Properties

Label 234.6.b.c.181.1
Level $234$
Weight $6$
Character 234.181
Analytic conductor $37.530$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [234,6,Mod(181,234)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(234, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("234.181");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 234 = 2 \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 234.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(37.5298138362\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} + 2x^{4} - 2946x^{3} + 131769x^{2} - 1332936x + 6741792 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{11}\cdot 3^{2} \)
Twist minimal: no (minimal twist has level 78)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 181.1
Root \(6.10758 + 6.10758i\) of defining polynomial
Character \(\chi\) \(=\) 234.181
Dual form 234.6.b.c.181.6

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4.00000i q^{2} -16.0000 q^{4} -37.1158i q^{5} +176.407i q^{7} +64.0000i q^{8} +O(q^{10})\) \(q-4.00000i q^{2} -16.0000 q^{4} -37.1158i q^{5} +176.407i q^{7} +64.0000i q^{8} -148.463 q^{10} +179.404i q^{11} +(-554.740 - 252.104i) q^{13} +705.627 q^{14} +256.000 q^{16} +933.141 q^{17} -2335.97i q^{19} +593.853i q^{20} +717.615 q^{22} +2792.36 q^{23} +1747.42 q^{25} +(-1008.42 + 2218.96i) q^{26} -2822.51i q^{28} -1503.58 q^{29} -737.236i q^{31} -1024.00i q^{32} -3732.56i q^{34} +6547.48 q^{35} -3775.41i q^{37} -9343.88 q^{38} +2375.41 q^{40} -368.848i q^{41} -20180.6 q^{43} -2870.46i q^{44} -11169.4i q^{46} -20526.5i q^{47} -14312.3 q^{49} -6989.67i q^{50} +(8875.84 + 4033.67i) q^{52} +25081.9 q^{53} +6658.72 q^{55} -11290.0 q^{56} +6014.33i q^{58} -35326.3i q^{59} +31741.4 q^{61} -2948.94 q^{62} -4096.00 q^{64} +(-9357.06 + 20589.6i) q^{65} -46661.3i q^{67} -14930.3 q^{68} -26189.9i q^{70} -58973.4i q^{71} +3411.20i q^{73} -15101.6 q^{74} +37375.5i q^{76} -31648.1 q^{77} -64977.3 q^{79} -9501.64i q^{80} -1475.39 q^{82} -12233.4i q^{83} -34634.3i q^{85} +80722.5i q^{86} -11481.8 q^{88} +61754.7i q^{89} +(44472.9 - 97859.9i) q^{91} -44677.8 q^{92} -82106.0 q^{94} -86701.4 q^{95} -28030.7i q^{97} +57249.4i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 96 q^{4}+O(q^{10}) \) Copy content Toggle raw display \( 6 q - 96 q^{4} + 320 q^{10} + 530 q^{13} + 1360 q^{14} + 1536 q^{16} + 836 q^{17} - 1296 q^{22} + 416 q^{23} + 718 q^{25} + 1360 q^{26} - 18788 q^{29} - 6112 q^{35} - 528 q^{38} - 5120 q^{40} - 24200 q^{43} - 3038 q^{49} - 8480 q^{52} + 42396 q^{53} + 124656 q^{55} - 21760 q^{56} - 3196 q^{61} + 59344 q^{62} - 24576 q^{64} + 17168 q^{65} - 13376 q^{68} + 62240 q^{74} + 114024 q^{77} - 169328 q^{79} + 145120 q^{82} + 20736 q^{88} + 236152 q^{91} - 6656 q^{92} - 32688 q^{94} - 567168 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/234\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(209\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 4.00000i 0.707107i
\(3\) 0 0
\(4\) −16.0000 −0.500000
\(5\) 37.1158i 0.663948i −0.943289 0.331974i \(-0.892285\pi\)
0.943289 0.331974i \(-0.107715\pi\)
\(6\) 0 0
\(7\) 176.407i 1.36072i 0.732876 + 0.680362i \(0.238177\pi\)
−0.732876 + 0.680362i \(0.761823\pi\)
\(8\) 64.0000i 0.353553i
\(9\) 0 0
\(10\) −148.463 −0.469482
\(11\) 179.404i 0.447044i 0.974699 + 0.223522i \(0.0717554\pi\)
−0.974699 + 0.223522i \(0.928245\pi\)
\(12\) 0 0
\(13\) −554.740 252.104i −0.910397 0.413735i
\(14\) 705.627 0.962177
\(15\) 0 0
\(16\) 256.000 0.250000
\(17\) 933.141 0.783114 0.391557 0.920154i \(-0.371937\pi\)
0.391557 + 0.920154i \(0.371937\pi\)
\(18\) 0 0
\(19\) 2335.97i 1.48451i −0.670117 0.742256i \(-0.733756\pi\)
0.670117 0.742256i \(-0.266244\pi\)
\(20\) 593.853i 0.331974i
\(21\) 0 0
\(22\) 717.615 0.316108
\(23\) 2792.36 1.10066 0.550328 0.834948i \(-0.314503\pi\)
0.550328 + 0.834948i \(0.314503\pi\)
\(24\) 0 0
\(25\) 1747.42 0.559174
\(26\) −1008.42 + 2218.96i −0.292555 + 0.643748i
\(27\) 0 0
\(28\) 2822.51i 0.680362i
\(29\) −1503.58 −0.331996 −0.165998 0.986126i \(-0.553084\pi\)
−0.165998 + 0.986126i \(0.553084\pi\)
\(30\) 0 0
\(31\) 737.236i 0.137785i −0.997624 0.0688926i \(-0.978053\pi\)
0.997624 0.0688926i \(-0.0219466\pi\)
\(32\) 1024.00i 0.176777i
\(33\) 0 0
\(34\) 3732.56i 0.553745i
\(35\) 6547.48 0.903450
\(36\) 0 0
\(37\) 3775.41i 0.453377i −0.973967 0.226689i \(-0.927210\pi\)
0.973967 0.226689i \(-0.0727900\pi\)
\(38\) −9343.88 −1.04971
\(39\) 0 0
\(40\) 2375.41 0.234741
\(41\) 368.848i 0.0342680i −0.999853 0.0171340i \(-0.994546\pi\)
0.999853 0.0171340i \(-0.00545418\pi\)
\(42\) 0 0
\(43\) −20180.6 −1.66442 −0.832211 0.554459i \(-0.812925\pi\)
−0.832211 + 0.554459i \(0.812925\pi\)
\(44\) 2870.46i 0.223522i
\(45\) 0 0
\(46\) 11169.4i 0.778282i
\(47\) 20526.5i 1.35541i −0.735335 0.677704i \(-0.762975\pi\)
0.735335 0.677704i \(-0.237025\pi\)
\(48\) 0 0
\(49\) −14312.3 −0.851570
\(50\) 6989.67i 0.395395i
\(51\) 0 0
\(52\) 8875.84 + 4033.67i 0.455199 + 0.206867i
\(53\) 25081.9 1.22651 0.613253 0.789886i \(-0.289860\pi\)
0.613253 + 0.789886i \(0.289860\pi\)
\(54\) 0 0
\(55\) 6658.72 0.296814
\(56\) −11290.0 −0.481089
\(57\) 0 0
\(58\) 6014.33i 0.234756i
\(59\) 35326.3i 1.32120i −0.750738 0.660600i \(-0.770302\pi\)
0.750738 0.660600i \(-0.229698\pi\)
\(60\) 0 0
\(61\) 31741.4 1.09220 0.546099 0.837721i \(-0.316112\pi\)
0.546099 + 0.837721i \(0.316112\pi\)
\(62\) −2948.94 −0.0974288
\(63\) 0 0
\(64\) −4096.00 −0.125000
\(65\) −9357.06 + 20589.6i −0.274698 + 0.604456i
\(66\) 0 0
\(67\) 46661.3i 1.26990i −0.772552 0.634951i \(-0.781020\pi\)
0.772552 0.634951i \(-0.218980\pi\)
\(68\) −14930.3 −0.391557
\(69\) 0 0
\(70\) 26189.9i 0.638835i
\(71\) 58973.4i 1.38839i −0.719789 0.694193i \(-0.755762\pi\)
0.719789 0.694193i \(-0.244238\pi\)
\(72\) 0 0
\(73\) 3411.20i 0.0749204i 0.999298 + 0.0374602i \(0.0119267\pi\)
−0.999298 + 0.0374602i \(0.988073\pi\)
\(74\) −15101.6 −0.320586
\(75\) 0 0
\(76\) 37375.5i 0.742256i
\(77\) −31648.1 −0.608303
\(78\) 0 0
\(79\) −64977.3 −1.17137 −0.585685 0.810539i \(-0.699174\pi\)
−0.585685 + 0.810539i \(0.699174\pi\)
\(80\) 9501.64i 0.165987i
\(81\) 0 0
\(82\) −1475.39 −0.0242311
\(83\) 12233.4i 0.194918i −0.995240 0.0974591i \(-0.968928\pi\)
0.995240 0.0974591i \(-0.0310715\pi\)
\(84\) 0 0
\(85\) 34634.3i 0.519947i
\(86\) 80722.5i 1.17692i
\(87\) 0 0
\(88\) −11481.8 −0.158054
\(89\) 61754.7i 0.826409i 0.910638 + 0.413204i \(0.135590\pi\)
−0.910638 + 0.413204i \(0.864410\pi\)
\(90\) 0 0
\(91\) 44472.9 97859.9i 0.562979 1.23880i
\(92\) −44677.8 −0.550328
\(93\) 0 0
\(94\) −82106.0 −0.958418
\(95\) −86701.4 −0.985638
\(96\) 0 0
\(97\) 28030.7i 0.302485i −0.988497 0.151243i \(-0.951673\pi\)
0.988497 0.151243i \(-0.0483274\pi\)
\(98\) 57249.4i 0.602151i
\(99\) 0 0
\(100\) −27958.7 −0.279587
\(101\) −102600. −1.00080 −0.500398 0.865796i \(-0.666813\pi\)
−0.500398 + 0.865796i \(0.666813\pi\)
\(102\) 0 0
\(103\) −203803. −1.89286 −0.946430 0.322909i \(-0.895339\pi\)
−0.946430 + 0.322909i \(0.895339\pi\)
\(104\) 16134.7 35503.4i 0.146277 0.321874i
\(105\) 0 0
\(106\) 100327.i 0.867271i
\(107\) 147356. 1.24425 0.622125 0.782918i \(-0.286269\pi\)
0.622125 + 0.782918i \(0.286269\pi\)
\(108\) 0 0
\(109\) 7846.65i 0.0632584i 0.999500 + 0.0316292i \(0.0100696\pi\)
−0.999500 + 0.0316292i \(0.989930\pi\)
\(110\) 26634.9i 0.209879i
\(111\) 0 0
\(112\) 45160.1i 0.340181i
\(113\) 192673. 1.41947 0.709733 0.704471i \(-0.248816\pi\)
0.709733 + 0.704471i \(0.248816\pi\)
\(114\) 0 0
\(115\) 103641.i 0.730778i
\(116\) 24057.3 0.165998
\(117\) 0 0
\(118\) −141305. −0.934229
\(119\) 164612.i 1.06560i
\(120\) 0 0
\(121\) 128865. 0.800152
\(122\) 126966.i 0.772301i
\(123\) 0 0
\(124\) 11795.8i 0.0688926i
\(125\) 180844.i 1.03521i
\(126\) 0 0
\(127\) 255644. 1.40646 0.703229 0.710964i \(-0.251741\pi\)
0.703229 + 0.710964i \(0.251741\pi\)
\(128\) 16384.0i 0.0883883i
\(129\) 0 0
\(130\) 82358.5 + 37428.2i 0.427415 + 0.194241i
\(131\) 134257. 0.683530 0.341765 0.939786i \(-0.388975\pi\)
0.341765 + 0.939786i \(0.388975\pi\)
\(132\) 0 0
\(133\) 412081. 2.02001
\(134\) −186645. −0.897956
\(135\) 0 0
\(136\) 59721.0i 0.276873i
\(137\) 74373.4i 0.338545i 0.985569 + 0.169272i \(0.0541418\pi\)
−0.985569 + 0.169272i \(0.945858\pi\)
\(138\) 0 0
\(139\) 36348.4 0.159569 0.0797844 0.996812i \(-0.474577\pi\)
0.0797844 + 0.996812i \(0.474577\pi\)
\(140\) −104760. −0.451725
\(141\) 0 0
\(142\) −235893. −0.981737
\(143\) 45228.5 99522.5i 0.184958 0.406988i
\(144\) 0 0
\(145\) 55806.7i 0.220428i
\(146\) 13644.8 0.0529767
\(147\) 0 0
\(148\) 60406.6i 0.226689i
\(149\) 221253.i 0.816440i −0.912884 0.408220i \(-0.866150\pi\)
0.912884 0.408220i \(-0.133850\pi\)
\(150\) 0 0
\(151\) 482448.i 1.72190i 0.508690 + 0.860950i \(0.330130\pi\)
−0.508690 + 0.860950i \(0.669870\pi\)
\(152\) 149502. 0.524854
\(153\) 0 0
\(154\) 126592.i 0.430135i
\(155\) −27363.1 −0.0914821
\(156\) 0 0
\(157\) −110726. −0.358508 −0.179254 0.983803i \(-0.557368\pi\)
−0.179254 + 0.983803i \(0.557368\pi\)
\(158\) 259909.i 0.828283i
\(159\) 0 0
\(160\) −38006.6 −0.117370
\(161\) 492591.i 1.49769i
\(162\) 0 0
\(163\) 161064.i 0.474819i 0.971410 + 0.237410i \(0.0762984\pi\)
−0.971410 + 0.237410i \(0.923702\pi\)
\(164\) 5901.58i 0.0171340i
\(165\) 0 0
\(166\) −48933.7 −0.137828
\(167\) 466578.i 1.29459i −0.762238 0.647296i \(-0.775900\pi\)
0.762238 0.647296i \(-0.224100\pi\)
\(168\) 0 0
\(169\) 244180. + 279705.i 0.657647 + 0.753326i
\(170\) −138537. −0.367658
\(171\) 0 0
\(172\) 322890. 0.832211
\(173\) 240767. 0.611620 0.305810 0.952093i \(-0.401073\pi\)
0.305810 + 0.952093i \(0.401073\pi\)
\(174\) 0 0
\(175\) 308256.i 0.760881i
\(176\) 45927.4i 0.111761i
\(177\) 0 0
\(178\) 247019. 0.584359
\(179\) 266435. 0.621526 0.310763 0.950487i \(-0.399415\pi\)
0.310763 + 0.950487i \(0.399415\pi\)
\(180\) 0 0
\(181\) 64307.2 0.145903 0.0729513 0.997336i \(-0.476758\pi\)
0.0729513 + 0.997336i \(0.476758\pi\)
\(182\) −391439. 177892.i −0.875964 0.398086i
\(183\) 0 0
\(184\) 178711.i 0.389141i
\(185\) −140127. −0.301019
\(186\) 0 0
\(187\) 167409.i 0.350086i
\(188\) 328424.i 0.677704i
\(189\) 0 0
\(190\) 346806.i 0.696951i
\(191\) 925387. 1.83544 0.917720 0.397228i \(-0.130028\pi\)
0.917720 + 0.397228i \(0.130028\pi\)
\(192\) 0 0
\(193\) 632306.i 1.22190i −0.791671 0.610948i \(-0.790789\pi\)
0.791671 0.610948i \(-0.209211\pi\)
\(194\) −112123. −0.213889
\(195\) 0 0
\(196\) 228997. 0.425785
\(197\) 100048.i 0.183671i −0.995774 0.0918357i \(-0.970727\pi\)
0.995774 0.0918357i \(-0.0292735\pi\)
\(198\) 0 0
\(199\) −723076. −1.29435 −0.647174 0.762342i \(-0.724049\pi\)
−0.647174 + 0.762342i \(0.724049\pi\)
\(200\) 111835.i 0.197698i
\(201\) 0 0
\(202\) 410401.i 0.707669i
\(203\) 265242.i 0.451754i
\(204\) 0 0
\(205\) −13690.1 −0.0227521
\(206\) 815214.i 1.33845i
\(207\) 0 0
\(208\) −142013. 64538.7i −0.227599 0.103434i
\(209\) 419082. 0.663641
\(210\) 0 0
\(211\) 259548. 0.401340 0.200670 0.979659i \(-0.435688\pi\)
0.200670 + 0.979659i \(0.435688\pi\)
\(212\) −401310. −0.613253
\(213\) 0 0
\(214\) 589423.i 0.879818i
\(215\) 749020.i 1.10509i
\(216\) 0 0
\(217\) 130053. 0.187488
\(218\) 31386.6 0.0447304
\(219\) 0 0
\(220\) −106539. −0.148407
\(221\) −517651. 235249.i −0.712945 0.324002i
\(222\) 0 0
\(223\) 1.07196e6i 1.44349i −0.692156 0.721747i \(-0.743339\pi\)
0.692156 0.721747i \(-0.256661\pi\)
\(224\) 180641. 0.240544
\(225\) 0 0
\(226\) 770692.i 1.00371i
\(227\) 65210.0i 0.0839942i −0.999118 0.0419971i \(-0.986628\pi\)
0.999118 0.0419971i \(-0.0133720\pi\)
\(228\) 0 0
\(229\) 191854.i 0.241759i 0.992667 + 0.120879i \(0.0385715\pi\)
−0.992667 + 0.120879i \(0.961429\pi\)
\(230\) −414563. −0.516738
\(231\) 0 0
\(232\) 96229.3i 0.117378i
\(233\) −353920. −0.427087 −0.213543 0.976934i \(-0.568500\pi\)
−0.213543 + 0.976934i \(0.568500\pi\)
\(234\) 0 0
\(235\) −761857. −0.899920
\(236\) 565221.i 0.660600i
\(237\) 0 0
\(238\) 658450. 0.753495
\(239\) 1.15374e6i 1.30651i 0.757138 + 0.653255i \(0.226597\pi\)
−0.757138 + 0.653255i \(0.773403\pi\)
\(240\) 0 0
\(241\) 209753.i 0.232630i 0.993212 + 0.116315i \(0.0371083\pi\)
−0.993212 + 0.116315i \(0.962892\pi\)
\(242\) 515461.i 0.565793i
\(243\) 0 0
\(244\) −507862. −0.546099
\(245\) 531214.i 0.565398i
\(246\) 0 0
\(247\) −588909. + 1.29586e6i −0.614194 + 1.35150i
\(248\) 47183.1 0.0487144
\(249\) 0 0
\(250\) −723375. −0.732004
\(251\) −427156. −0.427959 −0.213979 0.976838i \(-0.568643\pi\)
−0.213979 + 0.976838i \(0.568643\pi\)
\(252\) 0 0
\(253\) 500960.i 0.492042i
\(254\) 1.02258e6i 0.994515i
\(255\) 0 0
\(256\) 65536.0 0.0625000
\(257\) −207722. −0.196177 −0.0980887 0.995178i \(-0.531273\pi\)
−0.0980887 + 0.995178i \(0.531273\pi\)
\(258\) 0 0
\(259\) 666008. 0.616922
\(260\) 149713. 329434.i 0.137349 0.302228i
\(261\) 0 0
\(262\) 537026.i 0.483328i
\(263\) 831712. 0.741453 0.370726 0.928742i \(-0.379109\pi\)
0.370726 + 0.928742i \(0.379109\pi\)
\(264\) 0 0
\(265\) 930933.i 0.814336i
\(266\) 1.64832e6i 1.42836i
\(267\) 0 0
\(268\) 746581.i 0.634951i
\(269\) −1.67365e6 −1.41021 −0.705104 0.709104i \(-0.749099\pi\)
−0.705104 + 0.709104i \(0.749099\pi\)
\(270\) 0 0
\(271\) 69792.6i 0.0577279i 0.999583 + 0.0288640i \(0.00918896\pi\)
−0.999583 + 0.0288640i \(0.990811\pi\)
\(272\) 238884. 0.195779
\(273\) 0 0
\(274\) 297494. 0.239387
\(275\) 313493.i 0.249975i
\(276\) 0 0
\(277\) 1.61380e6 1.26372 0.631859 0.775083i \(-0.282292\pi\)
0.631859 + 0.775083i \(0.282292\pi\)
\(278\) 145394.i 0.112832i
\(279\) 0 0
\(280\) 419039.i 0.319418i
\(281\) 1.05655e6i 0.798224i −0.916902 0.399112i \(-0.869318\pi\)
0.916902 0.399112i \(-0.130682\pi\)
\(282\) 0 0
\(283\) −512741. −0.380567 −0.190284 0.981729i \(-0.560941\pi\)
−0.190284 + 0.981729i \(0.560941\pi\)
\(284\) 943574.i 0.694193i
\(285\) 0 0
\(286\) −398090. 180914.i −0.287784 0.130785i
\(287\) 65067.4 0.0466293
\(288\) 0 0
\(289\) −549105. −0.386732
\(290\) 223227. 0.155866
\(291\) 0 0
\(292\) 54579.2i 0.0374602i
\(293\) 2.71268e6i 1.84599i −0.384809 0.922996i \(-0.625733\pi\)
0.384809 0.922996i \(-0.374267\pi\)
\(294\) 0 0
\(295\) −1.31117e6 −0.877207
\(296\) 241626. 0.160293
\(297\) 0 0
\(298\) −885014. −0.577310
\(299\) −1.54903e6 703967.i −1.00204 0.455380i
\(300\) 0 0
\(301\) 3.56000e6i 2.26482i
\(302\) 1.92979e6 1.21757
\(303\) 0 0
\(304\) 598009.i 0.371128i
\(305\) 1.17811e6i 0.725162i
\(306\) 0 0
\(307\) 2.44475e6i 1.48043i 0.672371 + 0.740215i \(0.265276\pi\)
−0.672371 + 0.740215i \(0.734724\pi\)
\(308\) 506369. 0.304152
\(309\) 0 0
\(310\) 109452.i 0.0646876i
\(311\) −1.99183e6 −1.16775 −0.583877 0.811842i \(-0.698465\pi\)
−0.583877 + 0.811842i \(0.698465\pi\)
\(312\) 0 0
\(313\) 1.66396e6 0.960025 0.480013 0.877262i \(-0.340632\pi\)
0.480013 + 0.877262i \(0.340632\pi\)
\(314\) 442903.i 0.253504i
\(315\) 0 0
\(316\) 1.03964e6 0.585685
\(317\) 3.20482e6i 1.79125i 0.444813 + 0.895624i \(0.353270\pi\)
−0.444813 + 0.895624i \(0.646730\pi\)
\(318\) 0 0
\(319\) 269749.i 0.148417i
\(320\) 152026.i 0.0829935i
\(321\) 0 0
\(322\) 1.97037e6 1.05903
\(323\) 2.17979e6i 1.16254i
\(324\) 0 0
\(325\) −969362. 440532.i −0.509070 0.231350i
\(326\) 644254. 0.335748
\(327\) 0 0
\(328\) 23606.3 0.0121156
\(329\) 3.62101e6 1.84434
\(330\) 0 0
\(331\) 3.53386e6i 1.77288i −0.462844 0.886440i \(-0.653171\pi\)
0.462844 0.886440i \(-0.346829\pi\)
\(332\) 195735.i 0.0974591i
\(333\) 0 0
\(334\) −1.86631e6 −0.915415
\(335\) −1.73187e6 −0.843148
\(336\) 0 0
\(337\) 1.10242e6 0.528777 0.264389 0.964416i \(-0.414830\pi\)
0.264389 + 0.964416i \(0.414830\pi\)
\(338\) 1.11882e6 976719.i 0.532682 0.465027i
\(339\) 0 0
\(340\) 554148.i 0.259973i
\(341\) 132263. 0.0615960
\(342\) 0 0
\(343\) 440075.i 0.201972i
\(344\) 1.29156e6i 0.588462i
\(345\) 0 0
\(346\) 963068.i 0.432481i
\(347\) −3.16432e6 −1.41077 −0.705386 0.708823i \(-0.749226\pi\)
−0.705386 + 0.708823i \(0.749226\pi\)
\(348\) 0 0
\(349\) 1.97526e6i 0.868080i −0.900894 0.434040i \(-0.857088\pi\)
0.900894 0.434040i \(-0.142912\pi\)
\(350\) 1.23302e6 0.538024
\(351\) 0 0
\(352\) 183710. 0.0790269
\(353\) 2.24015e6i 0.956843i 0.878130 + 0.478422i \(0.158791\pi\)
−0.878130 + 0.478422i \(0.841209\pi\)
\(354\) 0 0
\(355\) −2.18884e6 −0.921815
\(356\) 988075.i 0.413204i
\(357\) 0 0
\(358\) 1.06574e6i 0.439485i
\(359\) 2.13770e6i 0.875407i −0.899119 0.437704i \(-0.855792\pi\)
0.899119 0.437704i \(-0.144208\pi\)
\(360\) 0 0
\(361\) −2.98066e6 −1.20377
\(362\) 257229.i 0.103169i
\(363\) 0 0
\(364\) −711567. + 1.56576e6i −0.281490 + 0.619400i
\(365\) 126609. 0.0497432
\(366\) 0 0
\(367\) 1.70502e6 0.660791 0.330395 0.943843i \(-0.392818\pi\)
0.330395 + 0.943843i \(0.392818\pi\)
\(368\) 714844. 0.275164
\(369\) 0 0
\(370\) 560509.i 0.212852i
\(371\) 4.42461e6i 1.66894i
\(372\) 0 0
\(373\) −2.31503e6 −0.861558 −0.430779 0.902458i \(-0.641761\pi\)
−0.430779 + 0.902458i \(0.641761\pi\)
\(374\) 669636. 0.247548
\(375\) 0 0
\(376\) 1.31370e6 0.479209
\(377\) 834097. + 379060.i 0.302248 + 0.137358i
\(378\) 0 0
\(379\) 4.32354e6i 1.54612i −0.634336 0.773058i \(-0.718726\pi\)
0.634336 0.773058i \(-0.281274\pi\)
\(380\) 1.38722e6 0.492819
\(381\) 0 0
\(382\) 3.70155e6i 1.29785i
\(383\) 2.00351e6i 0.697901i −0.937141 0.348951i \(-0.886538\pi\)
0.937141 0.348951i \(-0.113462\pi\)
\(384\) 0 0
\(385\) 1.17464e6i 0.403882i
\(386\) −2.52922e6 −0.864011
\(387\) 0 0
\(388\) 448490.i 0.151243i
\(389\) −1.70696e6 −0.571940 −0.285970 0.958239i \(-0.592316\pi\)
−0.285970 + 0.958239i \(0.592316\pi\)
\(390\) 0 0
\(391\) 2.60567e6 0.861940
\(392\) 915990.i 0.301076i
\(393\) 0 0
\(394\) −400191. −0.129875
\(395\) 2.41168e6i 0.777728i
\(396\) 0 0
\(397\) 1.22427e6i 0.389853i 0.980818 + 0.194927i \(0.0624469\pi\)
−0.980818 + 0.194927i \(0.937553\pi\)
\(398\) 2.89230e6i 0.915243i
\(399\) 0 0
\(400\) 447339. 0.139793
\(401\) 4.15598e6i 1.29066i 0.763903 + 0.645332i \(0.223281\pi\)
−0.763903 + 0.645332i \(0.776719\pi\)
\(402\) 0 0
\(403\) −185860. + 408974.i −0.0570065 + 0.125439i
\(404\) 1.64161e6 0.500398
\(405\) 0 0
\(406\) −1.06097e6 −0.319439
\(407\) 677323. 0.202680
\(408\) 0 0
\(409\) 6.52428e6i 1.92852i 0.264958 + 0.964260i \(0.414642\pi\)
−0.264958 + 0.964260i \(0.585358\pi\)
\(410\) 54760.4i 0.0160882i
\(411\) 0 0
\(412\) 3.26086e6 0.946430
\(413\) 6.23180e6 1.79779
\(414\) 0 0
\(415\) −454053. −0.129416
\(416\) −258155. + 568054.i −0.0731387 + 0.160937i
\(417\) 0 0
\(418\) 1.67633e6i 0.469265i
\(419\) −4.77950e6 −1.32999 −0.664994 0.746849i \(-0.731566\pi\)
−0.664994 + 0.746849i \(0.731566\pi\)
\(420\) 0 0
\(421\) 3.41558e6i 0.939203i 0.882878 + 0.469602i \(0.155602\pi\)
−0.882878 + 0.469602i \(0.844398\pi\)
\(422\) 1.03819e6i 0.283790i
\(423\) 0 0
\(424\) 1.60524e6i 0.433636i
\(425\) 1.63059e6 0.437897
\(426\) 0 0
\(427\) 5.59940e6i 1.48618i
\(428\) −2.35769e6 −0.622125
\(429\) 0 0
\(430\) 2.99608e6 0.781416
\(431\) 6.21413e6i 1.61134i 0.592365 + 0.805670i \(0.298194\pi\)
−0.592365 + 0.805670i \(0.701806\pi\)
\(432\) 0 0
\(433\) −5.83362e6 −1.49526 −0.747632 0.664113i \(-0.768809\pi\)
−0.747632 + 0.664113i \(0.768809\pi\)
\(434\) 520214.i 0.132574i
\(435\) 0 0
\(436\) 125546.i 0.0316292i
\(437\) 6.52287e6i 1.63394i
\(438\) 0 0
\(439\) −766922. −0.189928 −0.0949642 0.995481i \(-0.530274\pi\)
−0.0949642 + 0.995481i \(0.530274\pi\)
\(440\) 426158.i 0.104939i
\(441\) 0 0
\(442\) −940996. + 2.07060e6i −0.229104 + 0.504128i
\(443\) −1.02042e6 −0.247042 −0.123521 0.992342i \(-0.539419\pi\)
−0.123521 + 0.992342i \(0.539419\pi\)
\(444\) 0 0
\(445\) 2.29207e6 0.548692
\(446\) −4.28783e6 −1.02071
\(447\) 0 0
\(448\) 722562.i 0.170091i
\(449\) 4.18123e6i 0.978787i −0.872063 0.489394i \(-0.837218\pi\)
0.872063 0.489394i \(-0.162782\pi\)
\(450\) 0 0
\(451\) 66172.8 0.0153193
\(452\) −3.08277e6 −0.709733
\(453\) 0 0
\(454\) −260840. −0.0593929
\(455\) −3.63215e6 1.65065e6i −0.822498 0.373789i
\(456\) 0 0
\(457\) 3.58333e6i 0.802594i 0.915948 + 0.401297i \(0.131441\pi\)
−0.915948 + 0.401297i \(0.868559\pi\)
\(458\) 767417. 0.170949
\(459\) 0 0
\(460\) 1.65825e6i 0.365389i
\(461\) 1.67459e6i 0.366992i 0.983020 + 0.183496i \(0.0587414\pi\)
−0.983020 + 0.183496i \(0.941259\pi\)
\(462\) 0 0
\(463\) 6.62362e6i 1.43596i 0.696063 + 0.717981i \(0.254934\pi\)
−0.696063 + 0.717981i \(0.745066\pi\)
\(464\) −384917. −0.0829989
\(465\) 0 0
\(466\) 1.41568e6i 0.301996i
\(467\) −3.80744e6 −0.807868 −0.403934 0.914788i \(-0.632358\pi\)
−0.403934 + 0.914788i \(0.632358\pi\)
\(468\) 0 0
\(469\) 8.23138e6 1.72799
\(470\) 3.04743e6i 0.636339i
\(471\) 0 0
\(472\) 2.26089e6 0.467115
\(473\) 3.62048e6i 0.744070i
\(474\) 0 0
\(475\) 4.08192e6i 0.830099i
\(476\) 2.63380e6i 0.532801i
\(477\) 0 0
\(478\) 4.61495e6 0.923841
\(479\) 4.85878e6i 0.967583i 0.875183 + 0.483792i \(0.160741\pi\)
−0.875183 + 0.483792i \(0.839259\pi\)
\(480\) 0 0
\(481\) −951798. + 2.09437e6i −0.187578 + 0.412754i
\(482\) 839013. 0.164494
\(483\) 0 0
\(484\) −2.06184e6 −0.400076
\(485\) −1.04038e6 −0.200834
\(486\) 0 0
\(487\) 71255.1i 0.0136142i −0.999977 0.00680712i \(-0.997833\pi\)
0.999977 0.00680712i \(-0.00216679\pi\)
\(488\) 2.03145e6i 0.386150i
\(489\) 0 0
\(490\) 2.12486e6 0.399797
\(491\) 6.78617e6 1.27034 0.635172 0.772371i \(-0.280929\pi\)
0.635172 + 0.772371i \(0.280929\pi\)
\(492\) 0 0
\(493\) −1.40305e6 −0.259990
\(494\) 5.18343e6 + 2.35563e6i 0.955651 + 0.434301i
\(495\) 0 0
\(496\) 188732.i 0.0344463i
\(497\) 1.04033e7 1.88921
\(498\) 0 0
\(499\) 167487.i 0.0301114i 0.999887 + 0.0150557i \(0.00479256\pi\)
−0.999887 + 0.0150557i \(0.995207\pi\)
\(500\) 2.89350e6i 0.517605i
\(501\) 0 0
\(502\) 1.70862e6i 0.302613i
\(503\) −1.00972e7 −1.77942 −0.889712 0.456522i \(-0.849095\pi\)
−0.889712 + 0.456522i \(0.849095\pi\)
\(504\) 0 0
\(505\) 3.80809e6i 0.664476i
\(506\) 2.00384e6 0.347926
\(507\) 0 0
\(508\) −4.09031e6 −0.703229
\(509\) 9.79146e6i 1.67515i −0.546324 0.837574i \(-0.683973\pi\)
0.546324 0.837574i \(-0.316027\pi\)
\(510\) 0 0
\(511\) −601758. −0.101946
\(512\) 262144.i 0.0441942i
\(513\) 0 0
\(514\) 830887.i 0.138718i
\(515\) 7.56433e6i 1.25676i
\(516\) 0 0
\(517\) 3.68253e6 0.605927
\(518\) 2.66403e6i 0.436229i
\(519\) 0 0
\(520\) −1.31774e6 598852.i −0.213708 0.0971205i
\(521\) 9.42352e6 1.52096 0.760481 0.649360i \(-0.224963\pi\)
0.760481 + 0.649360i \(0.224963\pi\)
\(522\) 0 0
\(523\) 5.16320e6 0.825400 0.412700 0.910867i \(-0.364586\pi\)
0.412700 + 0.910867i \(0.364586\pi\)
\(524\) −2.14811e6 −0.341765
\(525\) 0 0
\(526\) 3.32685e6i 0.524286i
\(527\) 687945.i 0.107901i
\(528\) 0 0
\(529\) 1.36094e6 0.211445
\(530\) −3.72373e6 −0.575823
\(531\) 0 0
\(532\) −6.59330e6 −1.01001
\(533\) −92988.3 + 204615.i −0.0141779 + 0.0311975i
\(534\) 0 0
\(535\) 5.46923e6i 0.826117i
\(536\) 2.98633e6 0.448978
\(537\) 0 0
\(538\) 6.69458e6i 0.997167i
\(539\) 2.56769e6i 0.380689i
\(540\) 0 0
\(541\) 1.03918e7i 1.52650i −0.646104 0.763250i \(-0.723603\pi\)
0.646104 0.763250i \(-0.276397\pi\)
\(542\) 279170. 0.0408198
\(543\) 0 0
\(544\) 955536.i 0.138436i
\(545\) 291235. 0.0420002
\(546\) 0 0
\(547\) −7.33920e6 −1.04877 −0.524385 0.851481i \(-0.675705\pi\)
−0.524385 + 0.851481i \(0.675705\pi\)
\(548\) 1.18997e6i 0.169272i
\(549\) 0 0
\(550\) 1.25397e6 0.176759
\(551\) 3.51233e6i 0.492851i
\(552\) 0 0
\(553\) 1.14624e7i 1.59391i
\(554\) 6.45520e6i 0.893584i
\(555\) 0 0
\(556\) −581574. −0.0797844
\(557\) 7.97266e6i 1.08884i 0.838812 + 0.544421i \(0.183251\pi\)
−0.838812 + 0.544421i \(0.816749\pi\)
\(558\) 0 0
\(559\) 1.11950e7 + 5.08763e6i 1.51529 + 0.688630i
\(560\) 1.67615e6 0.225862
\(561\) 0 0
\(562\) −4.22621e6 −0.564430
\(563\) −5.23721e6 −0.696352 −0.348176 0.937429i \(-0.613199\pi\)
−0.348176 + 0.937429i \(0.613199\pi\)
\(564\) 0 0
\(565\) 7.15122e6i 0.942451i
\(566\) 2.05096e6i 0.269102i
\(567\) 0 0
\(568\) 3.77430e6 0.490868
\(569\) 8.15975e6 1.05657 0.528283 0.849069i \(-0.322836\pi\)
0.528283 + 0.849069i \(0.322836\pi\)
\(570\) 0 0
\(571\) −6.61371e6 −0.848897 −0.424448 0.905452i \(-0.639532\pi\)
−0.424448 + 0.905452i \(0.639532\pi\)
\(572\) −723656. + 1.59236e6i −0.0924788 + 0.203494i
\(573\) 0 0
\(574\) 260269.i 0.0329719i
\(575\) 4.87942e6 0.615458
\(576\) 0 0
\(577\) 4.82867e6i 0.603793i 0.953341 + 0.301896i \(0.0976196\pi\)
−0.953341 + 0.301896i \(0.902380\pi\)
\(578\) 2.19642e6i 0.273461i
\(579\) 0 0
\(580\) 892907.i 0.110214i
\(581\) 2.15806e6 0.265230
\(582\) 0 0
\(583\) 4.49978e6i 0.548302i
\(584\) −218317. −0.0264883
\(585\) 0 0
\(586\) −1.08507e7 −1.30531
\(587\) 7.52814e6i 0.901763i −0.892584 0.450881i \(-0.851110\pi\)
0.892584 0.450881i \(-0.148890\pi\)
\(588\) 0 0
\(589\) −1.72216e6 −0.204544
\(590\) 5.24466e6i 0.620279i
\(591\) 0 0
\(592\) 966505.i 0.113344i
\(593\) 8.22445e6i 0.960439i 0.877148 + 0.480220i \(0.159443\pi\)
−0.877148 + 0.480220i \(0.840557\pi\)
\(594\) 0 0
\(595\) 6.10972e6 0.707504
\(596\) 3.54006e6i 0.408220i
\(597\) 0 0
\(598\) −2.81587e6 + 6.19614e6i −0.322002 + 0.708546i
\(599\) 1.25959e6 0.143437 0.0717185 0.997425i \(-0.477152\pi\)
0.0717185 + 0.997425i \(0.477152\pi\)
\(600\) 0 0
\(601\) 6.56541e6 0.741439 0.370720 0.928745i \(-0.379111\pi\)
0.370720 + 0.928745i \(0.379111\pi\)
\(602\) −1.42400e7 −1.60147
\(603\) 0 0
\(604\) 7.71916e6i 0.860950i
\(605\) 4.78294e6i 0.531259i
\(606\) 0 0
\(607\) −7.92228e6 −0.872727 −0.436364 0.899770i \(-0.643734\pi\)
−0.436364 + 0.899770i \(0.643734\pi\)
\(608\) −2.39203e6 −0.262427
\(609\) 0 0
\(610\) −4.71243e6 −0.512767
\(611\) −5.17482e6 + 1.13869e7i −0.560780 + 1.23396i
\(612\) 0 0
\(613\) 9.74465e6i 1.04741i −0.851901 0.523703i \(-0.824550\pi\)
0.851901 0.523703i \(-0.175450\pi\)
\(614\) 9.77898e6 1.04682
\(615\) 0 0
\(616\) 2.02548e6i 0.215068i
\(617\) 1.14334e7i 1.20910i −0.796569 0.604548i \(-0.793354\pi\)
0.796569 0.604548i \(-0.206646\pi\)
\(618\) 0 0
\(619\) 1.07067e7i 1.12313i −0.827432 0.561566i \(-0.810199\pi\)
0.827432 0.561566i \(-0.189801\pi\)
\(620\) 437810. 0.0457411
\(621\) 0 0
\(622\) 7.96732e6i 0.825726i
\(623\) −1.08939e7 −1.12451
\(624\) 0 0
\(625\) −1.25148e6 −0.128151
\(626\) 6.65585e6i 0.678840i
\(627\) 0 0
\(628\) 1.77161e6 0.179254
\(629\) 3.52299e6i 0.355046i
\(630\) 0 0
\(631\) 475976.i 0.0475895i −0.999717 0.0237948i \(-0.992425\pi\)
0.999717 0.0237948i \(-0.00757483\pi\)
\(632\) 4.15855e6i 0.414142i
\(633\) 0 0
\(634\) 1.28193e7 1.26660
\(635\) 9.48844e6i 0.933814i
\(636\) 0 0
\(637\) 7.93963e6 + 3.60820e6i 0.775267 + 0.352324i
\(638\) −1.07899e6 −0.104946
\(639\) 0 0
\(640\) 608105. 0.0586852
\(641\) 1.90742e7 1.83358 0.916791 0.399368i \(-0.130770\pi\)
0.916791 + 0.399368i \(0.130770\pi\)
\(642\) 0 0
\(643\) 1.16474e7i 1.11097i −0.831528 0.555483i \(-0.812534\pi\)
0.831528 0.555483i \(-0.187466\pi\)
\(644\) 7.88146e6i 0.748845i
\(645\) 0 0
\(646\) −8.71916e6 −0.822041
\(647\) −1.83045e6 −0.171908 −0.0859540 0.996299i \(-0.527394\pi\)
−0.0859540 + 0.996299i \(0.527394\pi\)
\(648\) 0 0
\(649\) 6.33768e6 0.590634
\(650\) −1.76213e6 + 3.87745e6i −0.163589 + 0.359967i
\(651\) 0 0
\(652\) 2.57702e6i 0.237410i
\(653\) −1.75829e7 −1.61365 −0.806824 0.590792i \(-0.798815\pi\)
−0.806824 + 0.590792i \(0.798815\pi\)
\(654\) 0 0
\(655\) 4.98304e6i 0.453828i
\(656\) 94425.2i 0.00856699i
\(657\) 0 0
\(658\) 1.44840e7i 1.30414i
\(659\) 1.84370e7 1.65378 0.826888 0.562367i \(-0.190109\pi\)
0.826888 + 0.562367i \(0.190109\pi\)
\(660\) 0 0
\(661\) 1.08046e7i 0.961845i 0.876763 + 0.480922i \(0.159698\pi\)
−0.876763 + 0.480922i \(0.840302\pi\)
\(662\) −1.41354e7 −1.25362
\(663\) 0 0
\(664\) 782939. 0.0689140
\(665\) 1.52947e7i 1.34118i
\(666\) 0 0
\(667\) −4.19855e6 −0.365413
\(668\) 7.46525e6i 0.647296i
\(669\) 0 0
\(670\) 6.92749e6i 0.596196i
\(671\) 5.69453e6i 0.488260i
\(672\) 0 0
\(673\) −1.57676e7 −1.34193 −0.670964 0.741490i \(-0.734119\pi\)
−0.670964 + 0.741490i \(0.734119\pi\)
\(674\) 4.40968e6i 0.373902i
\(675\) 0 0
\(676\) −3.90688e6 4.47528e6i −0.328823 0.376663i
\(677\) −2.86244e6 −0.240029 −0.120015 0.992772i \(-0.538294\pi\)
−0.120015 + 0.992772i \(0.538294\pi\)
\(678\) 0 0
\(679\) 4.94480e6 0.411599
\(680\) 2.21659e6 0.183829
\(681\) 0 0
\(682\) 529052.i 0.0435549i
\(683\) 4.91047e6i 0.402783i −0.979511 0.201391i \(-0.935454\pi\)
0.979511 0.201391i \(-0.0645463\pi\)
\(684\) 0 0
\(685\) 2.76043e6 0.224776
\(686\) 1.76030e6 0.142816
\(687\) 0 0
\(688\) −5.16624e6 −0.416106
\(689\) −1.39139e7 6.32325e6i −1.11661 0.507449i
\(690\) 0 0
\(691\) 1.79749e7i 1.43209i 0.698052 + 0.716047i \(0.254051\pi\)
−0.698052 + 0.716047i \(0.745949\pi\)
\(692\) −3.85227e6 −0.305810
\(693\) 0 0
\(694\) 1.26573e7i 0.997566i
\(695\) 1.34910e6i 0.105945i
\(696\) 0 0
\(697\) 344188.i 0.0268357i
\(698\) −7.90102e6 −0.613825
\(699\) 0 0
\(700\) 4.93210e6i 0.380440i
\(701\) 8.74640e6 0.672255 0.336128 0.941816i \(-0.390883\pi\)
0.336128 + 0.941816i \(0.390883\pi\)
\(702\) 0 0
\(703\) −8.81925e6 −0.673044
\(704\) 734838.i 0.0558805i
\(705\) 0 0
\(706\) 8.96061e6 0.676590
\(707\) 1.80994e7i 1.36181i
\(708\) 0 0
\(709\) 2.43397e6i 0.181844i −0.995858 0.0909221i \(-0.971019\pi\)
0.995858 0.0909221i \(-0.0289814\pi\)
\(710\) 8.75538e6i 0.651822i
\(711\) 0 0
\(712\) −3.95230e6 −0.292180
\(713\) 2.05863e6i 0.151654i
\(714\) 0 0
\(715\) −3.69386e6 1.67869e6i −0.270218 0.122802i
\(716\) −4.26297e6 −0.310763
\(717\) 0 0
\(718\) −8.55079e6 −0.619006
\(719\) −6.81620e6 −0.491723 −0.245861 0.969305i \(-0.579071\pi\)
−0.245861 + 0.969305i \(0.579071\pi\)
\(720\) 0 0
\(721\) 3.59523e7i 2.57566i
\(722\) 1.19226e7i 0.851196i
\(723\) 0 0
\(724\) −1.02892e6 −0.0729513
\(725\) −2.62739e6 −0.185643
\(726\) 0 0
\(727\) −4.33605e6 −0.304269 −0.152135 0.988360i \(-0.548615\pi\)
−0.152135 + 0.988360i \(0.548615\pi\)
\(728\) 6.26303e6 + 2.84627e6i 0.437982 + 0.199043i
\(729\) 0 0
\(730\) 506437.i 0.0351737i
\(731\) −1.88314e7 −1.30343
\(732\) 0 0
\(733\) 2.01689e7i 1.38651i 0.720693 + 0.693254i \(0.243824\pi\)
−0.720693 + 0.693254i \(0.756176\pi\)
\(734\) 6.82008e6i 0.467250i
\(735\) 0 0
\(736\) 2.85938e6i 0.194570i
\(737\) 8.37122e6 0.567702
\(738\) 0 0
\(739\) 2.05423e7i 1.38369i 0.722048 + 0.691843i \(0.243201\pi\)
−0.722048 + 0.691843i \(0.756799\pi\)
\(740\) 2.24204e6 0.150509
\(741\) 0 0
\(742\) 1.76984e7 1.18012
\(743\) 1.48776e7i 0.988689i −0.869266 0.494345i \(-0.835408\pi\)
0.869266 0.494345i \(-0.164592\pi\)
\(744\) 0 0
\(745\) −8.21200e6 −0.542074
\(746\) 9.26012e6i 0.609213i
\(747\) 0 0
\(748\) 2.67855e6i 0.175043i
\(749\) 2.59946e7i 1.69308i
\(750\) 0 0
\(751\) −2.94950e7 −1.90831 −0.954154 0.299315i \(-0.903242\pi\)
−0.954154 + 0.299315i \(0.903242\pi\)
\(752\) 5.25478e6i 0.338852i
\(753\) 0 0
\(754\) 1.51624e6 3.33639e6i 0.0971269 0.213722i
\(755\) 1.79064e7 1.14325
\(756\) 0 0
\(757\) 2.01715e7 1.27938 0.639690 0.768633i \(-0.279063\pi\)
0.639690 + 0.768633i \(0.279063\pi\)
\(758\) −1.72942e7 −1.09327
\(759\) 0 0
\(760\) 5.54889e6i 0.348476i
\(761\) 2.06956e7i 1.29544i −0.761880 0.647719i \(-0.775723\pi\)
0.761880 0.647719i \(-0.224277\pi\)
\(762\) 0 0
\(763\) −1.38420e6 −0.0860772
\(764\) −1.48062e7 −0.917720
\(765\) 0 0
\(766\) −8.01403e6 −0.493491
\(767\) −8.90592e6 + 1.95969e7i −0.546626 + 1.20282i
\(768\) 0 0
\(769\) 1.69130e7i 1.03135i −0.856785 0.515674i \(-0.827542\pi\)
0.856785 0.515674i \(-0.172458\pi\)
\(770\) 4.69857e6 0.285587
\(771\) 0 0
\(772\) 1.01169e7i 0.610948i
\(773\) 3.10969e7i 1.87184i 0.352212 + 0.935920i \(0.385430\pi\)
−0.352212 + 0.935920i \(0.614570\pi\)
\(774\) 0 0
\(775\) 1.28826e6i 0.0770458i
\(776\) 1.79396e6 0.106945
\(777\) 0 0
\(778\) 6.82786e6i 0.404423i
\(779\) −861619. −0.0508712
\(780\) 0 0
\(781\) 1.05800e7 0.620669
\(782\) 1.04227e7i 0.609483i
\(783\) 0 0
\(784\) −3.66396e6 −0.212893
\(785\) 4.10967e6i