Properties

Label 234.3.i.d
Level $234$
Weight $3$
Character orbit 234.i
Analytic conductor $6.376$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [234,3,Mod(73,234)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(234, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("234.73");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 234 = 2 \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 234.i (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.37603818603\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(i)\)
Coefficient field: 6.0.353139264.2
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} + 24x^{4} + 144x^{2} + 169 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_1 + 1) q^{2} - 2 \beta_1 q^{4} + ( - \beta_{3} + \beta_1 - 1) q^{5} + ( - \beta_{4} - \beta_{2}) q^{7} + ( - 2 \beta_1 - 2) q^{8} + ( - \beta_{3} + \beta_{2} + 2 \beta_1) q^{10} + ( - 2 \beta_{4} + \beta_{2} + 2 \beta_1 + 2) q^{11}+ \cdots + ( - 4 \beta_{4} - 12 \beta_{2} + \cdots + 15) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 6 q^{2} - 6 q^{5} - 12 q^{8} + 12 q^{11} + 12 q^{13} - 24 q^{16} - 48 q^{19} + 12 q^{20} + 24 q^{22} + 6 q^{26} - 84 q^{29} + 96 q^{31} - 24 q^{32} - 24 q^{34} + 120 q^{35} + 54 q^{37} + 24 q^{40}+ \cdots + 90 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} + 24x^{4} + 144x^{2} + 169 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( \nu^{3} + 12\nu ) / 13 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{5} + \nu^{4} + 20\nu^{3} + 25\nu^{2} + 83\nu + 104 ) / 13 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -\nu^{5} + \nu^{4} - 20\nu^{3} + 25\nu^{2} - 83\nu + 104 ) / 13 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( -\nu^{5} - 3\nu^{4} - 20\nu^{3} - 49\nu^{2} - 57\nu - 104 ) / 13 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( -\nu^{5} + 3\nu^{4} - 20\nu^{3} + 49\nu^{2} - 57\nu + 104 ) / 13 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{5} + \beta_{4} - \beta_{3} + \beta_{2} ) / 4 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( -\beta_{5} + \beta_{4} + 3\beta_{3} + 3\beta_{2} - 32 ) / 4 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( -3\beta_{5} - 3\beta_{4} + 3\beta_{3} - 3\beta_{2} + 13\beta_1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( 25\beta_{5} - 25\beta_{4} - 49\beta_{3} - 49\beta_{2} + 384 ) / 4 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( 157\beta_{5} + 157\beta_{4} - 183\beta_{3} + 183\beta_{2} - 1040\beta_1 ) / 4 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/234\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(209\)
\(\chi(n)\) \(-\beta_{1}\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
73.1
1.24361i
2.67062i
3.91423i
1.24361i
2.67062i
3.91423i
1.00000 + 1.00000i 0 2.00000i −6.20982 6.20982i 0 −2.48722 + 2.48722i −2.00000 + 2.00000i 0 12.4196i
73.2 1.00000 + 1.00000i 0 2.00000i 0.802841 + 0.802841i 0 −5.34124 + 5.34124i −2.00000 + 2.00000i 0 1.60568i
73.3 1.00000 + 1.00000i 0 2.00000i 2.40698 + 2.40698i 0 7.82846 7.82846i −2.00000 + 2.00000i 0 4.81396i
109.1 1.00000 1.00000i 0 2.00000i −6.20982 + 6.20982i 0 −2.48722 2.48722i −2.00000 2.00000i 0 12.4196i
109.2 1.00000 1.00000i 0 2.00000i 0.802841 0.802841i 0 −5.34124 5.34124i −2.00000 2.00000i 0 1.60568i
109.3 1.00000 1.00000i 0 2.00000i 2.40698 2.40698i 0 7.82846 + 7.82846i −2.00000 2.00000i 0 4.81396i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 73.3
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
13.d odd 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 234.3.i.d yes 6
3.b odd 2 1 234.3.i.c 6
13.d odd 4 1 inner 234.3.i.d yes 6
39.f even 4 1 234.3.i.c 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
234.3.i.c 6 3.b odd 2 1
234.3.i.c 6 39.f even 4 1
234.3.i.d yes 6 1.a even 1 1 trivial
234.3.i.d yes 6 13.d odd 4 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{6} + 6T_{5}^{5} + 18T_{5}^{4} - 264T_{5}^{3} + 1296T_{5}^{2} - 1728T_{5} + 1152 \) acting on \(S_{3}^{\mathrm{new}}(234, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} - 2 T + 2)^{3} \) Copy content Toggle raw display
$3$ \( T^{6} \) Copy content Toggle raw display
$5$ \( T^{6} + 6 T^{5} + \cdots + 1152 \) Copy content Toggle raw display
$7$ \( T^{6} + 416 T^{3} + \cdots + 86528 \) Copy content Toggle raw display
$11$ \( T^{6} - 12 T^{5} + \cdots + 14066208 \) Copy content Toggle raw display
$13$ \( T^{6} - 12 T^{5} + \cdots + 4826809 \) Copy content Toggle raw display
$17$ \( T^{6} + 1584 T^{4} + \cdots + 147456 \) Copy content Toggle raw display
$19$ \( T^{6} + 48 T^{5} + \cdots + 270606848 \) Copy content Toggle raw display
$23$ \( T^{6} + 936 T^{4} + \cdots + 6230016 \) Copy content Toggle raw display
$29$ \( (T^{3} + 42 T^{2} + \cdots - 66432)^{2} \) Copy content Toggle raw display
$31$ \( T^{6} - 96 T^{5} + \cdots + 73544192 \) Copy content Toggle raw display
$37$ \( T^{6} - 54 T^{5} + \cdots + 1352 \) Copy content Toggle raw display
$41$ \( T^{6} + \cdots + 1301724288 \) Copy content Toggle raw display
$43$ \( T^{6} + 2304 T^{4} + \cdots + 56070144 \) Copy content Toggle raw display
$47$ \( T^{6} - 36 T^{5} + \cdots + 3548448 \) Copy content Toggle raw display
$53$ \( (T^{3} + 96 T^{2} + \cdots + 7296)^{2} \) Copy content Toggle raw display
$59$ \( T^{6} - 204 T^{5} + \cdots + 389539872 \) Copy content Toggle raw display
$61$ \( (T^{3} - 6 T^{2} + \cdots + 250752)^{2} \) Copy content Toggle raw display
$67$ \( T^{6} + \cdots + 18870804992 \) Copy content Toggle raw display
$71$ \( T^{6} + \cdots + 3092753952 \) Copy content Toggle raw display
$73$ \( T^{6} + \cdots + 23225297288 \) Copy content Toggle raw display
$79$ \( (T^{3} - 204 T^{2} + \cdots - 126528)^{2} \) Copy content Toggle raw display
$83$ \( T^{6} + \cdots + 31564788768 \) Copy content Toggle raw display
$89$ \( T^{6} + \cdots + 7379667072 \) Copy content Toggle raw display
$97$ \( T^{6} + \cdots + 29642229128 \) Copy content Toggle raw display
show more
show less