00852963\pi\)
−0.999641 + 0.0267934i \(0.991470\pi\)
\(98\) 28200.1i 0.296610i
\(99\) 0 0
\(100\) 70697.4 0.706974
\(101\) 125605. 1.22519 0.612596 0.790396i \(-0.290125\pi\)
0.612596 + 0.790396i \(0.290125\pi\)
\(102\) 0 0
\(103\) −126352. −1.17351 −0.586756 0.809764i \(-0.699595\pi\)
−0.586756 + 0.809764i \(0.699595\pi\)
\(104\) 9163.90 + 37905.7i 0.0830801 + 0.343653i
\(105\) 0 0
\(106\) 139139.i 1.20278i
\(107\) −33067.8 −0.279219 −0.139610 0.990207i \(-0.544585\pi\)
−0.139610 + 0.990207i \(0.544585\pi\)
\(108\) 0 0
\(109\) 147666.i 1.19046i 0.803555 + 0.595230i \(0.202939\pi\)
−0.803555 + 0.595230i \(0.797061\pi\)
\(110\) 212185.i 1.67199i
\(111\) 0 0
\(112\) 25287.0i 0.190481i
\(113\) −118111. −0.870152 −0.435076 0.900394i \(-0.643278\pi\)
−0.435076 + 0.900394i \(0.643278\pi\)
\(114\) 0 0
\(115\) 37627.1i 0.265312i
\(116\) 122713. 0.846734
\(117\) 0 0
\(118\) 47798.6 0.316016
\(119\) 113456.i 0.734447i
\(120\) 0 0
\(121\) −211970. −1.31616
\(122\) 181601.i 1.10463i
\(123\) 0 0
\(124\) 117874.i 0.688437i
\(125\) 112353.i 0.643147i
\(126\) 0 0
\(127\) 322666. 1.77518 0.887592 0.460631i \(-0.152377\pi\)
0.887592 + 0.460631i \(0.152377\pi\)
\(128\) 16384.0i 0.0883883i
\(129\) 0 0
\(130\) 205766. 49745.0i 1.06786 0.258161i
\(131\) 357874. 1.82202 0.911008 0.412390i \(-0.135306\pi\)
0.911008 + 0.412390i \(0.135306\pi\)
\(132\) 0 0
\(133\) −223942. −1.09776
\(134\) −182792. −0.879420
\(135\) 0 0
\(136\) 73510.7i 0.340803i
\(137\) 347064.i 1.57982i 0.613221 + 0.789912i \(0.289874\pi\)
−0.613221 + 0.789912i \(0.710126\pi\)
\(138\) 0 0
\(139\) −103030. −0.452299 −0.226149 0.974093i \(-0.572614\pi\)
−0.226149 + 0.974093i \(0.572614\pi\)
\(140\) 137267. 0.591897
\(141\) 0 0
\(142\) 95307.4 0.396649
\(143\) −87451.4 361735.i −0.357624 1.47928i
\(144\) 0 0
\(145\) 666133.i 2.63112i
\(146\) 151036. 0.586407
\(147\) 0 0
\(148\) 169199.i 0.634957i
\(149\) 90695.3i 0.334672i −0.985900 0.167336i \(-0.946484\pi\)
0.985900 0.167336i \(-0.0535164\pi\)
\(150\) 0 0
\(151\) 104288.i 0.372215i −0.982529 0.186107i \(-0.940413\pi\)
0.982529 0.186107i \(-0.0595873\pi\)
\(152\) −145097. −0.509390
\(153\) 0 0
\(154\) 241315.i 0.819940i
\(155\) −639863. −2.13923
\(156\) 0 0
\(157\) −314419. −1.01803 −0.509014 0.860758i \(-0.669990\pi\)
−0.509014 + 0.860758i \(0.669990\pi\)
\(158\) 141228.i 0.450068i
\(159\) 0 0
\(160\) 88938.3 0.274656
\(161\) 42792.7i 0.130108i
\(162\) 0 0
\(163\) 140732.i 0.414881i 0.978248 + 0.207441i \(0.0665134\pi\)
−0.978248 + 0.207441i \(0.933487\pi\)
\(164\) 59186.7i 0.171836i
\(165\) 0 0
\(166\) −125937. −0.354719
\(167\) 108944.i 0.302281i −0.988512 0.151141i \(-0.951705\pi\)
0.988512 0.151141i \(-0.0482946\pi\)
\(168\) 0 0
\(169\) 330289. 169611.i 0.889563 0.456812i
\(170\) 399043. 1.05900
\(171\) 0 0
\(172\) 96985.2 0.249968
\(173\) −401188. −1.01914 −0.509569 0.860430i \(-0.670195\pi\)
−0.509569 + 0.860430i \(0.670195\pi\)
\(174\) 0 0
\(175\) 436456.i 1.07732i
\(176\) 156353.i 0.380474i
\(177\) 0 0
\(178\) −236206. −0.558780
\(179\) 209535. 0.488792 0.244396 0.969676i \(-0.421410\pi\)
0.244396 + 0.969676i \(0.421410\pi\)
\(180\) 0 0
\(181\) 236277. 0.536075 0.268038 0.963408i \(-0.413625\pi\)
0.268038 + 0.963408i \(0.413625\pi\)
\(182\) 234014. 56574.1i 0.523676 0.126602i
\(183\) 0 0
\(184\) 27726.3i 0.0603737i
\(185\) −918476. −1.97305
\(186\) 0 0
\(187\) 701515.i 1.46701i
\(188\) 139851.i 0.288583i
\(189\) 0 0
\(190\) 787640.i 1.58287i
\(191\) −509719. −1.01099 −0.505496 0.862829i \(-0.668690\pi\)
−0.505496 + 0.862829i \(0.668690\pi\)
\(192\) 0 0
\(193\) 58146.8i 0.112365i −0.998421 0.0561827i \(-0.982107\pi\)
0.998421 0.0561827i \(-0.0178929\pi\)
\(194\) 19863.1 0.0378916
\(195\) 0 0
\(196\) −112801. −0.209735
\(197\) 91830.0i 0.168585i −0.996441 0.0842925i \(-0.973137\pi\)
0.996441 0.0842925i \(-0.0268630\pi\)
\(198\) 0 0
\(199\) 562291. 1.00653 0.503267 0.864131i \(-0.332131\pi\)
0.503267 + 0.864131i \(0.332131\pi\)
\(200\) 282790.i 0.499906i
\(201\) 0 0
\(202\) 502421.i 0.866341i
\(203\) 757582.i 1.29030i
\(204\) 0 0
\(205\) −321287. −0.533960
\(206\) 505406.i 0.829798i
\(207\) 0 0
\(208\) 151623. 36655.6i 0.243000 0.0587465i
\(209\) 1.38467e6 2.19270
\(210\) 0 0
\(211\) 650662. 1.00612 0.503059 0.864252i \(-0.332208\pi\)
0.503059 + 0.864252i \(0.332208\pi\)
\(212\) 556557. 0.850491
\(213\) 0 0
\(214\) 132271.i 0.197438i
\(215\) 526471.i 0.776745i
\(216\) 0 0
\(217\) −727706. −1.04907
\(218\) 590665. 0.841782
\(219\) 0 0
\(220\) −848741. −1.18228
\(221\) 680291. 164464.i 0.936944 0.226511i
\(222\) 0 0
\(223\) 302795.i 0.407743i 0.978998 + 0.203871i \(0.0653525\pi\)
−0.978998 + 0.203871i \(0.934648\pi\)
\(224\) 101148. 0.134691
\(225\) 0 0
\(226\) 472445.i 0.615290i
\(227\) 723191.i 0.931512i −0.884913 0.465756i \(-0.845782\pi\)
0.884913 0.465756i \(-0.154218\pi\)
\(228\) 0 0
\(229\) 1.39378e6i 1.75633i 0.478356 + 0.878166i \(0.341233\pi\)
−0.478356 + 0.878166i \(0.658767\pi\)
\(230\) −150509. −0.187604
\(231\) 0 0
\(232\) 490854.i 0.598731i
\(233\) 319385. 0.385411 0.192706 0.981257i \(-0.438274\pi\)
0.192706 + 0.981257i \(0.438274\pi\)
\(234\) 0 0
\(235\) 759162. 0.896736
\(236\) 191194.i 0.223457i
\(237\) 0 0
\(238\) 453824. 0.519332
\(239\) 1.52265e6i 1.72427i 0.506682 + 0.862133i \(0.330872\pi\)
−0.506682 + 0.862133i \(0.669128\pi\)
\(240\) 0 0
\(241\) 607839.i 0.674134i 0.941481 + 0.337067i \(0.109435\pi\)
−0.941481 + 0.337067i \(0.890565\pi\)
\(242\) 847879.i 0.930669i
\(243\) 0 0
\(244\) 726403. 0.781094
\(245\) 612323.i 0.651726i
\(246\) 0 0
\(247\) 324623. + 1.34277e6i 0.338561 + 1.40043i
\(248\) −471496. −0.486798
\(249\) 0 0
\(250\) −449412. −0.454773
\(251\) 1.05049e6 1.05247 0.526234 0.850340i \(-0.323604\pi\)
0.526234 + 0.850340i \(0.323604\pi\)
\(252\) 0 0
\(253\) 264593.i 0.259883i
\(254\) 1.29066e6i 1.25524i
\(255\) 0 0
\(256\) 65536.0 0.0625000
\(257\) −236240. −0.223111 −0.111555 0.993758i \(-0.535583\pi\)
−0.111555 + 0.993758i \(0.535583\pi\)
\(258\) 0 0
\(259\) −1.04457e6 −0.967580
\(260\) −198980. 823063.i −0.182547 0.755092i
\(261\) 0 0
\(262\) 1.43150e6i 1.28836i
\(263\) −928964. −0.828151 −0.414076 0.910242i \(-0.635895\pi\)
−0.414076 + 0.910242i \(0.635895\pi\)
\(264\) 0 0
\(265\) 3.02119e6i 2.64280i
\(266\) 895770.i 0.776233i
\(267\) 0 0
\(268\) 731170.i 0.621844i
\(269\) −827650. −0.697374 −0.348687 0.937239i \(-0.613372\pi\)
−0.348687 + 0.937239i \(0.613372\pi\)
\(270\) 0 0
\(271\) 660781.i 0.546555i 0.961935 + 0.273278i \(0.0881078\pi\)
−0.961935 + 0.273278i \(0.911892\pi\)
\(272\) 294043. 0.240984
\(273\) 0 0
\(274\) 1.38826e6 1.11710
\(275\) 2.69867e6i 2.15188i
\(276\) 0 0
\(277\) −1.38275e6 −1.08279 −0.541395 0.840769i \(-0.682104\pi\)
−0.541395 + 0.840769i \(0.682104\pi\)
\(278\) 412119.i 0.319823i
\(279\) 0 0
\(280\) 549068.i 0.418534i
\(281\) 1.44893e6i 1.09467i −0.836915 0.547333i \(-0.815643\pi\)
0.836915 0.547333i \(-0.184357\pi\)
\(282\) 0 0
\(283\) 1.22044e6 0.905841 0.452921 0.891551i \(-0.350382\pi\)
0.452921 + 0.891551i \(0.350382\pi\)
\(284\) 381230.i 0.280473i
\(285\) 0 0
\(286\) −1.44694e6 + 349806.i −1.04601 + 0.252878i
\(287\) −365394. −0.261853
\(288\) 0 0
\(289\) −100565. −0.0708279
\(290\) −2.66453e6 −1.86048
\(291\) 0 0
\(292\) 604146.i 0.414653i
\(293\) 2.19465e6i 1.49347i 0.665123 + 0.746734i \(0.268379\pi\)
−0.665123 + 0.746734i \(0.731621\pi\)
\(294\) 0 0
\(295\) −1.03787e6 −0.694366
\(296\) −676798. −0.448983
\(297\) 0 0
\(298\) −362781. −0.236649
\(299\) −256588. + 62031.5i −0.165981 + 0.0401268i
\(300\) 0 0
\(301\) 598746.i 0.380914i
\(302\) −417154. −0.263196
\(303\) 0 0
\(304\) 580389.i 0.360193i
\(305\) 3.94318e6i 2.42715i
\(306\) 0 0
\(307\) 83619.1i 0.0506360i −0.999679 0.0253180i \(-0.991940\pi\)
0.999679 0.0253180i \(-0.00805983\pi\)
\(308\) −965259. −0.579785
\(309\) 0 0
\(310\) 2.55945e6i 1.51267i
\(311\) −491767. −0.288309 −0.144155 0.989555i \(-0.546046\pi\)
−0.144155 + 0.989555i \(0.546046\pi\)
\(312\) 0 0
\(313\) 896969. 0.517508 0.258754 0.965943i \(-0.416688\pi\)
0.258754 + 0.965943i \(0.416688\pi\)
\(314\) 1.25768e6i 0.719854i
\(315\) 0 0
\(316\) 564912. 0.318246
\(317\) 3.15449e6i 1.76312i 0.472074 + 0.881559i \(0.343506\pi\)
−0.472074 + 0.881559i \(0.656494\pi\)
\(318\) 0 0
\(319\) 4.68423e6i 2.57728i
\(320\) 355753.i 0.194211i
\(321\) 0 0
\(322\) −171171. −0.0920004
\(323\) 2.60405e6i 1.38881i
\(324\) 0 0
\(325\) −2.61702e6 + 632679.i −1.37436 + 0.332258i
\(326\) 562928. 0.293365
\(327\) 0 0
\(328\) −236747. −0.121507
\(329\) 863382. 0.439757
\(330\) 0 0
\(331\) 597196.i 0.299604i −0.988716 0.149802i \(-0.952136\pi\)
0.988716 0.149802i \(-0.0478636\pi\)
\(332\) 503750.i 0.250824i
\(333\) 0 0
\(334\) −435775. −0.213745
\(335\) 3.96906e6 1.93230
\(336\) 0 0
\(337\) 3.61808e6 1.73541 0.867707 0.497077i \(-0.165593\pi\)
0.867707 + 0.497077i \(0.165593\pi\)
\(338\) −678444. 1.32115e6i −0.323015 0.629016i
\(339\) 0 0
\(340\) 1.59617e6i 0.748828i
\(341\) 4.49951e6 2.09546
\(342\) 0 0
\(343\) 2.35653e6i 1.08153i
\(344\) 387941.i 0.176754i
\(345\) 0 0
\(346\) 1.60475e6i 0.720639i
\(347\) 1.62893e6 0.726236 0.363118 0.931743i \(-0.381712\pi\)
0.363118 + 0.931743i \(0.381712\pi\)
\(348\) 0 0
\(349\) 2.60140e6i 1.14326i −0.820513 0.571628i \(-0.806312\pi\)
0.820513 0.571628i \(-0.193688\pi\)
\(350\) −1.74583e6 −0.761782
\(351\) 0 0
\(352\) −625412. −0.269036
\(353\) 1.30441e6i 0.557155i −0.960414 0.278578i \(-0.910137\pi\)
0.960414 0.278578i \(-0.0898630\pi\)
\(354\) 0 0
\(355\) −2.06945e6 −0.871535
\(356\) 944824.i 0.395117i
\(357\) 0 0
\(358\) 838140.i 0.345628i
\(359\) 213674.i 0.0875013i −0.999042 0.0437507i \(-0.986069\pi\)
0.999042 0.0437507i \(-0.0139307\pi\)
\(360\) 0 0
\(361\) −2.66384e6 −1.07582
\(362\) 945110.i 0.379062i
\(363\) 0 0
\(364\) −226296. 936055.i −0.0895208 0.370295i
\(365\) −3.27952e6 −1.28848
\(366\) 0 0
\(367\) 1.15670e6 0.448285 0.224142 0.974556i \(-0.428042\pi\)
0.224142 + 0.974556i \(0.428042\pi\)
\(368\) −110905. −0.0426906
\(369\) 0 0
\(370\) 3.67390e6i 1.39516i
\(371\) 3.43595e6i 1.29602i
\(372\) 0 0
\(373\) 1.97983e6 0.736810 0.368405 0.929665i \(-0.379904\pi\)
0.368405 + 0.929665i \(0.379904\pi\)
\(374\) −2.80606e6 −1.03733
\(375\) 0 0
\(376\) 559404. 0.204059
\(377\) −4.54251e6 + 1.09818e6i −1.64605 + 0.397941i
\(378\) 0 0
\(379\) 3.86155e6i 1.38090i −0.723379 0.690451i \(-0.757412\pi\)
0.723379 0.690451i \(-0.242588\pi\)
\(380\) 3.15056e6 1.11925
\(381\) 0 0
\(382\) 2.03888e6i 0.714879i
\(383\) 1.55518e6i 0.541731i 0.962617 + 0.270866i \(0.0873099\pi\)
−0.962617 + 0.270866i \(0.912690\pi\)
\(384\) 0 0
\(385\) 5.23978e6i 1.80161i
\(386\) −232587. −0.0794544
\(387\) 0 0
\(388\) 79452.4i 0.0267934i
\(389\) −2.85249e6 −0.955763 −0.477881 0.878424i \(-0.658595\pi\)
−0.477881 + 0.878424i \(0.658595\pi\)
\(390\) 0 0
\(391\) −497603. −0.164604
\(392\) 451202.i 0.148305i
\(393\) 0 0
\(394\) −367320. −0.119208
\(395\) 3.06655e6i 0.988911i
\(396\) 0 0
\(397\) 1.25222e6i 0.398752i −0.979923 0.199376i \(-0.936109\pi\)
0.979923 0.199376i \(-0.0638915\pi\)
\(398\) 2.24917e6i 0.711727i
\(399\) 0 0
\(400\) −1.13116e6 −0.353487
\(401\) 4.20050e6i 1.30449i −0.758009 0.652244i \(-0.773828\pi\)
0.758009 0.652244i \(-0.226172\pi\)
\(402\) 0 0
\(403\) 1.05487e6 + 4.36337e6i 0.323546 + 1.33832i
\(404\) −2.00968e6 −0.612596
\(405\) 0 0
\(406\) −3.03033e6 −0.912377
\(407\) 6.45870e6 1.93268
\(408\) 0 0
\(409\) 650694.i 0.192340i −0.995365 0.0961698i \(-0.969341\pi\)
0.995365 0.0961698i \(-0.0306592\pi\)
\(410\) 1.28515e6i 0.377567i
\(411\) 0 0
\(412\) 2.02163e6 0.586756
\(413\) −1.18035e6 −0.340516
\(414\) 0 0
\(415\) 2.73454e6 0.779406
\(416\) −146622. 606491.i −0.0415400 0.171827i
\(417\) 0 0
\(418\) 5.53867e6i 1.55047i
\(419\) 6.82010e6 1.89782 0.948912 0.315541i \(-0.102186\pi\)
0.948912 + 0.315541i \(0.102186\pi\)
\(420\) 0 0
\(421\) 3.11659e6i 0.856988i −0.903545 0.428494i \(-0.859044\pi\)
0.903545 0.428494i \(-0.140956\pi\)
\(422\) 2.60265e6i 0.711433i
\(423\) 0 0
\(424\) 2.22623e6i 0.601388i
\(425\) −5.07521e6 −1.36296
\(426\) 0 0
\(427\) 4.48451e6i 1.19027i
\(428\) 529084. 0.139610
\(429\) 0 0
\(430\) −2.10588e6 −0.549241
\(431\) 4.88213e6i 1.26595i 0.774173 + 0.632974i \(0.218166\pi\)
−0.774173 + 0.632974i \(0.781834\pi\)
\(432\) 0 0
\(433\) 3.64275e6 0.933705 0.466852 0.884335i \(-0.345388\pi\)
0.466852 + 0.884335i \(0.345388\pi\)
\(434\) 2.91082e6i 0.741808i
\(435\) 0 0
\(436\) 2.36266e6i 0.595230i
\(437\) 982180.i 0.246030i
\(438\) 0 0
\(439\) −1.70122e6 −0.421308 −0.210654 0.977561i \(-0.567559\pi\)
−0.210654 + 0.977561i \(0.567559\pi\)
\(440\) 3.39497e6i 0.835995i
\(441\) 0 0
\(442\) −657856. 2.72116e6i −0.160168 0.662520i
\(443\) 5.85057e6 1.41641 0.708205 0.706007i \(-0.249505\pi\)
0.708205 + 0.706007i \(0.249505\pi\)
\(444\) 0 0
\(445\) 5.12885e6 1.22778
\(446\) 1.21118e6 0.288318
\(447\) 0 0
\(448\) 404592.i 0.0952406i
\(449\) 1.56399e6i 0.366115i 0.983102 + 0.183058i \(0.0585995\pi\)
−0.983102 + 0.183058i \(0.941401\pi\)
\(450\) 0 0
\(451\) 2.25928e6 0.523033
\(452\) 1.88978e6 0.435076
\(453\) 0 0
\(454\) −2.89276e6 −0.658678
\(455\) −5.08125e6 + 1.22842e6i −1.15065 + 0.278175i
\(456\) 0 0
\(457\) 336948.i 0.0754697i 0.999288 + 0.0377349i \(0.0120142\pi\)
−0.999288 + 0.0377349i \(0.987986\pi\)
\(458\) 5.57513e6 1.24191
\(459\) 0 0
\(460\) 602034.i 0.132656i
\(461\) 3.89174e6i 0.852887i −0.904514 0.426444i \(-0.859766\pi\)
0.904514 0.426444i \(-0.140234\pi\)
\(462\) 0 0
\(463\) 6.34214e6i 1.37494i −0.726213 0.687470i \(-0.758721\pi\)
0.726213 0.687470i \(-0.241279\pi\)
\(464\) −1.96341e6 −0.423367
\(465\) 0 0
\(466\) 1.27754e6i 0.272527i
\(467\) −2.48691e6 −0.527677 −0.263839 0.964567i \(-0.584989\pi\)
−0.263839 + 0.964567i \(0.584989\pi\)
\(468\) 0 0
\(469\) 4.51394e6 0.947597
\(470\) 3.03665e6i 0.634088i
\(471\) 0 0
\(472\) −764777. −0.158008
\(473\) 3.70213e6i 0.760850i
\(474\) 0 0
\(475\) 1.00176e7i 2.03718i
\(476\) 1.81530e6i 0.367223i
\(477\) 0 0
\(478\) 6.09058e6 1.21924
\(479\) 5.31079e6i 1.05760i 0.848747 + 0.528798i \(0.177357\pi\)
−0.848747 + 0.528798i \(0.822643\pi\)
\(480\) 0 0
\(481\) 1.51419e6 + 6.26330e6i 0.298412 + 1.23436i
\(482\) 2.43136e6 0.476685
\(483\) 0 0
\(484\) 3.39151e6 0.658082
\(485\) −431297. −0.0832572
\(486\) 0 0
\(487\) 7.73506e6i 1.47789i −0.673767 0.738944i \(-0.735325\pi\)
0.673767 0.738944i \(-0.264675\pi\)
\(488\) 2.90561e6i 0.552317i
\(489\) 0 0
\(490\) 2.44929e6 0.460840
\(491\) 322490. 0.0603689 0.0301844 0.999544i \(-0.490391\pi\)
0.0301844 + 0.999544i \(0.490391\pi\)
\(492\) 0 0
\(493\) −8.80932e6 −1.63239
\(494\) 5.37110e6 1.29849e6i 0.990252 0.239399i
\(495\) 0 0
\(496\) 1.88599e6i 0.344218i
\(497\) −2.35355e6 −0.427399
\(498\) 0 0
\(499\) 414653.i 0.0745476i 0.999305 + 0.0372738i \(0.0118674\pi\)
−0.999305 + 0.0372738i \(0.988133\pi\)
\(500\) 1.79765e6i 0.321573i
\(501\) 0 0
\(502\) 4.20197e6i 0.744207i
\(503\) 1.11227e7 1.96016 0.980080 0.198604i \(-0.0636408\pi\)
0.980080 + 0.198604i \(0.0636408\pi\)
\(504\) 0 0
\(505\) 1.09093e7i 1.90357i
\(506\) 1.05837e6 0.183765
\(507\) 0 0
\(508\) −5.16265e6 −0.887592
\(509\) 754143.i 0.129021i 0.997917 + 0.0645103i \(0.0205485\pi\)
−0.997917 + 0.0645103i \(0.979451\pi\)
\(510\) 0 0
\(511\) −3.72974e6 −0.631869
\(512\) 262144.i 0.0441942i
\(513\) 0 0
\(514\) 944959.i 0.157763i
\(515\) 1.09741e7i 1.82327i
\(516\) 0 0
\(517\) −5.33841e6 −0.878386
\(518\) 4.17827e6i 0.684182i
\(519\) 0 0
\(520\) −3.29225e6 + 795920.i −0.533930 + 0.129081i
\(521\) −6.34188e6 −1.02358 −0.511792 0.859109i \(-0.671018\pi\)
−0.511792 + 0.859109i \(0.671018\pi\)
\(522\) 0 0
\(523\) 7.64810e6 1.22264 0.611321 0.791382i \(-0.290638\pi\)
0.611321 + 0.791382i \(0.290638\pi\)
\(524\) −5.72599e6 −0.911008
\(525\) 0 0
\(526\) 3.71586e6i 0.585591i
\(527\) 8.46192e6i 1.32722i
\(528\) 0 0
\(529\) −6.24866e6 −0.970840
\(530\) −1.20848e7 −1.86874
\(531\) 0 0
\(532\) 3.58308e6 0.548880
\(533\) 529669. + 2.19093e6i 0.0807582 + 0.334049i
\(534\) 0 0
\(535\) 2.87206e6i 0.433820i
\(536\) 2.92468e6 0.439710
\(537\) 0 0
\(538\) 3.31060e6i 0.493118i
\(539\) 4.30584e6i 0.638390i
\(540\) 0 0
\(541\) 5.40473e6i 0.793927i 0.917834 + 0.396964i \(0.129936\pi\)
−0.917834 + 0.396964i \(0.870064\pi\)
\(542\) 2.64312e6 0.386473
\(543\) 0 0
\(544\) 1.17617e6i 0.170401i
\(545\) −1.28254e7 −1.84960
\(546\) 0 0
\(547\) 6.06535e6 0.866737 0.433368 0.901217i \(-0.357325\pi\)
0.433368 + 0.901217i \(0.357325\pi\)
\(548\) 5.55303e6i 0.789912i
\(549\) 0 0
\(550\) 1.07947e7 1.52161
\(551\) 1.73881e7i 2.43990i
\(552\) 0 0
\(553\) 3.48753e6i 0.484960i
\(554\) 5.53100e6i 0.765648i
\(555\) 0 0
\(556\) 1.64847e6 0.226149
\(557\) 6.81169e6i 0.930287i −0.885235 0.465143i \(-0.846003\pi\)
0.885235 0.465143i \(-0.153997\pi\)
\(558\) 0 0
\(559\) −3.59012e6 + 867932.i −0.485937 + 0.117478i
\(560\) −2.19627e6 −0.295949
\(561\) 0 0
\(562\) −5.79572e6 −0.774046
\(563\) −4.93741e6 −0.656491 −0.328245 0.944593i \(-0.606457\pi\)
−0.328245 + 0.944593i \(0.606457\pi\)
\(564\) 0 0
\(565\) 1.02584e7i 1.35194i
\(566\) 4.88178e6i 0.640526i
\(567\) 0 0
\(568\) −1.52492e6 −0.198324
\(569\) −9.18371e6 −1.18915 −0.594576 0.804039i \(-0.702680\pi\)
−0.594576 + 0.804039i \(0.702680\pi\)
\(570\) 0 0
\(571\) −1.11741e7 −1.43424 −0.717120 0.696949i \(-0.754540\pi\)
−0.717120 + 0.696949i \(0.754540\pi\)
\(572\) 1.39922e6 + 5.78776e6i 0.178812 + 0.739640i
\(573\) 0 0
\(574\) 1.46158e6i 0.185158i
\(575\) 1.91424e6 0.241449
\(576\) 0 0
\(577\) 8.62732e6i 1.07879i −0.842053 0.539394i \(-0.818653\pi\)
0.842053 0.539394i \(-0.181347\pi\)
\(578\) 402262.i 0.0500829i
\(579\) 0 0
\(580\) 1.06581e7i 1.31556i
\(581\) 3.10994e6 0.382219
\(582\) 0 0
\(583\) 2.12450e7i 2.58872i
\(584\) −2.41658e6 −0.293204
\(585\) 0 0
\(586\) 8.77859e6 1.05604
\(587\) 5.86783e6i 0.702882i −0.936210 0.351441i \(-0.885692\pi\)
0.936210 0.351441i \(-0.114308\pi\)
\(588\) 0 0
\(589\) −1.67023e7 −1.98376
\(590\) 4.15149e6i 0.490991i
\(591\) 0 0
\(592\) 2.70719e6i 0.317479i
\(593\) 1.28187e7i 1.49694i 0.663166 + 0.748472i \(0.269212\pi\)
−0.663166 + 0.748472i \(0.730788\pi\)
\(594\) 0 0
\(595\) −9.85410e6 −1.14110
\(596\) 1.45112e6i 0.167336i
\(597\) 0 0
\(598\) 248126. + 1.02635e6i 0.0283739 + 0.117366i
\(599\) 8.82262e6 1.00469 0.502343 0.864668i \(-0.332471\pi\)
0.502343 + 0.864668i \(0.332471\pi\)
\(600\) 0 0
\(601\) 8.16061e6 0.921587 0.460793 0.887507i \(-0.347565\pi\)
0.460793 + 0.887507i \(0.347565\pi\)
\(602\) −2.39499e6 −0.269347
\(603\) 0 0
\(604\) 1.66862e6i 0.186107i
\(605\) 1.84104e7i 2.04491i
\(606\) 0 0
\(607\) 8.03055e6 0.884654 0.442327 0.896854i \(-0.354153\pi\)
0.442327 + 0.896854i \(0.354153\pi\)
\(608\) 2.32155e6 0.254695
\(609\) 0 0
\(610\) −1.57727e7 −1.71626
\(611\) −1.25154e6 5.17690e6i −0.135626 0.561005i
\(612\) 0 0
\(613\) 3.99383e6i 0.429278i −0.976693 0.214639i \(-0.931143\pi\)
0.976693 0.214639i \(-0.0688575\pi\)
\(614\) −334476. −0.0358051
\(615\) 0 0
\(616\) 3.86104e6i 0.409970i
\(617\) 1.20933e7i 1.27888i 0.768840 + 0.639442i \(0.220834\pi\)
−0.768840 + 0.639442i \(0.779166\pi\)
\(618\) 0 0
\(619\) 1.31953e7i 1.38418i −0.721813 0.692088i \(-0.756691\pi\)
0.721813 0.692088i \(-0.243309\pi\)
\(620\) 1.02378e7 1.06962
\(621\) 0 0
\(622\) 1.96707e6i 0.203865i
\(623\) 5.83295e6 0.602100
\(624\) 0 0
\(625\) −4.04979e6 −0.414699
\(626\) 3.58788e6i 0.365933i
\(627\) 0 0
\(628\) 5.03070e6 0.509014
\(629\) 1.21464e7i 1.22412i
\(630\) 0 0
\(631\) 1.16207e7i 1.16188i 0.813947 + 0.580939i \(0.197314\pi\)
−0.813947 + 0.580939i \(0.802686\pi\)
\(632\) 2.25965e6i 0.225034i
\(633\) 0 0
\(634\) 1.26180e7 1.24671
\(635\) 2.80247e7i 2.75808i
\(636\) 0 0
\(637\) 4.17557e6 1.00947e6i 0.407724 0.0985696i
\(638\) 1.87369e7 1.82241
\(639\) 0 0
\(640\) −1.42301e6 −0.137328
\(641\) 1.15298e7 1.10835 0.554173 0.832402i \(-0.313035\pi\)
0.554173 + 0.832402i \(0.313035\pi\)
\(642\) 0 0
\(643\) 2.90732e6i 0.277310i −0.990341 0.138655i \(-0.955722\pi\)
0.990341 0.138655i \(-0.0442778\pi\)
\(644\) 684683.i 0.0650541i
\(645\) 0 0
\(646\) 1.04162e7 0.982038
\(647\) 4.58122e6 0.430249 0.215125 0.976587i \(-0.430984\pi\)
0.215125 + 0.976587i \(0.430984\pi\)
\(648\) 0 0
\(649\) 7.29829e6 0.680157
\(650\) 2.53072e6 + 1.04681e7i 0.234942 + 0.971816i
\(651\) 0 0
\(652\) 2.25171e6i 0.207441i
\(653\) −1.95066e7 −1.79019 −0.895096 0.445874i \(-0.852893\pi\)
−0.895096 + 0.445874i \(0.852893\pi\)
\(654\) 0 0
\(655\) 3.10827e7i 2.83084i
\(656\) 946987.i 0.0859181i
\(657\) 0 0
\(658\) 3.45353e6i 0.310955i
\(659\) −8.41225e6 −0.754568 −0.377284 0.926098i \(-0.623142\pi\)
−0.377284 + 0.926098i \(0.623142\pi\)
\(660\) 0 0
\(661\) 1.64620e7i 1.46548i 0.680510 + 0.732739i \(0.261758\pi\)
−0.680510 + 0.732739i \(0.738242\pi\)
\(662\) −2.38879e6 −0.211852
\(663\) 0 0
\(664\) 2.01500e6 0.177360
\(665\) 1.94503e7i 1.70558i
\(666\) 0 0
\(667\) 3.32265e6 0.289181
\(668\) 1.74310e6i 0.151141i
\(669\) 0 0
\(670\) 1.58762e7i 1.36634i
\(671\) 2.77284e7i 2.37748i
\(672\) 0 0
\(673\) 9.88194e6 0.841016 0.420508 0.907289i \(-0.361852\pi\)
0.420508 + 0.907289i \(0.361852\pi\)
\(674\) 1.44723e7i 1.22712i
\(675\) 0 0
\(676\) −5.28462e6 + 2.71378e6i −0.444782 + 0.228406i
\(677\) 731933. 0.0613761 0.0306881 0.999529i \(-0.490230\pi\)
0.0306881 + 0.999529i \(0.490230\pi\)
\(678\) 0 0
\(679\) −490506. −0.0408291
\(680\) −6.38468e6 −0.529501
\(681\) 0 0
\(682\) 1.79980e7i 1.48171i
\(683\) 6.46151e6i 0.530008i 0.964247 + 0.265004i \(0.0853733\pi\)
−0.964247 + 0.265004i \(0.914627\pi\)
\(684\) 0 0
\(685\) −3.01439e7 −2.45455
\(686\) 9.42614e6 0.764757
\(687\) 0 0
\(688\) −1.55176e6 −0.124984
\(689\) −2.06022e7 + 4.98069e6i −1.65335 + 0.399707i
\(690\) 0 0
\(691\) 1.16211e7i 0.925877i 0.886390 + 0.462939i \(0.153205\pi\)
−0.886390 + 0.462939i \(0.846795\pi\)
\(692\) 6.41901e6 0.509569
\(693\) 0 0
\(694\) 6.51570e6i 0.513526i
\(695\) 8.94852e6i 0.702731i
\(696\) 0 0
\(697\) 4.24888e6i 0.331278i
\(698\) −1.04056e7 −0.808404
\(699\) 0 0
\(700\) 6.98330e6i 0.538661i
\(701\) 1.39904e6 0.107531 0.0537655 0.998554i \(-0.482878\pi\)
0.0537655 + 0.998554i \(0.482878\pi\)
\(702\) 0 0
\(703\) −2.39750e7 −1.82966
\(704\) 2.50165e6i 0.190237i
\(705\) 0 0
\(706\) −5.21763e6 −0.393968
\(707\) 1.24069e7i 0.933504i
\(708\) 0 0
\(709\) 1.84802e7i 1.38067i −0.723489 0.690336i \(-0.757463\pi\)
0.723489 0.690336i \(-0.242537\pi\)
\(710\) 8.27781e6i 0.616268i
\(711\) 0 0
\(712\) 3.77930e6 0.279390
\(713\) 3.19162e6i 0.235118i
\(714\) 0 0
\(715\) 3.14181e7 7.59549e6i 2.29834 0.555636i
\(716\) −3.35256e6 −0.244396
\(717\) 0 0
\(718\) −854694. −0.0618728
\(719\) −7.61846e6 −0.549598 −0.274799 0.961502i \(-0.588611\pi\)
−0.274799 + 0.961502i \(0.588611\pi\)
\(720\) 0 0
\(721\) 1.24807e7i 0.894128i
\(722\) 1.06554e7i 0.760721i
\(723\) 0 0
\(724\) −3.78044e6 −0.268038
\(725\) 3.38888e7 2.39448
\(726\) 0 0
\(727\) 2.55002e7 1.78940 0.894699 0.446670i \(-0.147390\pi\)
0.894699 + 0.446670i \(0.147390\pi\)
\(728\) −3.74422e6 + 905185.i −0.261838 + 0.0633008i
\(729\) 0 0
\(730\) 1.31181e7i 0.911094i
\(731\) −6.96235e6 −0.481906
\(732\) 0 0
\(733\) 1.27470e7i 0.876293i 0.898903 + 0.438147i \(0.144365\pi\)
−0.898903 + 0.438147i \(0.855635\pi\)
\(734\) 4.62678e6i 0.316985i
\(735\) 0 0
\(736\) 443621.i 0.0301868i
\(737\) −2.79103e7 −1.89276
\(738\) 0 0
\(739\) 1.54752e7i 1.04238i 0.853441 + 0.521190i \(0.174512\pi\)
−0.853441 + 0.521190i \(0.825488\pi\)
\(740\) 1.46956e7 0.986526
\(741\) 0 0
\(742\) −1.37438e7 −0.916425
\(743\) 3.52596e6i 0.234318i −0.993113 0.117159i \(-0.962621\pi\)
0.993113 0.117159i \(-0.0373787\pi\)
\(744\) 0 0
\(745\) 7.87723e6 0.519976
\(746\) 7.91931e6i 0.521003i
\(747\) 0 0
\(748\) 1.12242e7i 0.733505i
\(749\) 3.26635e6i 0.212744i
\(750\) 0 0
\(751\) 8.20700e6 0.530988 0.265494 0.964113i \(-0.414465\pi\)
0.265494 + 0.964113i \(0.414465\pi\)
\(752\) 2.23762e6i 0.144292i
\(753\) 0 0
\(754\) 4.39271e6 + 1.81701e7i 0.281387 + 1.16393i
\(755\) 9.05785e6 0.578306
\(756\) 0 0
\(757\) −1.27038e7 −0.805736 −0.402868 0.915258i \(-0.631987\pi\)
−0.402868 + 0.915258i \(0.631987\pi\)
\(758\) −1.54462e7 −0.976446
\(759\) 0 0
\(760\) 1.26022e7i 0.791433i
\(761\) 1.41876e7i 0.888073i −0.896009 0.444037i \(-0.853546\pi\)
0.896009 0.444037i \(-0.146454\pi\)
\(762\) 0 0
\(763\) −1.45861e7 −0.907041
\(764\) 8.15551e6 0.505496
\(765\) 0 0
\(766\) 6.22072e6 0.383062
\(767\) 1.71102e6 + 7.07748e6i 0.105019 + 0.434401i
\(768\) 0 0
\(769\) 1.10700e7i 0.675045i −0.941318 0.337522i \(-0.890411\pi\)
0.941318 0.337522i \(-0.109589\pi\)
\(770\) 2.09591e7 1.27393
\(771\) 0 0
\(772\) 930349.i 0.0561827i
\(773\) 5.17639e6i 0.311586i −0.987790 0.155793i \(-0.950207\pi\)
0.987790 0.155793i \(-0.0497933\pi\)
\(774\) 0 0
\(775\) 3.25523e7i 1.94683i
\(776\) −317810. −0.0189458
\(777\) 0 0
\(778\) 1.14100e7i 0.675826i
\(779\) −8.38655e6 −0.495153
\(780\) 0 0
\(781\) 1.45524e7 0.853701
\(782\) 1.99041e6i 0.116393i
\(783\) 0 0
\(784\) 1.80481e6 0.104868
\(785\) 2.73085e7i 1.58170i