Properties

Label 234.4.a.f.1.1
Level $234$
Weight $4$
Character 234.1
Self dual yes
Analytic conductor $13.806$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [234,4,Mod(1,234)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(234, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("234.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 234 = 2 \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 234.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(13.8064469413\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 78)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 234.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.00000 q^{2} +4.00000 q^{4} +20.0000 q^{5} -32.0000 q^{7} -8.00000 q^{8} +O(q^{10})\) \(q-2.00000 q^{2} +4.00000 q^{4} +20.0000 q^{5} -32.0000 q^{7} -8.00000 q^{8} -40.0000 q^{10} -50.0000 q^{11} -13.0000 q^{13} +64.0000 q^{14} +16.0000 q^{16} +30.0000 q^{17} -120.000 q^{19} +80.0000 q^{20} +100.000 q^{22} +20.0000 q^{23} +275.000 q^{25} +26.0000 q^{26} -128.000 q^{28} -82.0000 q^{29} -44.0000 q^{31} -32.0000 q^{32} -60.0000 q^{34} -640.000 q^{35} -306.000 q^{37} +240.000 q^{38} -160.000 q^{40} -108.000 q^{41} -356.000 q^{43} -200.000 q^{44} -40.0000 q^{46} +178.000 q^{47} +681.000 q^{49} -550.000 q^{50} -52.0000 q^{52} -198.000 q^{53} -1000.00 q^{55} +256.000 q^{56} +164.000 q^{58} -94.0000 q^{59} -62.0000 q^{61} +88.0000 q^{62} +64.0000 q^{64} -260.000 q^{65} -140.000 q^{67} +120.000 q^{68} +1280.00 q^{70} +778.000 q^{71} +62.0000 q^{73} +612.000 q^{74} -480.000 q^{76} +1600.00 q^{77} -1096.00 q^{79} +320.000 q^{80} +216.000 q^{82} +462.000 q^{83} +600.000 q^{85} +712.000 q^{86} +400.000 q^{88} -1224.00 q^{89} +416.000 q^{91} +80.0000 q^{92} -356.000 q^{94} -2400.00 q^{95} +614.000 q^{97} -1362.00 q^{98} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.00000 −0.707107
\(3\) 0 0
\(4\) 4.00000 0.500000
\(5\) 20.0000 1.78885 0.894427 0.447214i \(-0.147584\pi\)
0.894427 + 0.447214i \(0.147584\pi\)
\(6\) 0 0
\(7\) −32.0000 −1.72784 −0.863919 0.503631i \(-0.831997\pi\)
−0.863919 + 0.503631i \(0.831997\pi\)
\(8\) −8.00000 −0.353553
\(9\) 0 0
\(10\) −40.0000 −1.26491
\(11\) −50.0000 −1.37051 −0.685253 0.728305i \(-0.740308\pi\)
−0.685253 + 0.728305i \(0.740308\pi\)
\(12\) 0 0
\(13\) −13.0000 −0.277350
\(14\) 64.0000 1.22177
\(15\) 0 0
\(16\) 16.0000 0.250000
\(17\) 30.0000 0.428004 0.214002 0.976833i \(-0.431350\pi\)
0.214002 + 0.976833i \(0.431350\pi\)
\(18\) 0 0
\(19\) −120.000 −1.44894 −0.724471 0.689306i \(-0.757916\pi\)
−0.724471 + 0.689306i \(0.757916\pi\)
\(20\) 80.0000 0.894427
\(21\) 0 0
\(22\) 100.000 0.969094
\(23\) 20.0000 0.181317 0.0906584 0.995882i \(-0.471103\pi\)
0.0906584 + 0.995882i \(0.471103\pi\)
\(24\) 0 0
\(25\) 275.000 2.20000
\(26\) 26.0000 0.196116
\(27\) 0 0
\(28\) −128.000 −0.863919
\(29\) −82.0000 −0.525070 −0.262535 0.964923i \(-0.584558\pi\)
−0.262535 + 0.964923i \(0.584558\pi\)
\(30\) 0 0
\(31\) −44.0000 −0.254924 −0.127462 0.991843i \(-0.540683\pi\)
−0.127462 + 0.991843i \(0.540683\pi\)
\(32\) −32.0000 −0.176777
\(33\) 0 0
\(34\) −60.0000 −0.302645
\(35\) −640.000 −3.09085
\(36\) 0 0
\(37\) −306.000 −1.35962 −0.679812 0.733386i \(-0.737939\pi\)
−0.679812 + 0.733386i \(0.737939\pi\)
\(38\) 240.000 1.02456
\(39\) 0 0
\(40\) −160.000 −0.632456
\(41\) −108.000 −0.411385 −0.205692 0.978617i \(-0.565945\pi\)
−0.205692 + 0.978617i \(0.565945\pi\)
\(42\) 0 0
\(43\) −356.000 −1.26255 −0.631273 0.775561i \(-0.717467\pi\)
−0.631273 + 0.775561i \(0.717467\pi\)
\(44\) −200.000 −0.685253
\(45\) 0 0
\(46\) −40.0000 −0.128210
\(47\) 178.000 0.552425 0.276212 0.961097i \(-0.410921\pi\)
0.276212 + 0.961097i \(0.410921\pi\)
\(48\) 0 0
\(49\) 681.000 1.98542
\(50\) −550.000 −1.55563
\(51\) 0 0
\(52\) −52.0000 −0.138675
\(53\) −198.000 −0.513158 −0.256579 0.966523i \(-0.582595\pi\)
−0.256579 + 0.966523i \(0.582595\pi\)
\(54\) 0 0
\(55\) −1000.00 −2.45164
\(56\) 256.000 0.610883
\(57\) 0 0
\(58\) 164.000 0.371280
\(59\) −94.0000 −0.207420 −0.103710 0.994608i \(-0.533071\pi\)
−0.103710 + 0.994608i \(0.533071\pi\)
\(60\) 0 0
\(61\) −62.0000 −0.130136 −0.0650679 0.997881i \(-0.520726\pi\)
−0.0650679 + 0.997881i \(0.520726\pi\)
\(62\) 88.0000 0.180258
\(63\) 0 0
\(64\) 64.0000 0.125000
\(65\) −260.000 −0.496139
\(66\) 0 0
\(67\) −140.000 −0.255279 −0.127640 0.991821i \(-0.540740\pi\)
−0.127640 + 0.991821i \(0.540740\pi\)
\(68\) 120.000 0.214002
\(69\) 0 0
\(70\) 1280.00 2.18556
\(71\) 778.000 1.30045 0.650223 0.759744i \(-0.274676\pi\)
0.650223 + 0.759744i \(0.274676\pi\)
\(72\) 0 0
\(73\) 62.0000 0.0994048 0.0497024 0.998764i \(-0.484173\pi\)
0.0497024 + 0.998764i \(0.484173\pi\)
\(74\) 612.000 0.961399
\(75\) 0 0
\(76\) −480.000 −0.724471
\(77\) 1600.00 2.36801
\(78\) 0 0
\(79\) −1096.00 −1.56088 −0.780441 0.625230i \(-0.785005\pi\)
−0.780441 + 0.625230i \(0.785005\pi\)
\(80\) 320.000 0.447214
\(81\) 0 0
\(82\) 216.000 0.290893
\(83\) 462.000 0.610977 0.305488 0.952196i \(-0.401180\pi\)
0.305488 + 0.952196i \(0.401180\pi\)
\(84\) 0 0
\(85\) 600.000 0.765637
\(86\) 712.000 0.892755
\(87\) 0 0
\(88\) 400.000 0.484547
\(89\) −1224.00 −1.45779 −0.728897 0.684623i \(-0.759967\pi\)
−0.728897 + 0.684623i \(0.759967\pi\)
\(90\) 0 0
\(91\) 416.000 0.479216
\(92\) 80.0000 0.0906584
\(93\) 0 0
\(94\) −356.000 −0.390623
\(95\) −2400.00 −2.59195
\(96\) 0 0
\(97\) 614.000 0.642704 0.321352 0.946960i \(-0.395863\pi\)
0.321352 + 0.946960i \(0.395863\pi\)
\(98\) −1362.00 −1.40391
\(99\) 0 0
\(100\) 1100.00 1.10000
\(101\) −1058.00 −1.04233 −0.521163 0.853457i \(-0.674502\pi\)
−0.521163 + 0.853457i \(0.674502\pi\)
\(102\) 0 0
\(103\) 1768.00 1.69132 0.845661 0.533720i \(-0.179206\pi\)
0.845661 + 0.533720i \(0.179206\pi\)
\(104\) 104.000 0.0980581
\(105\) 0 0
\(106\) 396.000 0.362858
\(107\) 1808.00 1.63351 0.816757 0.576982i \(-0.195770\pi\)
0.816757 + 0.576982i \(0.195770\pi\)
\(108\) 0 0
\(109\) −1886.00 −1.65730 −0.828652 0.559765i \(-0.810891\pi\)
−0.828652 + 0.559765i \(0.810891\pi\)
\(110\) 2000.00 1.73357
\(111\) 0 0
\(112\) −512.000 −0.431959
\(113\) −1246.00 −1.03729 −0.518645 0.854990i \(-0.673563\pi\)
−0.518645 + 0.854990i \(0.673563\pi\)
\(114\) 0 0
\(115\) 400.000 0.324349
\(116\) −328.000 −0.262535
\(117\) 0 0
\(118\) 188.000 0.146668
\(119\) −960.000 −0.739521
\(120\) 0 0
\(121\) 1169.00 0.878287
\(122\) 124.000 0.0920199
\(123\) 0 0
\(124\) −176.000 −0.127462
\(125\) 3000.00 2.14663
\(126\) 0 0
\(127\) 1624.00 1.13470 0.567349 0.823477i \(-0.307969\pi\)
0.567349 + 0.823477i \(0.307969\pi\)
\(128\) −128.000 −0.0883883
\(129\) 0 0
\(130\) 520.000 0.350823
\(131\) 2072.00 1.38192 0.690960 0.722893i \(-0.257188\pi\)
0.690960 + 0.722893i \(0.257188\pi\)
\(132\) 0 0
\(133\) 3840.00 2.50354
\(134\) 280.000 0.180510
\(135\) 0 0
\(136\) −240.000 −0.151322
\(137\) 756.000 0.471456 0.235728 0.971819i \(-0.424253\pi\)
0.235728 + 0.971819i \(0.424253\pi\)
\(138\) 0 0
\(139\) 172.000 0.104956 0.0524779 0.998622i \(-0.483288\pi\)
0.0524779 + 0.998622i \(0.483288\pi\)
\(140\) −2560.00 −1.54542
\(141\) 0 0
\(142\) −1556.00 −0.919554
\(143\) 650.000 0.380110
\(144\) 0 0
\(145\) −1640.00 −0.939273
\(146\) −124.000 −0.0702898
\(147\) 0 0
\(148\) −1224.00 −0.679812
\(149\) −1272.00 −0.699371 −0.349686 0.936867i \(-0.613712\pi\)
−0.349686 + 0.936867i \(0.613712\pi\)
\(150\) 0 0
\(151\) 1404.00 0.756662 0.378331 0.925670i \(-0.376498\pi\)
0.378331 + 0.925670i \(0.376498\pi\)
\(152\) 960.000 0.512278
\(153\) 0 0
\(154\) −3200.00 −1.67444
\(155\) −880.000 −0.456021
\(156\) 0 0
\(157\) −2170.00 −1.10309 −0.551544 0.834146i \(-0.685961\pi\)
−0.551544 + 0.834146i \(0.685961\pi\)
\(158\) 2192.00 1.10371
\(159\) 0 0
\(160\) −640.000 −0.316228
\(161\) −640.000 −0.313286
\(162\) 0 0
\(163\) 248.000 0.119171 0.0595855 0.998223i \(-0.481022\pi\)
0.0595855 + 0.998223i \(0.481022\pi\)
\(164\) −432.000 −0.205692
\(165\) 0 0
\(166\) −924.000 −0.432026
\(167\) −102.000 −0.0472635 −0.0236317 0.999721i \(-0.507523\pi\)
−0.0236317 + 0.999721i \(0.507523\pi\)
\(168\) 0 0
\(169\) 169.000 0.0769231
\(170\) −1200.00 −0.541387
\(171\) 0 0
\(172\) −1424.00 −0.631273
\(173\) −682.000 −0.299720 −0.149860 0.988707i \(-0.547882\pi\)
−0.149860 + 0.988707i \(0.547882\pi\)
\(174\) 0 0
\(175\) −8800.00 −3.80124
\(176\) −800.000 −0.342627
\(177\) 0 0
\(178\) 2448.00 1.03082
\(179\) 612.000 0.255548 0.127774 0.991803i \(-0.459217\pi\)
0.127774 + 0.991803i \(0.459217\pi\)
\(180\) 0 0
\(181\) −66.0000 −0.0271035 −0.0135518 0.999908i \(-0.504314\pi\)
−0.0135518 + 0.999908i \(0.504314\pi\)
\(182\) −832.000 −0.338857
\(183\) 0 0
\(184\) −160.000 −0.0641052
\(185\) −6120.00 −2.43217
\(186\) 0 0
\(187\) −1500.00 −0.586582
\(188\) 712.000 0.276212
\(189\) 0 0
\(190\) 4800.00 1.83278
\(191\) −608.000 −0.230332 −0.115166 0.993346i \(-0.536740\pi\)
−0.115166 + 0.993346i \(0.536740\pi\)
\(192\) 0 0
\(193\) 1370.00 0.510957 0.255479 0.966815i \(-0.417767\pi\)
0.255479 + 0.966815i \(0.417767\pi\)
\(194\) −1228.00 −0.454460
\(195\) 0 0
\(196\) 2724.00 0.992711
\(197\) 4908.00 1.77503 0.887514 0.460781i \(-0.152431\pi\)
0.887514 + 0.460781i \(0.152431\pi\)
\(198\) 0 0
\(199\) −328.000 −0.116841 −0.0584204 0.998292i \(-0.518606\pi\)
−0.0584204 + 0.998292i \(0.518606\pi\)
\(200\) −2200.00 −0.777817
\(201\) 0 0
\(202\) 2116.00 0.737036
\(203\) 2624.00 0.907235
\(204\) 0 0
\(205\) −2160.00 −0.735907
\(206\) −3536.00 −1.19595
\(207\) 0 0
\(208\) −208.000 −0.0693375
\(209\) 6000.00 1.98578
\(210\) 0 0
\(211\) 1316.00 0.429371 0.214685 0.976683i \(-0.431127\pi\)
0.214685 + 0.976683i \(0.431127\pi\)
\(212\) −792.000 −0.256579
\(213\) 0 0
\(214\) −3616.00 −1.15507
\(215\) −7120.00 −2.25851
\(216\) 0 0
\(217\) 1408.00 0.440467
\(218\) 3772.00 1.17189
\(219\) 0 0
\(220\) −4000.00 −1.22582
\(221\) −390.000 −0.118707
\(222\) 0 0
\(223\) −1932.00 −0.580163 −0.290081 0.957002i \(-0.593682\pi\)
−0.290081 + 0.957002i \(0.593682\pi\)
\(224\) 1024.00 0.305441
\(225\) 0 0
\(226\) 2492.00 0.733475
\(227\) −4998.00 −1.46136 −0.730680 0.682720i \(-0.760797\pi\)
−0.730680 + 0.682720i \(0.760797\pi\)
\(228\) 0 0
\(229\) −78.0000 −0.0225082 −0.0112541 0.999937i \(-0.503582\pi\)
−0.0112541 + 0.999937i \(0.503582\pi\)
\(230\) −800.000 −0.229350
\(231\) 0 0
\(232\) 656.000 0.185640
\(233\) 1282.00 0.360458 0.180229 0.983625i \(-0.442316\pi\)
0.180229 + 0.983625i \(0.442316\pi\)
\(234\) 0 0
\(235\) 3560.00 0.988208
\(236\) −376.000 −0.103710
\(237\) 0 0
\(238\) 1920.00 0.522921
\(239\) −294.000 −0.0795702 −0.0397851 0.999208i \(-0.512667\pi\)
−0.0397851 + 0.999208i \(0.512667\pi\)
\(240\) 0 0
\(241\) −4962.00 −1.32627 −0.663134 0.748501i \(-0.730774\pi\)
−0.663134 + 0.748501i \(0.730774\pi\)
\(242\) −2338.00 −0.621043
\(243\) 0 0
\(244\) −248.000 −0.0650679
\(245\) 13620.0 3.55163
\(246\) 0 0
\(247\) 1560.00 0.401864
\(248\) 352.000 0.0901291
\(249\) 0 0
\(250\) −6000.00 −1.51789
\(251\) −744.000 −0.187095 −0.0935475 0.995615i \(-0.529821\pi\)
−0.0935475 + 0.995615i \(0.529821\pi\)
\(252\) 0 0
\(253\) −1000.00 −0.248496
\(254\) −3248.00 −0.802353
\(255\) 0 0
\(256\) 256.000 0.0625000
\(257\) 1026.00 0.249028 0.124514 0.992218i \(-0.460263\pi\)
0.124514 + 0.992218i \(0.460263\pi\)
\(258\) 0 0
\(259\) 9792.00 2.34921
\(260\) −1040.00 −0.248069
\(261\) 0 0
\(262\) −4144.00 −0.977165
\(263\) 5532.00 1.29703 0.648513 0.761204i \(-0.275391\pi\)
0.648513 + 0.761204i \(0.275391\pi\)
\(264\) 0 0
\(265\) −3960.00 −0.917966
\(266\) −7680.00 −1.77027
\(267\) 0 0
\(268\) −560.000 −0.127640
\(269\) 3534.00 0.801010 0.400505 0.916294i \(-0.368835\pi\)
0.400505 + 0.916294i \(0.368835\pi\)
\(270\) 0 0
\(271\) 2392.00 0.536176 0.268088 0.963394i \(-0.413608\pi\)
0.268088 + 0.963394i \(0.413608\pi\)
\(272\) 480.000 0.107001
\(273\) 0 0
\(274\) −1512.00 −0.333370
\(275\) −13750.0 −3.01511
\(276\) 0 0
\(277\) 6102.00 1.32359 0.661794 0.749686i \(-0.269796\pi\)
0.661794 + 0.749686i \(0.269796\pi\)
\(278\) −344.000 −0.0742149
\(279\) 0 0
\(280\) 5120.00 1.09278
\(281\) 7540.00 1.60071 0.800354 0.599528i \(-0.204645\pi\)
0.800354 + 0.599528i \(0.204645\pi\)
\(282\) 0 0
\(283\) −2756.00 −0.578895 −0.289447 0.957194i \(-0.593472\pi\)
−0.289447 + 0.957194i \(0.593472\pi\)
\(284\) 3112.00 0.650223
\(285\) 0 0
\(286\) −1300.00 −0.268778
\(287\) 3456.00 0.710806
\(288\) 0 0
\(289\) −4013.00 −0.816813
\(290\) 3280.00 0.664166
\(291\) 0 0
\(292\) 248.000 0.0497024
\(293\) −968.000 −0.193007 −0.0965037 0.995333i \(-0.530766\pi\)
−0.0965037 + 0.995333i \(0.530766\pi\)
\(294\) 0 0
\(295\) −1880.00 −0.371043
\(296\) 2448.00 0.480700
\(297\) 0 0
\(298\) 2544.00 0.494530
\(299\) −260.000 −0.0502883
\(300\) 0 0
\(301\) 11392.0 2.18147
\(302\) −2808.00 −0.535041
\(303\) 0 0
\(304\) −1920.00 −0.362235
\(305\) −1240.00 −0.232794
\(306\) 0 0
\(307\) −6436.00 −1.19649 −0.598244 0.801314i \(-0.704135\pi\)
−0.598244 + 0.801314i \(0.704135\pi\)
\(308\) 6400.00 1.18401
\(309\) 0 0
\(310\) 1760.00 0.322456
\(311\) −7932.00 −1.44625 −0.723123 0.690719i \(-0.757294\pi\)
−0.723123 + 0.690719i \(0.757294\pi\)
\(312\) 0 0
\(313\) 10358.0 1.87051 0.935254 0.353978i \(-0.115171\pi\)
0.935254 + 0.353978i \(0.115171\pi\)
\(314\) 4340.00 0.780001
\(315\) 0 0
\(316\) −4384.00 −0.780441
\(317\) 2820.00 0.499643 0.249822 0.968292i \(-0.419628\pi\)
0.249822 + 0.968292i \(0.419628\pi\)
\(318\) 0 0
\(319\) 4100.00 0.719611
\(320\) 1280.00 0.223607
\(321\) 0 0
\(322\) 1280.00 0.221527
\(323\) −3600.00 −0.620153
\(324\) 0 0
\(325\) −3575.00 −0.610170
\(326\) −496.000 −0.0842666
\(327\) 0 0
\(328\) 864.000 0.145446
\(329\) −5696.00 −0.954500
\(330\) 0 0
\(331\) −4180.00 −0.694120 −0.347060 0.937843i \(-0.612820\pi\)
−0.347060 + 0.937843i \(0.612820\pi\)
\(332\) 1848.00 0.305488
\(333\) 0 0
\(334\) 204.000 0.0334203
\(335\) −2800.00 −0.456658
\(336\) 0 0
\(337\) −5026.00 −0.812414 −0.406207 0.913781i \(-0.633149\pi\)
−0.406207 + 0.913781i \(0.633149\pi\)
\(338\) −338.000 −0.0543928
\(339\) 0 0
\(340\) 2400.00 0.382818
\(341\) 2200.00 0.349374
\(342\) 0 0
\(343\) −10816.0 −1.70265
\(344\) 2848.00 0.446378
\(345\) 0 0
\(346\) 1364.00 0.211934
\(347\) 7332.00 1.13430 0.567150 0.823614i \(-0.308046\pi\)
0.567150 + 0.823614i \(0.308046\pi\)
\(348\) 0 0
\(349\) −8162.00 −1.25187 −0.625934 0.779876i \(-0.715282\pi\)
−0.625934 + 0.779876i \(0.715282\pi\)
\(350\) 17600.0 2.68788
\(351\) 0 0
\(352\) 1600.00 0.242274
\(353\) −1244.00 −0.187568 −0.0937839 0.995593i \(-0.529896\pi\)
−0.0937839 + 0.995593i \(0.529896\pi\)
\(354\) 0 0
\(355\) 15560.0 2.32631
\(356\) −4896.00 −0.728897
\(357\) 0 0
\(358\) −1224.00 −0.180699
\(359\) −9558.00 −1.40516 −0.702579 0.711605i \(-0.747968\pi\)
−0.702579 + 0.711605i \(0.747968\pi\)
\(360\) 0 0
\(361\) 7541.00 1.09943
\(362\) 132.000 0.0191651
\(363\) 0 0
\(364\) 1664.00 0.239608
\(365\) 1240.00 0.177821
\(366\) 0 0
\(367\) −11032.0 −1.56912 −0.784558 0.620055i \(-0.787110\pi\)
−0.784558 + 0.620055i \(0.787110\pi\)
\(368\) 320.000 0.0453292
\(369\) 0 0
\(370\) 12240.0 1.71980
\(371\) 6336.00 0.886654
\(372\) 0 0
\(373\) 5474.00 0.759874 0.379937 0.925012i \(-0.375946\pi\)
0.379937 + 0.925012i \(0.375946\pi\)
\(374\) 3000.00 0.414776
\(375\) 0 0
\(376\) −1424.00 −0.195312
\(377\) 1066.00 0.145628
\(378\) 0 0
\(379\) −7040.00 −0.954144 −0.477072 0.878864i \(-0.658302\pi\)
−0.477072 + 0.878864i \(0.658302\pi\)
\(380\) −9600.00 −1.29597
\(381\) 0 0
\(382\) 1216.00 0.162869
\(383\) 1830.00 0.244148 0.122074 0.992521i \(-0.461045\pi\)
0.122074 + 0.992521i \(0.461045\pi\)
\(384\) 0 0
\(385\) 32000.0 4.23603
\(386\) −2740.00 −0.361301
\(387\) 0 0
\(388\) 2456.00 0.321352
\(389\) −10158.0 −1.32399 −0.661994 0.749509i \(-0.730289\pi\)
−0.661994 + 0.749509i \(0.730289\pi\)
\(390\) 0 0
\(391\) 600.000 0.0776044
\(392\) −5448.00 −0.701953
\(393\) 0 0
\(394\) −9816.00 −1.25513
\(395\) −21920.0 −2.79219
\(396\) 0 0
\(397\) −12658.0 −1.60022 −0.800109 0.599854i \(-0.795225\pi\)
−0.800109 + 0.599854i \(0.795225\pi\)
\(398\) 656.000 0.0826189
\(399\) 0 0
\(400\) 4400.00 0.550000
\(401\) −15720.0 −1.95765 −0.978827 0.204689i \(-0.934382\pi\)
−0.978827 + 0.204689i \(0.934382\pi\)
\(402\) 0 0
\(403\) 572.000 0.0707031
\(404\) −4232.00 −0.521163
\(405\) 0 0
\(406\) −5248.00 −0.641512
\(407\) 15300.0 1.86337
\(408\) 0 0
\(409\) 7654.00 0.925345 0.462672 0.886529i \(-0.346891\pi\)
0.462672 + 0.886529i \(0.346891\pi\)
\(410\) 4320.00 0.520365
\(411\) 0 0
\(412\) 7072.00 0.845661
\(413\) 3008.00 0.358387
\(414\) 0 0
\(415\) 9240.00 1.09295
\(416\) 416.000 0.0490290
\(417\) 0 0
\(418\) −12000.0 −1.40416
\(419\) 1848.00 0.215467 0.107734 0.994180i \(-0.465641\pi\)
0.107734 + 0.994180i \(0.465641\pi\)
\(420\) 0 0
\(421\) −12542.0 −1.45192 −0.725962 0.687735i \(-0.758605\pi\)
−0.725962 + 0.687735i \(0.758605\pi\)
\(422\) −2632.00 −0.303611
\(423\) 0 0
\(424\) 1584.00 0.181429
\(425\) 8250.00 0.941609
\(426\) 0 0
\(427\) 1984.00 0.224854
\(428\) 7232.00 0.816757
\(429\) 0 0
\(430\) 14240.0 1.59701
\(431\) 5238.00 0.585396 0.292698 0.956205i \(-0.405447\pi\)
0.292698 + 0.956205i \(0.405447\pi\)
\(432\) 0 0
\(433\) −8258.00 −0.916522 −0.458261 0.888818i \(-0.651528\pi\)
−0.458261 + 0.888818i \(0.651528\pi\)
\(434\) −2816.00 −0.311457
\(435\) 0 0
\(436\) −7544.00 −0.828652
\(437\) −2400.00 −0.262718
\(438\) 0 0
\(439\) −6304.00 −0.685361 −0.342681 0.939452i \(-0.611335\pi\)
−0.342681 + 0.939452i \(0.611335\pi\)
\(440\) 8000.00 0.866784
\(441\) 0 0
\(442\) 780.000 0.0839385
\(443\) −12744.0 −1.36678 −0.683392 0.730051i \(-0.739496\pi\)
−0.683392 + 0.730051i \(0.739496\pi\)
\(444\) 0 0
\(445\) −24480.0 −2.60778
\(446\) 3864.00 0.410237
\(447\) 0 0
\(448\) −2048.00 −0.215980
\(449\) 11776.0 1.23774 0.618868 0.785495i \(-0.287591\pi\)
0.618868 + 0.785495i \(0.287591\pi\)
\(450\) 0 0
\(451\) 5400.00 0.563805
\(452\) −4984.00 −0.518645
\(453\) 0 0
\(454\) 9996.00 1.03334
\(455\) 8320.00 0.857248
\(456\) 0 0
\(457\) 2134.00 0.218434 0.109217 0.994018i \(-0.465166\pi\)
0.109217 + 0.994018i \(0.465166\pi\)
\(458\) 156.000 0.0159157
\(459\) 0 0
\(460\) 1600.00 0.162175
\(461\) −2724.00 −0.275205 −0.137602 0.990488i \(-0.543940\pi\)
−0.137602 + 0.990488i \(0.543940\pi\)
\(462\) 0 0
\(463\) −5648.00 −0.566922 −0.283461 0.958984i \(-0.591483\pi\)
−0.283461 + 0.958984i \(0.591483\pi\)
\(464\) −1312.00 −0.131267
\(465\) 0 0
\(466\) −2564.00 −0.254882
\(467\) 18224.0 1.80579 0.902897 0.429856i \(-0.141436\pi\)
0.902897 + 0.429856i \(0.141436\pi\)
\(468\) 0 0
\(469\) 4480.00 0.441081
\(470\) −7120.00 −0.698768
\(471\) 0 0
\(472\) 752.000 0.0733339
\(473\) 17800.0 1.73033
\(474\) 0 0
\(475\) −33000.0 −3.18767
\(476\) −3840.00 −0.369761
\(477\) 0 0
\(478\) 588.000 0.0562646
\(479\) −9066.00 −0.864794 −0.432397 0.901683i \(-0.642332\pi\)
−0.432397 + 0.901683i \(0.642332\pi\)
\(480\) 0 0
\(481\) 3978.00 0.377092
\(482\) 9924.00 0.937813
\(483\) 0 0
\(484\) 4676.00 0.439144
\(485\) 12280.0 1.14970
\(486\) 0 0
\(487\) 8948.00 0.832593 0.416296 0.909229i \(-0.363328\pi\)
0.416296 + 0.909229i \(0.363328\pi\)
\(488\) 496.000 0.0460100
\(489\) 0 0
\(490\) −27240.0 −2.51138
\(491\) −8720.00 −0.801483 −0.400741 0.916191i \(-0.631247\pi\)
−0.400741 + 0.916191i \(0.631247\pi\)
\(492\) 0 0
\(493\) −2460.00 −0.224732
\(494\) −3120.00 −0.284161
\(495\) 0 0
\(496\) −704.000 −0.0637309
\(497\) −24896.0 −2.24696
\(498\) 0 0
\(499\) 6604.00 0.592456 0.296228 0.955117i \(-0.404271\pi\)
0.296228 + 0.955117i \(0.404271\pi\)
\(500\) 12000.0 1.07331
\(501\) 0 0
\(502\) 1488.00 0.132296
\(503\) −3404.00 −0.301743 −0.150872 0.988553i \(-0.548208\pi\)
−0.150872 + 0.988553i \(0.548208\pi\)
\(504\) 0 0
\(505\) −21160.0 −1.86457
\(506\) 2000.00 0.175713
\(507\) 0 0
\(508\) 6496.00 0.567349
\(509\) 76.0000 0.00661815 0.00330908 0.999995i \(-0.498947\pi\)
0.00330908 + 0.999995i \(0.498947\pi\)
\(510\) 0 0
\(511\) −1984.00 −0.171755
\(512\) −512.000 −0.0441942
\(513\) 0 0
\(514\) −2052.00 −0.176089
\(515\) 35360.0 3.02553
\(516\) 0 0
\(517\) −8900.00 −0.757102
\(518\) −19584.0 −1.66114
\(519\) 0 0
\(520\) 2080.00 0.175412
\(521\) −12054.0 −1.01362 −0.506809 0.862058i \(-0.669175\pi\)
−0.506809 + 0.862058i \(0.669175\pi\)
\(522\) 0 0
\(523\) 276.000 0.0230758 0.0115379 0.999933i \(-0.496327\pi\)
0.0115379 + 0.999933i \(0.496327\pi\)
\(524\) 8288.00 0.690960
\(525\) 0 0
\(526\) −11064.0 −0.917136
\(527\) −1320.00 −0.109108
\(528\) 0 0
\(529\) −11767.0 −0.967124
\(530\) 7920.00 0.649100
\(531\) 0 0
\(532\) 15360.0 1.25177
\(533\) 1404.00 0.114098
\(534\) 0 0
\(535\) 36160.0 2.92212
\(536\) 1120.00 0.0902549
\(537\) 0 0
\(538\) −7068.00 −0.566400
\(539\) −34050.0 −2.72103
\(540\) 0 0
\(541\) 13778.0 1.09494 0.547470 0.836825i \(-0.315591\pi\)
0.547470 + 0.836825i \(0.315591\pi\)
\(542\) −4784.00 −0.379134
\(543\) 0 0
\(544\) −960.000 −0.0756611
\(545\) −37720.0 −2.96467
\(546\) 0 0
\(547\) −10844.0 −0.847634 −0.423817 0.905748i \(-0.639310\pi\)
−0.423817 + 0.905748i \(0.639310\pi\)
\(548\) 3024.00 0.235728
\(549\) 0 0
\(550\) 27500.0 2.13201
\(551\) 9840.00 0.760795
\(552\) 0 0
\(553\) 35072.0 2.69695
\(554\) −12204.0 −0.935917
\(555\) 0 0
\(556\) 688.000 0.0524779
\(557\) −20544.0 −1.56280 −0.781398 0.624033i \(-0.785493\pi\)
−0.781398 + 0.624033i \(0.785493\pi\)
\(558\) 0 0
\(559\) 4628.00 0.350167
\(560\) −10240.0 −0.772712
\(561\) 0 0
\(562\) −15080.0 −1.13187
\(563\) −6988.00 −0.523107 −0.261553 0.965189i \(-0.584235\pi\)
−0.261553 + 0.965189i \(0.584235\pi\)
\(564\) 0 0
\(565\) −24920.0 −1.85556
\(566\) 5512.00 0.409340
\(567\) 0 0
\(568\) −6224.00 −0.459777
\(569\) 706.000 0.0520159 0.0260080 0.999662i \(-0.491720\pi\)
0.0260080 + 0.999662i \(0.491720\pi\)
\(570\) 0 0
\(571\) −17532.0 −1.28492 −0.642462 0.766318i \(-0.722087\pi\)
−0.642462 + 0.766318i \(0.722087\pi\)
\(572\) 2600.00 0.190055
\(573\) 0 0
\(574\) −6912.00 −0.502616
\(575\) 5500.00 0.398897
\(576\) 0 0
\(577\) −14814.0 −1.06883 −0.534415 0.845222i \(-0.679468\pi\)
−0.534415 + 0.845222i \(0.679468\pi\)
\(578\) 8026.00 0.577574
\(579\) 0 0
\(580\) −6560.00 −0.469637
\(581\) −14784.0 −1.05567
\(582\) 0 0
\(583\) 9900.00 0.703287
\(584\) −496.000 −0.0351449
\(585\) 0 0
\(586\) 1936.00 0.136477
\(587\) −14170.0 −0.996352 −0.498176 0.867076i \(-0.665997\pi\)
−0.498176 + 0.867076i \(0.665997\pi\)
\(588\) 0 0
\(589\) 5280.00 0.369369
\(590\) 3760.00 0.262367
\(591\) 0 0
\(592\) −4896.00 −0.339906
\(593\) 11744.0 0.813269 0.406634 0.913591i \(-0.366702\pi\)
0.406634 + 0.913591i \(0.366702\pi\)
\(594\) 0 0
\(595\) −19200.0 −1.32290
\(596\) −5088.00 −0.349686
\(597\) 0 0
\(598\) 520.000 0.0355592
\(599\) 15076.0 1.02836 0.514181 0.857682i \(-0.328096\pi\)
0.514181 + 0.857682i \(0.328096\pi\)
\(600\) 0 0
\(601\) 20230.0 1.37304 0.686522 0.727109i \(-0.259137\pi\)
0.686522 + 0.727109i \(0.259137\pi\)
\(602\) −22784.0 −1.54254
\(603\) 0 0
\(604\) 5616.00 0.378331
\(605\) 23380.0 1.57113
\(606\) 0 0
\(607\) −28056.0 −1.87604 −0.938021 0.346577i \(-0.887344\pi\)
−0.938021 + 0.346577i \(0.887344\pi\)
\(608\) 3840.00 0.256139
\(609\) 0 0
\(610\) 2480.00 0.164610
\(611\) −2314.00 −0.153215
\(612\) 0 0
\(613\) 27446.0 1.80837 0.904187 0.427136i \(-0.140478\pi\)
0.904187 + 0.427136i \(0.140478\pi\)
\(614\) 12872.0 0.846045
\(615\) 0 0
\(616\) −12800.0 −0.837219
\(617\) −8804.00 −0.574450 −0.287225 0.957863i \(-0.592733\pi\)
−0.287225 + 0.957863i \(0.592733\pi\)
\(618\) 0 0
\(619\) 3508.00 0.227784 0.113892 0.993493i \(-0.463668\pi\)
0.113892 + 0.993493i \(0.463668\pi\)
\(620\) −3520.00 −0.228011
\(621\) 0 0
\(622\) 15864.0 1.02265
\(623\) 39168.0 2.51883
\(624\) 0 0
\(625\) 25625.0 1.64000
\(626\) −20716.0 −1.32265
\(627\) 0 0
\(628\) −8680.00 −0.551544
\(629\) −9180.00 −0.581925
\(630\) 0 0
\(631\) 22084.0 1.39326 0.696632 0.717428i \(-0.254681\pi\)
0.696632 + 0.717428i \(0.254681\pi\)
\(632\) 8768.00 0.551855
\(633\) 0 0
\(634\) −5640.00 −0.353301
\(635\) 32480.0 2.02981
\(636\) 0 0
\(637\) −8853.00 −0.550657
\(638\) −8200.00 −0.508842
\(639\) 0 0
\(640\) −2560.00 −0.158114
\(641\) 7342.00 0.452405 0.226202 0.974080i \(-0.427369\pi\)
0.226202 + 0.974080i \(0.427369\pi\)
\(642\) 0 0
\(643\) 2996.00 0.183749 0.0918746 0.995771i \(-0.470714\pi\)
0.0918746 + 0.995771i \(0.470714\pi\)
\(644\) −2560.00 −0.156643
\(645\) 0 0
\(646\) 7200.00 0.438514
\(647\) −9344.00 −0.567775 −0.283888 0.958858i \(-0.591624\pi\)
−0.283888 + 0.958858i \(0.591624\pi\)
\(648\) 0 0
\(649\) 4700.00 0.284270
\(650\) 7150.00 0.431455
\(651\) 0 0
\(652\) 992.000 0.0595855
\(653\) 16686.0 0.999960 0.499980 0.866037i \(-0.333341\pi\)
0.499980 + 0.866037i \(0.333341\pi\)
\(654\) 0 0
\(655\) 41440.0 2.47205
\(656\) −1728.00 −0.102846
\(657\) 0 0
\(658\) 11392.0 0.674934
\(659\) −31356.0 −1.85350 −0.926750 0.375679i \(-0.877410\pi\)
−0.926750 + 0.375679i \(0.877410\pi\)
\(660\) 0 0
\(661\) 590.000 0.0347176 0.0173588 0.999849i \(-0.494474\pi\)
0.0173588 + 0.999849i \(0.494474\pi\)
\(662\) 8360.00 0.490817
\(663\) 0 0
\(664\) −3696.00 −0.216013
\(665\) 76800.0 4.47846
\(666\) 0 0
\(667\) −1640.00 −0.0952040
\(668\) −408.000 −0.0236317
\(669\) 0 0
\(670\) 5600.00 0.322906
\(671\) 3100.00 0.178352
\(672\) 0 0
\(673\) 5938.00 0.340109 0.170054 0.985435i \(-0.445606\pi\)
0.170054 + 0.985435i \(0.445606\pi\)
\(674\) 10052.0 0.574464
\(675\) 0 0
\(676\) 676.000 0.0384615
\(677\) −9486.00 −0.538518 −0.269259 0.963068i \(-0.586779\pi\)
−0.269259 + 0.963068i \(0.586779\pi\)
\(678\) 0 0
\(679\) −19648.0 −1.11049
\(680\) −4800.00 −0.270694
\(681\) 0 0
\(682\) −4400.00 −0.247045
\(683\) −26162.0 −1.46568 −0.732841 0.680400i \(-0.761806\pi\)
−0.732841 + 0.680400i \(0.761806\pi\)
\(684\) 0 0
\(685\) 15120.0 0.843366
\(686\) 21632.0 1.20396
\(687\) 0 0
\(688\) −5696.00 −0.315637
\(689\) 2574.00 0.142325
\(690\) 0 0
\(691\) −17348.0 −0.955064 −0.477532 0.878614i \(-0.658468\pi\)
−0.477532 + 0.878614i \(0.658468\pi\)
\(692\) −2728.00 −0.149860
\(693\) 0 0
\(694\) −14664.0 −0.802072
\(695\) 3440.00 0.187751
\(696\) 0 0
\(697\) −3240.00 −0.176074
\(698\) 16324.0 0.885204
\(699\) 0 0
\(700\) −35200.0 −1.90062
\(701\) −30.0000 −0.00161638 −0.000808191 1.00000i \(-0.500257\pi\)
−0.000808191 1.00000i \(0.500257\pi\)
\(702\) 0 0
\(703\) 36720.0 1.97002
\(704\) −3200.00 −0.171313
\(705\) 0 0
\(706\) 2488.00 0.132630
\(707\) 33856.0 1.80097
\(708\) 0 0
\(709\) 31466.0 1.66676 0.833378 0.552703i \(-0.186404\pi\)
0.833378 + 0.552703i \(0.186404\pi\)
\(710\) −31120.0 −1.64495
\(711\) 0 0
\(712\) 9792.00 0.515408
\(713\) −880.000 −0.0462220
\(714\) 0 0
\(715\) 13000.0 0.679961
\(716\) 2448.00 0.127774
\(717\) 0 0
\(718\) 19116.0 0.993597
\(719\) 28892.0 1.49859 0.749297 0.662234i \(-0.230391\pi\)
0.749297 + 0.662234i \(0.230391\pi\)
\(720\) 0 0
\(721\) −56576.0 −2.92233
\(722\) −15082.0 −0.777415
\(723\) 0 0
\(724\) −264.000 −0.0135518
\(725\) −22550.0 −1.15515
\(726\) 0 0
\(727\) 13384.0 0.682786 0.341393 0.939921i \(-0.389101\pi\)
0.341393 + 0.939921i \(0.389101\pi\)
\(728\) −3328.00 −0.169428
\(729\) 0 0
\(730\) −2480.00 −0.125738
\(731\) −10680.0 −0.540375
\(732\) 0 0
\(733\) 7130.00 0.359280 0.179640 0.983732i \(-0.442507\pi\)
0.179640 + 0.983732i \(0.442507\pi\)
\(734\) 22064.0 1.10953
\(735\) 0 0
\(736\) −640.000 −0.0320526
\(737\) 7000.00 0.349862
\(738\) 0 0
\(739\) −29268.0 −1.45689 −0.728444 0.685105i \(-0.759756\pi\)
−0.728444 + 0.685105i \(0.759756\pi\)
\(740\) −24480.0 −1.21608
\(741\) 0 0
\(742\) −12672.0 −0.626959
\(743\) 9898.00 0.488725 0.244362 0.969684i \(-0.421421\pi\)
0.244362 + 0.969684i \(0.421421\pi\)
\(744\) 0 0
\(745\) −25440.0 −1.25107
\(746\) −10948.0 −0.537312
\(747\) 0 0
\(748\) −6000.00 −0.293291
\(749\) −57856.0 −2.82245
\(750\) 0 0
\(751\) −15120.0 −0.734669 −0.367335 0.930089i \(-0.619730\pi\)
−0.367335 + 0.930089i \(0.619730\pi\)
\(752\) 2848.00 0.138106
\(753\) 0 0
\(754\) −2132.00 −0.102975
\(755\) 28080.0 1.35356
\(756\) 0 0
\(757\) −5454.00 −0.261861 −0.130931 0.991392i \(-0.541797\pi\)
−0.130931 + 0.991392i \(0.541797\pi\)
\(758\) 14080.0 0.674682
\(759\) 0 0
\(760\) 19200.0 0.916391
\(761\) 11988.0 0.571044 0.285522 0.958372i \(-0.407833\pi\)
0.285522 + 0.958372i \(0.407833\pi\)
\(762\) 0 0
\(763\) 60352.0 2.86355
\(764\) −2432.00 −0.115166
\(765\) 0 0
\(766\) −3660.00 −0.172639
\(767\) 1222.00 0.0575279
\(768\) 0 0
\(769\) 1338.00 0.0627432 0.0313716 0.999508i \(-0.490012\pi\)
0.0313716 + 0.999508i \(0.490012\pi\)
\(770\) −64000.0 −2.99532
\(771\) 0 0
\(772\) 5480.00 0.255479
\(773\) 14408.0 0.670401 0.335200 0.942147i \(-0.391196\pi\)
0.335200 + 0.942147i \(0.391196\pi\)
\(774\) 0 0
\(775\) −12100.0 −0.560832
\(776\) −4912.00 −0.227230
\(777\) 0 0
\(778\) 20316.0 0.936200
\(779\) 12960.0 0.596072
\(780\) 0 0
\(781\) −38900.0 −1.78227
\(782\) −1200.00 −0.0548746
\(783\) 0 0
\(784\) 10896.0 0.496356
\(785\) −43400.0 −1.97326
\(786\) 0 0
\(787\) −10660.0 −0.482831 −0.241415 0.970422i \(-0.577612\pi\)
−0.241415 + 0.970422i \(0.577612\pi\)
\(788\) 19632.0 0.887514
\(789\) 0 0
\(790\) 43840.0 1.97438
\(791\) 39872.0 1.79227
\(792\) 0 0
\(793\) 806.000 0.0360932
\(794\) 25316.0 1.13153
\(795\) 0 0
\(796\) −1312.00 −0.0584204
\(797\) −1974.00 −0.0877323 −0.0438662 0.999037i \(-0.513968\pi\)
−0.0438662 + 0.999037i \(0.513968\pi\)
\(798\) 0 0
\(799\) 5340.00 0.236440
\(800\) −8800.00 −0.388909
\(801\) 0 0
\(802\) 31440.0 1.38427
\(803\) −3100.00 −0.136235
\(804\) 0 0
\(805\) −12800.0 −0.560423
\(806\) −1144.00 −0.0499946
\(807\) 0 0
\(808\) 8464.00 0.368518
\(809\) −31734.0 −1.37912 −0.689560 0.724229i \(-0.742196\pi\)
−0.689560 + 0.724229i \(0.742196\pi\)
\(810\) 0 0
\(811\) −38824.0 −1.68100 −0.840502 0.541808i \(-0.817740\pi\)
−0.840502 + 0.541808i \(0.817740\pi\)
\(812\) 10496.0 0.453617
\(813\) 0 0
\(814\) −30600.0 −1.31760
\(815\) 4960.00 0.213179
\(816\) 0 0
\(817\) 42720.0 1.82936
\(818\) −15308.0 −0.654317
\(819\) 0 0
\(820\) −8640.00 −0.367954
\(821\) 16736.0 0.711438 0.355719 0.934593i \(-0.384236\pi\)
0.355719 + 0.934593i \(0.384236\pi\)
\(822\) 0 0
\(823\) 42096.0 1.78296 0.891479 0.453062i \(-0.149668\pi\)
0.891479 + 0.453062i \(0.149668\pi\)
\(824\) −14144.0 −0.597973
\(825\) 0 0
\(826\) −6016.00 −0.253418
\(827\) −24858.0 −1.04522 −0.522610 0.852572i \(-0.675042\pi\)
−0.522610 + 0.852572i \(0.675042\pi\)
\(828\) 0 0
\(829\) 922.000 0.0386277 0.0193139 0.999813i \(-0.493852\pi\)
0.0193139 + 0.999813i \(0.493852\pi\)
\(830\) −18480.0 −0.772832
\(831\) 0 0
\(832\) −832.000 −0.0346688
\(833\) 20430.0 0.849769
\(834\) 0 0
\(835\) −2040.00 −0.0845474
\(836\) 24000.0 0.992892
\(837\) 0 0
\(838\) −3696.00 −0.152358
\(839\) 14294.0 0.588181 0.294090 0.955778i \(-0.404983\pi\)
0.294090 + 0.955778i \(0.404983\pi\)
\(840\) 0 0
\(841\) −17665.0 −0.724302
\(842\) 25084.0 1.02666
\(843\) 0 0
\(844\) 5264.00 0.214685
\(845\) 3380.00 0.137604
\(846\) 0 0
\(847\) −37408.0 −1.51754
\(848\) −3168.00 −0.128290
\(849\) 0 0
\(850\) −16500.0 −0.665818
\(851\) −6120.00 −0.246523
\(852\) 0 0
\(853\) 37966.0 1.52395 0.761976 0.647605i \(-0.224229\pi\)
0.761976 + 0.647605i \(0.224229\pi\)
\(854\) −3968.00 −0.158996
\(855\) 0 0
\(856\) −14464.0 −0.577534
\(857\) −39038.0 −1.55602 −0.778012 0.628249i \(-0.783772\pi\)
−0.778012 + 0.628249i \(0.783772\pi\)
\(858\) 0 0
\(859\) 20564.0 0.816804 0.408402 0.912802i \(-0.366086\pi\)
0.408402 + 0.912802i \(0.366086\pi\)
\(860\) −28480.0 −1.12926
\(861\) 0 0
\(862\) −10476.0 −0.413937
\(863\) −39866.0 −1.57248 −0.786242 0.617918i \(-0.787976\pi\)
−0.786242 + 0.617918i \(0.787976\pi\)
\(864\) 0 0
\(865\) −13640.0 −0.536155
\(866\) 16516.0 0.648079
\(867\) 0 0
\(868\) 5632.00 0.220233
\(869\) 54800.0 2.13920
\(870\) 0 0
\(871\) 1820.00 0.0708018
\(872\) 15088.0 0.585945
\(873\) 0 0
\(874\) 4800.00 0.185769
\(875\) −96000.0 −3.70902
\(876\) 0 0
\(877\) 30990.0 1.19322 0.596612 0.802530i \(-0.296513\pi\)
0.596612 + 0.802530i \(0.296513\pi\)
\(878\) 12608.0 0.484623
\(879\) 0 0
\(880\) −16000.0 −0.612909
\(881\) 4458.00 0.170481 0.0852405 0.996360i \(-0.472834\pi\)
0.0852405 + 0.996360i \(0.472834\pi\)
\(882\) 0 0
\(883\) −3164.00 −0.120586 −0.0602928 0.998181i \(-0.519203\pi\)
−0.0602928 + 0.998181i \(0.519203\pi\)
\(884\) −1560.00 −0.0593535
\(885\) 0 0
\(886\) 25488.0 0.966463
\(887\) 32512.0 1.23072 0.615359 0.788247i \(-0.289011\pi\)
0.615359 + 0.788247i \(0.289011\pi\)
\(888\) 0 0
\(889\) −51968.0 −1.96057
\(890\) 48960.0 1.84398
\(891\) 0 0
\(892\) −7728.00 −0.290081
\(893\) −21360.0 −0.800431
\(894\) 0 0
\(895\) 12240.0 0.457138
\(896\) 4096.00 0.152721
\(897\) 0 0
\(898\) −23552.0 −0.875212
\(899\) 3608.00 0.133853
\(900\) 0 0
\(901\) −5940.00 −0.219634
\(902\) −10800.0 −0.398670
\(903\) 0 0
\(904\) 9968.00 0.366738
\(905\) −1320.00 −0.0484843
\(906\) 0 0
\(907\) 10500.0 0.384396 0.192198 0.981356i \(-0.438438\pi\)
0.192198 + 0.981356i \(0.438438\pi\)
\(908\) −19992.0 −0.730680
\(909\) 0 0
\(910\) −16640.0 −0.606166
\(911\) −9840.00 −0.357864 −0.178932 0.983861i \(-0.557264\pi\)
−0.178932 + 0.983861i \(0.557264\pi\)
\(912\) 0 0
\(913\) −23100.0 −0.837348
\(914\) −4268.00 −0.154456
\(915\) 0 0
\(916\) −312.000 −0.0112541
\(917\) −66304.0 −2.38773
\(918\) 0 0
\(919\) −35040.0 −1.25774 −0.628870 0.777511i \(-0.716482\pi\)
−0.628870 + 0.777511i \(0.716482\pi\)
\(920\) −3200.00 −0.114675
\(921\) 0 0
\(922\) 5448.00 0.194599
\(923\) −10114.0 −0.360679
\(924\) 0 0
\(925\) −84150.0 −2.99117
\(926\) 11296.0 0.400874
\(927\) 0 0
\(928\) 2624.00 0.0928201
\(929\) −44172.0 −1.56000 −0.779998 0.625782i \(-0.784780\pi\)
−0.779998 + 0.625782i \(0.784780\pi\)
\(930\) 0 0
\(931\) −81720.0 −2.87676
\(932\) 5128.00 0.180229
\(933\) 0 0
\(934\) −36448.0 −1.27689
\(935\) −30000.0 −1.04931
\(936\) 0 0
\(937\) −54018.0 −1.88334 −0.941671 0.336535i \(-0.890745\pi\)
−0.941671 + 0.336535i \(0.890745\pi\)
\(938\) −8960.00 −0.311892
\(939\) 0 0
\(940\) 14240.0 0.494104
\(941\) 1672.00 0.0579231 0.0289616 0.999581i \(-0.490780\pi\)
0.0289616 + 0.999581i \(0.490780\pi\)
\(942\) 0 0
\(943\) −2160.00 −0.0745910
\(944\) −1504.00 −0.0518549
\(945\) 0 0
\(946\) −35600.0 −1.22353
\(947\) −5238.00 −0.179738 −0.0898691 0.995954i \(-0.528645\pi\)
−0.0898691 + 0.995954i \(0.528645\pi\)
\(948\) 0 0
\(949\) −806.000 −0.0275699
\(950\) 66000.0 2.25402
\(951\) 0 0
\(952\) 7680.00 0.261460
\(953\) 50042.0 1.70096 0.850482 0.526004i \(-0.176310\pi\)
0.850482 + 0.526004i \(0.176310\pi\)
\(954\) 0 0
\(955\) −12160.0 −0.412030
\(956\) −1176.00 −0.0397851
\(957\) 0 0
\(958\) 18132.0 0.611501
\(959\) −24192.0 −0.814599
\(960\) 0 0
\(961\) −27855.0 −0.935014
\(962\) −7956.00 −0.266644
\(963\) 0 0
\(964\) −19848.0 −0.663134
\(965\) 27400.0 0.914028
\(966\) 0 0
\(967\) 37676.0 1.25293 0.626463 0.779452i \(-0.284502\pi\)
0.626463 + 0.779452i \(0.284502\pi\)
\(968\) −9352.00 −0.310521
\(969\) 0 0
\(970\) −24560.0 −0.812963
\(971\) 17364.0 0.573880 0.286940 0.957949i \(-0.407362\pi\)
0.286940 + 0.957949i \(0.407362\pi\)
\(972\) 0 0
\(973\) −5504.00 −0.181346
\(974\) −17896.0 −0.588732
\(975\) 0 0
\(976\) −992.000 −0.0325340
\(977\) 14904.0 0.488046 0.244023 0.969769i \(-0.421533\pi\)
0.244023 + 0.969769i \(0.421533\pi\)
\(978\) 0 0
\(979\) 61200.0 1.99792
\(980\) 54480.0 1.77582
\(981\) 0 0
\(982\) 17440.0 0.566734
\(983\) 18038.0 0.585272 0.292636 0.956224i \(-0.405467\pi\)
0.292636 + 0.956224i \(0.405467\pi\)
\(984\) 0 0
\(985\) 98160.0 3.17527
\(986\) 4920.00 0.158909
\(987\) 0 0
\(988\) 6240.00 0.200932
\(989\) −7120.00 −0.228921
\(990\) 0 0
\(991\) 46176.0 1.48015 0.740075 0.672524i \(-0.234790\pi\)
0.740075 + 0.672524i \(0.234790\pi\)
\(992\) 1408.00 0.0450646
\(993\) 0 0
\(994\) 49792.0 1.58884
\(995\) −6560.00 −0.209011
\(996\) 0 0
\(997\) 55838.0 1.77373 0.886864 0.462030i \(-0.152879\pi\)
0.886864 + 0.462030i \(0.152879\pi\)
\(998\) −13208.0 −0.418930
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 234.4.a.f.1.1 1
3.2 odd 2 78.4.a.d.1.1 1
4.3 odd 2 1872.4.a.r.1.1 1
12.11 even 2 624.4.a.e.1.1 1
15.14 odd 2 1950.4.a.h.1.1 1
24.5 odd 2 2496.4.a.r.1.1 1
24.11 even 2 2496.4.a.i.1.1 1
39.5 even 4 1014.4.b.e.337.1 2
39.8 even 4 1014.4.b.e.337.2 2
39.38 odd 2 1014.4.a.d.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
78.4.a.d.1.1 1 3.2 odd 2
234.4.a.f.1.1 1 1.1 even 1 trivial
624.4.a.e.1.1 1 12.11 even 2
1014.4.a.d.1.1 1 39.38 odd 2
1014.4.b.e.337.1 2 39.5 even 4
1014.4.b.e.337.2 2 39.8 even 4
1872.4.a.r.1.1 1 4.3 odd 2
1950.4.a.h.1.1 1 15.14 odd 2
2496.4.a.i.1.1 1 24.11 even 2
2496.4.a.r.1.1 1 24.5 odd 2