Properties

Label 234.3.i.b.109.2
Level $234$
Weight $3$
Character 234.109
Analytic conductor $6.376$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [234,3,Mod(73,234)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(234, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("234.73");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 234 = 2 \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 234.i (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.37603818603\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(i)\)
Coefficient field: \(\Q(\zeta_{12})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: no (minimal twist has level 78)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 109.2
Root \(0.866025 - 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 234.109
Dual form 234.3.i.b.73.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.00000 + 1.00000i) q^{2} -2.00000i q^{4} +(-1.26795 + 1.26795i) q^{5} +(0.732051 + 0.732051i) q^{7} +(2.00000 + 2.00000i) q^{8} -2.53590i q^{10} +(1.73205 + 1.73205i) q^{11} +(-3.92820 + 12.3923i) q^{13} -1.46410 q^{14} -4.00000 q^{16} +5.32051i q^{17} +(-14.7321 + 14.7321i) q^{19} +(2.53590 + 2.53590i) q^{20} -3.46410 q^{22} +5.32051i q^{23} +21.7846i q^{25} +(-8.46410 - 16.3205i) q^{26} +(1.46410 - 1.46410i) q^{28} -4.14359 q^{29} +(-24.9808 + 24.9808i) q^{31} +(4.00000 - 4.00000i) q^{32} +(-5.32051 - 5.32051i) q^{34} -1.85641 q^{35} +(-3.14359 - 3.14359i) q^{37} -29.4641i q^{38} -5.07180 q^{40} +(-44.4449 + 44.4449i) q^{41} -37.1769i q^{43} +(3.46410 - 3.46410i) q^{44} +(-5.32051 - 5.32051i) q^{46} +(30.8038 + 30.8038i) q^{47} -47.9282i q^{49} +(-21.7846 - 21.7846i) q^{50} +(24.7846 + 7.85641i) q^{52} -57.7128 q^{53} -4.39230 q^{55} +2.92820i q^{56} +(4.14359 - 4.14359i) q^{58} +(66.6218 + 66.6218i) q^{59} +103.426 q^{61} -49.9615i q^{62} +8.00000i q^{64} +(-10.7321 - 20.6936i) q^{65} +(46.6936 - 46.6936i) q^{67} +10.6410 q^{68} +(1.85641 - 1.85641i) q^{70} +(26.9090 - 26.9090i) q^{71} +(5.67949 + 5.67949i) q^{73} +6.28719 q^{74} +(29.4641 + 29.4641i) q^{76} +2.53590i q^{77} +4.21024 q^{79} +(5.07180 - 5.07180i) q^{80} -88.8897i q^{82} +(109.799 - 109.799i) q^{83} +(-6.74613 - 6.74613i) q^{85} +(37.1769 + 37.1769i) q^{86} +6.92820i q^{88} +(19.5167 + 19.5167i) q^{89} +(-11.9474 + 6.19615i) q^{91} +10.6410 q^{92} -61.6077 q^{94} -37.3590i q^{95} +(4.03332 - 4.03332i) q^{97} +(47.9282 + 47.9282i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{2} - 12 q^{5} - 4 q^{7} + 8 q^{8} + 12 q^{13} + 8 q^{14} - 16 q^{16} - 52 q^{19} + 24 q^{20} - 20 q^{26} - 8 q^{28} - 72 q^{29} + 4 q^{31} + 16 q^{32} + 48 q^{34} + 48 q^{35} - 68 q^{37} - 48 q^{40}+ \cdots + 164 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/234\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(209\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 + 1.00000i −0.500000 + 0.500000i
\(3\) 0 0
\(4\) 2.00000i 0.500000i
\(5\) −1.26795 + 1.26795i −0.253590 + 0.253590i −0.822441 0.568851i \(-0.807388\pi\)
0.568851 + 0.822441i \(0.307388\pi\)
\(6\) 0 0
\(7\) 0.732051 + 0.732051i 0.104579 + 0.104579i 0.757460 0.652881i \(-0.226440\pi\)
−0.652881 + 0.757460i \(0.726440\pi\)
\(8\) 2.00000 + 2.00000i 0.250000 + 0.250000i
\(9\) 0 0
\(10\) 2.53590i 0.253590i
\(11\) 1.73205 + 1.73205i 0.157459 + 0.157459i 0.781440 0.623981i \(-0.214486\pi\)
−0.623981 + 0.781440i \(0.714486\pi\)
\(12\) 0 0
\(13\) −3.92820 + 12.3923i −0.302169 + 0.953254i
\(14\) −1.46410 −0.104579
\(15\) 0 0
\(16\) −4.00000 −0.250000
\(17\) 5.32051i 0.312971i 0.987680 + 0.156486i \(0.0500165\pi\)
−0.987680 + 0.156486i \(0.949984\pi\)
\(18\) 0 0
\(19\) −14.7321 + 14.7321i −0.775371 + 0.775371i −0.979040 0.203669i \(-0.934713\pi\)
0.203669 + 0.979040i \(0.434713\pi\)
\(20\) 2.53590 + 2.53590i 0.126795 + 0.126795i
\(21\) 0 0
\(22\) −3.46410 −0.157459
\(23\) 5.32051i 0.231326i 0.993288 + 0.115663i \(0.0368993\pi\)
−0.993288 + 0.115663i \(0.963101\pi\)
\(24\) 0 0
\(25\) 21.7846i 0.871384i
\(26\) −8.46410 16.3205i −0.325542 0.627712i
\(27\) 0 0
\(28\) 1.46410 1.46410i 0.0522893 0.0522893i
\(29\) −4.14359 −0.142883 −0.0714413 0.997445i \(-0.522760\pi\)
−0.0714413 + 0.997445i \(0.522760\pi\)
\(30\) 0 0
\(31\) −24.9808 + 24.9808i −0.805831 + 0.805831i −0.984000 0.178169i \(-0.942983\pi\)
0.178169 + 0.984000i \(0.442983\pi\)
\(32\) 4.00000 4.00000i 0.125000 0.125000i
\(33\) 0 0
\(34\) −5.32051 5.32051i −0.156486 0.156486i
\(35\) −1.85641 −0.0530402
\(36\) 0 0
\(37\) −3.14359 3.14359i −0.0849620 0.0849620i 0.663349 0.748311i \(-0.269135\pi\)
−0.748311 + 0.663349i \(0.769135\pi\)
\(38\) 29.4641i 0.775371i
\(39\) 0 0
\(40\) −5.07180 −0.126795
\(41\) −44.4449 + 44.4449i −1.08402 + 1.08402i −0.0878910 + 0.996130i \(0.528013\pi\)
−0.996130 + 0.0878910i \(0.971987\pi\)
\(42\) 0 0
\(43\) 37.1769i 0.864579i −0.901735 0.432290i \(-0.857706\pi\)
0.901735 0.432290i \(-0.142294\pi\)
\(44\) 3.46410 3.46410i 0.0787296 0.0787296i
\(45\) 0 0
\(46\) −5.32051 5.32051i −0.115663 0.115663i
\(47\) 30.8038 + 30.8038i 0.655401 + 0.655401i 0.954288 0.298887i \(-0.0966155\pi\)
−0.298887 + 0.954288i \(0.596615\pi\)
\(48\) 0 0
\(49\) 47.9282i 0.978127i
\(50\) −21.7846 21.7846i −0.435692 0.435692i
\(51\) 0 0
\(52\) 24.7846 + 7.85641i 0.476627 + 0.151085i
\(53\) −57.7128 −1.08892 −0.544460 0.838786i \(-0.683266\pi\)
−0.544460 + 0.838786i \(0.683266\pi\)
\(54\) 0 0
\(55\) −4.39230 −0.0798601
\(56\) 2.92820i 0.0522893i
\(57\) 0 0
\(58\) 4.14359 4.14359i 0.0714413 0.0714413i
\(59\) 66.6218 + 66.6218i 1.12918 + 1.12918i 0.990310 + 0.138872i \(0.0443478\pi\)
0.138872 + 0.990310i \(0.455652\pi\)
\(60\) 0 0
\(61\) 103.426 1.69550 0.847751 0.530394i \(-0.177956\pi\)
0.847751 + 0.530394i \(0.177956\pi\)
\(62\) 49.9615i 0.805831i
\(63\) 0 0
\(64\) 8.00000i 0.125000i
\(65\) −10.7321 20.6936i −0.165108 0.318363i
\(66\) 0 0
\(67\) 46.6936 46.6936i 0.696919 0.696919i −0.266826 0.963745i \(-0.585975\pi\)
0.963745 + 0.266826i \(0.0859748\pi\)
\(68\) 10.6410 0.156486
\(69\) 0 0
\(70\) 1.85641 1.85641i 0.0265201 0.0265201i
\(71\) 26.9090 26.9090i 0.379000 0.379000i −0.491742 0.870741i \(-0.663640\pi\)
0.870741 + 0.491742i \(0.163640\pi\)
\(72\) 0 0
\(73\) 5.67949 + 5.67949i 0.0778013 + 0.0778013i 0.744937 0.667135i \(-0.232480\pi\)
−0.667135 + 0.744937i \(0.732480\pi\)
\(74\) 6.28719 0.0849620
\(75\) 0 0
\(76\) 29.4641 + 29.4641i 0.387686 + 0.387686i
\(77\) 2.53590i 0.0329337i
\(78\) 0 0
\(79\) 4.21024 0.0532941 0.0266471 0.999645i \(-0.491517\pi\)
0.0266471 + 0.999645i \(0.491517\pi\)
\(80\) 5.07180 5.07180i 0.0633975 0.0633975i
\(81\) 0 0
\(82\) 88.8897i 1.08402i
\(83\) 109.799 109.799i 1.32288 1.32288i 0.411438 0.911438i \(-0.365027\pi\)
0.911438 0.411438i \(-0.134973\pi\)
\(84\) 0 0
\(85\) −6.74613 6.74613i −0.0793663 0.0793663i
\(86\) 37.1769 + 37.1769i 0.432290 + 0.432290i
\(87\) 0 0
\(88\) 6.92820i 0.0787296i
\(89\) 19.5167 + 19.5167i 0.219288 + 0.219288i 0.808198 0.588910i \(-0.200443\pi\)
−0.588910 + 0.808198i \(0.700443\pi\)
\(90\) 0 0
\(91\) −11.9474 + 6.19615i −0.131291 + 0.0680896i
\(92\) 10.6410 0.115663
\(93\) 0 0
\(94\) −61.6077 −0.655401
\(95\) 37.3590i 0.393252i
\(96\) 0 0
\(97\) 4.03332 4.03332i 0.0415806 0.0415806i −0.686011 0.727591i \(-0.740640\pi\)
0.727591 + 0.686011i \(0.240640\pi\)
\(98\) 47.9282 + 47.9282i 0.489063 + 0.489063i
\(99\) 0 0
\(100\) 43.5692 0.435692
\(101\) 111.464i 1.10360i −0.833975 0.551802i \(-0.813940\pi\)
0.833975 0.551802i \(-0.186060\pi\)
\(102\) 0 0
\(103\) 71.3205i 0.692432i 0.938155 + 0.346216i \(0.112534\pi\)
−0.938155 + 0.346216i \(0.887466\pi\)
\(104\) −32.6410 + 16.9282i −0.313856 + 0.162771i
\(105\) 0 0
\(106\) 57.7128 57.7128i 0.544460 0.544460i
\(107\) 116.536 1.08912 0.544560 0.838722i \(-0.316697\pi\)
0.544560 + 0.838722i \(0.316697\pi\)
\(108\) 0 0
\(109\) −109.315 + 109.315i −1.00289 + 1.00289i −0.00289735 + 0.999996i \(0.500922\pi\)
−0.999996 + 0.00289735i \(0.999078\pi\)
\(110\) 4.39230 4.39230i 0.0399300 0.0399300i
\(111\) 0 0
\(112\) −2.92820 2.92820i −0.0261447 0.0261447i
\(113\) −148.277 −1.31218 −0.656092 0.754681i \(-0.727792\pi\)
−0.656092 + 0.754681i \(0.727792\pi\)
\(114\) 0 0
\(115\) −6.74613 6.74613i −0.0586620 0.0586620i
\(116\) 8.28719i 0.0714413i
\(117\) 0 0
\(118\) −133.244 −1.12918
\(119\) −3.89488 + 3.89488i −0.0327301 + 0.0327301i
\(120\) 0 0
\(121\) 115.000i 0.950413i
\(122\) −103.426 + 103.426i −0.847751 + 0.847751i
\(123\) 0 0
\(124\) 49.9615 + 49.9615i 0.402916 + 0.402916i
\(125\) −59.3205 59.3205i −0.474564 0.474564i
\(126\) 0 0
\(127\) 70.0385i 0.551484i −0.961232 0.275742i \(-0.911076\pi\)
0.961232 0.275742i \(-0.0889236\pi\)
\(128\) −8.00000 8.00000i −0.0625000 0.0625000i
\(129\) 0 0
\(130\) 31.4256 + 9.96152i 0.241736 + 0.0766271i
\(131\) −238.890 −1.82359 −0.911793 0.410650i \(-0.865302\pi\)
−0.911793 + 0.410650i \(0.865302\pi\)
\(132\) 0 0
\(133\) −21.5692 −0.162175
\(134\) 93.3872i 0.696919i
\(135\) 0 0
\(136\) −10.6410 + 10.6410i −0.0782428 + 0.0782428i
\(137\) 91.9474 + 91.9474i 0.671149 + 0.671149i 0.957981 0.286832i \(-0.0926021\pi\)
−0.286832 + 0.957981i \(0.592602\pi\)
\(138\) 0 0
\(139\) 139.138 1.00100 0.500498 0.865738i \(-0.333150\pi\)
0.500498 + 0.865738i \(0.333150\pi\)
\(140\) 3.71281i 0.0265201i
\(141\) 0 0
\(142\) 53.8179i 0.379000i
\(143\) −28.2679 + 14.6603i −0.197678 + 0.102519i
\(144\) 0 0
\(145\) 5.25387 5.25387i 0.0362336 0.0362336i
\(146\) −11.3590 −0.0778013
\(147\) 0 0
\(148\) −6.28719 + 6.28719i −0.0424810 + 0.0424810i
\(149\) −126.224 + 126.224i −0.847143 + 0.847143i −0.989776 0.142633i \(-0.954443\pi\)
0.142633 + 0.989776i \(0.454443\pi\)
\(150\) 0 0
\(151\) 124.406 + 124.406i 0.823883 + 0.823883i 0.986663 0.162779i \(-0.0520458\pi\)
−0.162779 + 0.986663i \(0.552046\pi\)
\(152\) −58.9282 −0.387686
\(153\) 0 0
\(154\) −2.53590 2.53590i −0.0164669 0.0164669i
\(155\) 63.3487i 0.408701i
\(156\) 0 0
\(157\) −268.785 −1.71200 −0.856002 0.516973i \(-0.827059\pi\)
−0.856002 + 0.516973i \(0.827059\pi\)
\(158\) −4.21024 + 4.21024i −0.0266471 + 0.0266471i
\(159\) 0 0
\(160\) 10.1436i 0.0633975i
\(161\) −3.89488 + 3.89488i −0.0241918 + 0.0241918i
\(162\) 0 0
\(163\) −46.4449 46.4449i −0.284938 0.284938i 0.550137 0.835075i \(-0.314576\pi\)
−0.835075 + 0.550137i \(0.814576\pi\)
\(164\) 88.8897 + 88.8897i 0.542011 + 0.542011i
\(165\) 0 0
\(166\) 219.597i 1.32288i
\(167\) 119.512 + 119.512i 0.715638 + 0.715638i 0.967709 0.252071i \(-0.0811116\pi\)
−0.252071 + 0.967709i \(0.581112\pi\)
\(168\) 0 0
\(169\) −138.138 97.3590i −0.817387 0.576089i
\(170\) 13.4923 0.0793663
\(171\) 0 0
\(172\) −74.3538 −0.432290
\(173\) 242.603i 1.40233i −0.713001 0.701163i \(-0.752664\pi\)
0.713001 0.701163i \(-0.247336\pi\)
\(174\) 0 0
\(175\) −15.9474 + 15.9474i −0.0911282 + 0.0911282i
\(176\) −6.92820 6.92820i −0.0393648 0.0393648i
\(177\) 0 0
\(178\) −39.0333 −0.219288
\(179\) 26.7180i 0.149262i 0.997211 + 0.0746312i \(0.0237780\pi\)
−0.997211 + 0.0746312i \(0.976222\pi\)
\(180\) 0 0
\(181\) 256.144i 1.41516i 0.706634 + 0.707579i \(0.250213\pi\)
−0.706634 + 0.707579i \(0.749787\pi\)
\(182\) 5.75129 18.1436i 0.0316005 0.0996901i
\(183\) 0 0
\(184\) −10.6410 + 10.6410i −0.0578316 + 0.0578316i
\(185\) 7.97183 0.0430910
\(186\) 0 0
\(187\) −9.21539 + 9.21539i −0.0492802 + 0.0492802i
\(188\) 61.6077 61.6077i 0.327701 0.327701i
\(189\) 0 0
\(190\) 37.3590 + 37.3590i 0.196626 + 0.196626i
\(191\) 129.282 0.676869 0.338435 0.940990i \(-0.390103\pi\)
0.338435 + 0.940990i \(0.390103\pi\)
\(192\) 0 0
\(193\) −160.282 160.282i −0.830477 0.830477i 0.157105 0.987582i \(-0.449784\pi\)
−0.987582 + 0.157105i \(0.949784\pi\)
\(194\) 8.06664i 0.0415806i
\(195\) 0 0
\(196\) −95.8564 −0.489063
\(197\) 109.268 109.268i 0.554660 0.554660i −0.373122 0.927782i \(-0.621713\pi\)
0.927782 + 0.373122i \(0.121713\pi\)
\(198\) 0 0
\(199\) 25.1000i 0.126130i 0.998009 + 0.0630652i \(0.0200876\pi\)
−0.998009 + 0.0630652i \(0.979912\pi\)
\(200\) −43.5692 + 43.5692i −0.217846 + 0.217846i
\(201\) 0 0
\(202\) 111.464 + 111.464i 0.551802 + 0.551802i
\(203\) −3.03332 3.03332i −0.0149425 0.0149425i
\(204\) 0 0
\(205\) 112.708i 0.549793i
\(206\) −71.3205 71.3205i −0.346216 0.346216i
\(207\) 0 0
\(208\) 15.7128 49.5692i 0.0755424 0.238314i
\(209\) −51.0333 −0.244179
\(210\) 0 0
\(211\) 206.718 0.979706 0.489853 0.871805i \(-0.337050\pi\)
0.489853 + 0.871805i \(0.337050\pi\)
\(212\) 115.426i 0.544460i
\(213\) 0 0
\(214\) −116.536 + 116.536i −0.544560 + 0.544560i
\(215\) 47.1384 + 47.1384i 0.219249 + 0.219249i
\(216\) 0 0
\(217\) −36.5744 −0.168546
\(218\) 218.631i 1.00289i
\(219\) 0 0
\(220\) 8.78461i 0.0399300i
\(221\) −65.9334 20.9000i −0.298341 0.0945703i
\(222\) 0 0
\(223\) 139.412 139.412i 0.625164 0.625164i −0.321683 0.946847i \(-0.604249\pi\)
0.946847 + 0.321683i \(0.104249\pi\)
\(224\) 5.85641 0.0261447
\(225\) 0 0
\(226\) 148.277 148.277i 0.656092 0.656092i
\(227\) 97.3679 97.3679i 0.428934 0.428934i −0.459331 0.888265i \(-0.651911\pi\)
0.888265 + 0.459331i \(0.151911\pi\)
\(228\) 0 0
\(229\) 204.177 + 204.177i 0.891602 + 0.891602i 0.994674 0.103072i \(-0.0328671\pi\)
−0.103072 + 0.994674i \(0.532867\pi\)
\(230\) 13.4923 0.0586620
\(231\) 0 0
\(232\) −8.28719 8.28719i −0.0357206 0.0357206i
\(233\) 231.962i 0.995543i 0.867308 + 0.497772i \(0.165848\pi\)
−0.867308 + 0.497772i \(0.834152\pi\)
\(234\) 0 0
\(235\) −78.1154 −0.332406
\(236\) 133.244 133.244i 0.564591 0.564591i
\(237\) 0 0
\(238\) 7.78976i 0.0327301i
\(239\) −139.981 + 139.981i −0.585694 + 0.585694i −0.936462 0.350769i \(-0.885920\pi\)
0.350769 + 0.936462i \(0.385920\pi\)
\(240\) 0 0
\(241\) 53.4589 + 53.4589i 0.221821 + 0.221821i 0.809265 0.587444i \(-0.199866\pi\)
−0.587444 + 0.809265i \(0.699866\pi\)
\(242\) 115.000 + 115.000i 0.475207 + 0.475207i
\(243\) 0 0
\(244\) 206.851i 0.847751i
\(245\) 60.7705 + 60.7705i 0.248043 + 0.248043i
\(246\) 0 0
\(247\) −124.694 240.435i −0.504832 0.973419i
\(248\) −99.9230 −0.402916
\(249\) 0 0
\(250\) 118.641 0.474564
\(251\) 421.377i 1.67879i −0.543520 0.839396i \(-0.682909\pi\)
0.543520 0.839396i \(-0.317091\pi\)
\(252\) 0 0
\(253\) −9.21539 + 9.21539i −0.0364245 + 0.0364245i
\(254\) 70.0385 + 70.0385i 0.275742 + 0.275742i
\(255\) 0 0
\(256\) 16.0000 0.0625000
\(257\) 249.664i 0.971455i 0.874110 + 0.485728i \(0.161445\pi\)
−0.874110 + 0.485728i \(0.838555\pi\)
\(258\) 0 0
\(259\) 4.60254i 0.0177704i
\(260\) −41.3872 + 21.4641i −0.159181 + 0.0825542i
\(261\) 0 0
\(262\) 238.890 238.890i 0.911793 0.911793i
\(263\) 94.8897 0.360797 0.180399 0.983594i \(-0.442261\pi\)
0.180399 + 0.983594i \(0.442261\pi\)
\(264\) 0 0
\(265\) 73.1769 73.1769i 0.276139 0.276139i
\(266\) 21.5692 21.5692i 0.0810873 0.0810873i
\(267\) 0 0
\(268\) −93.3872 93.3872i −0.348460 0.348460i
\(269\) 208.774 0.776113 0.388056 0.921636i \(-0.373147\pi\)
0.388056 + 0.921636i \(0.373147\pi\)
\(270\) 0 0
\(271\) 381.047 + 381.047i 1.40608 + 1.40608i 0.778772 + 0.627307i \(0.215843\pi\)
0.627307 + 0.778772i \(0.284157\pi\)
\(272\) 21.2820i 0.0782428i
\(273\) 0 0
\(274\) −183.895 −0.671149
\(275\) −37.7321 + 37.7321i −0.137207 + 0.137207i
\(276\) 0 0
\(277\) 68.7846i 0.248320i −0.992262 0.124160i \(-0.960376\pi\)
0.992262 0.124160i \(-0.0396236\pi\)
\(278\) −139.138 + 139.138i −0.500498 + 0.500498i
\(279\) 0 0
\(280\) −3.71281 3.71281i −0.0132600 0.0132600i
\(281\) −69.6218 69.6218i −0.247764 0.247764i 0.572288 0.820053i \(-0.306056\pi\)
−0.820053 + 0.572288i \(0.806056\pi\)
\(282\) 0 0
\(283\) 425.808i 1.50462i −0.658809 0.752310i \(-0.728939\pi\)
0.658809 0.752310i \(-0.271061\pi\)
\(284\) −53.8179 53.8179i −0.189500 0.189500i
\(285\) 0 0
\(286\) 13.6077 42.9282i 0.0475794 0.150099i
\(287\) −65.0718 −0.226731
\(288\) 0 0
\(289\) 260.692 0.902049
\(290\) 10.5077i 0.0362336i
\(291\) 0 0
\(292\) 11.3590 11.3590i 0.0389006 0.0389006i
\(293\) −306.042 306.042i −1.04451 1.04451i −0.998962 0.0455508i \(-0.985496\pi\)
−0.0455508 0.998962i \(-0.514504\pi\)
\(294\) 0 0
\(295\) −168.946 −0.572699
\(296\) 12.5744i 0.0424810i
\(297\) 0 0
\(298\) 252.449i 0.847143i
\(299\) −65.9334 20.9000i −0.220513 0.0698998i
\(300\) 0 0
\(301\) 27.2154 27.2154i 0.0904166 0.0904166i
\(302\) −248.813 −0.823883
\(303\) 0 0
\(304\) 58.9282 58.9282i 0.193843 0.193843i
\(305\) −131.138 + 131.138i −0.429962 + 0.429962i
\(306\) 0 0
\(307\) 246.512 + 246.512i 0.802969 + 0.802969i 0.983559 0.180589i \(-0.0578005\pi\)
−0.180589 + 0.983559i \(0.557801\pi\)
\(308\) 5.07180 0.0164669
\(309\) 0 0
\(310\) 63.3487 + 63.3487i 0.204351 + 0.204351i
\(311\) 313.377i 1.00764i 0.863808 + 0.503821i \(0.168073\pi\)
−0.863808 + 0.503821i \(0.831927\pi\)
\(312\) 0 0
\(313\) −262.841 −0.839747 −0.419874 0.907583i \(-0.637926\pi\)
−0.419874 + 0.907583i \(0.637926\pi\)
\(314\) 268.785 268.785i 0.856002 0.856002i
\(315\) 0 0
\(316\) 8.42047i 0.0266471i
\(317\) 148.981 148.981i 0.469971 0.469971i −0.431934 0.901905i \(-0.642169\pi\)
0.901905 + 0.431934i \(0.142169\pi\)
\(318\) 0 0
\(319\) −7.17691 7.17691i −0.0224982 0.0224982i
\(320\) −10.1436 10.1436i −0.0316987 0.0316987i
\(321\) 0 0
\(322\) 7.78976i 0.0241918i
\(323\) −78.3820 78.3820i −0.242669 0.242669i
\(324\) 0 0
\(325\) −269.962 85.5744i −0.830651 0.263306i
\(326\) 92.8897 0.284938
\(327\) 0 0
\(328\) −177.779 −0.542011
\(329\) 45.1000i 0.137082i
\(330\) 0 0
\(331\) −295.870 + 295.870i −0.893869 + 0.893869i −0.994885 0.101016i \(-0.967791\pi\)
0.101016 + 0.994885i \(0.467791\pi\)
\(332\) −219.597 219.597i −0.661438 0.661438i
\(333\) 0 0
\(334\) −239.023 −0.715638
\(335\) 118.410i 0.353463i
\(336\) 0 0
\(337\) 48.9385i 0.145218i 0.997360 + 0.0726091i \(0.0231325\pi\)
−0.997360 + 0.0726091i \(0.976867\pi\)
\(338\) 235.497 40.7795i 0.696738 0.120649i
\(339\) 0 0
\(340\) −13.4923 + 13.4923i −0.0396831 + 0.0396831i
\(341\) −86.5359 −0.253771
\(342\) 0 0
\(343\) 70.9564 70.9564i 0.206870 0.206870i
\(344\) 74.3538 74.3538i 0.216145 0.216145i
\(345\) 0 0
\(346\) 242.603 + 242.603i 0.701163 + 0.701163i
\(347\) 552.133 1.59116 0.795581 0.605847i \(-0.207166\pi\)
0.795581 + 0.605847i \(0.207166\pi\)
\(348\) 0 0
\(349\) 189.210 + 189.210i 0.542150 + 0.542150i 0.924159 0.382009i \(-0.124768\pi\)
−0.382009 + 0.924159i \(0.624768\pi\)
\(350\) 31.8949i 0.0911282i
\(351\) 0 0
\(352\) 13.8564 0.0393648
\(353\) 51.8705 51.8705i 0.146942 0.146942i −0.629809 0.776750i \(-0.716867\pi\)
0.776750 + 0.629809i \(0.216867\pi\)
\(354\) 0 0
\(355\) 68.2384i 0.192221i
\(356\) 39.0333 39.0333i 0.109644 0.109644i
\(357\) 0 0
\(358\) −26.7180 26.7180i −0.0746312 0.0746312i
\(359\) 205.119 + 205.119i 0.571363 + 0.571363i 0.932509 0.361146i \(-0.117615\pi\)
−0.361146 + 0.932509i \(0.617615\pi\)
\(360\) 0 0
\(361\) 73.0666i 0.202401i
\(362\) −256.144 256.144i −0.707579 0.707579i
\(363\) 0 0
\(364\) 12.3923 + 23.8949i 0.0340448 + 0.0656453i
\(365\) −14.4026 −0.0394592
\(366\) 0 0
\(367\) −351.292 −0.957200 −0.478600 0.878033i \(-0.658856\pi\)
−0.478600 + 0.878033i \(0.658856\pi\)
\(368\) 21.2820i 0.0578316i
\(369\) 0 0
\(370\) −7.97183 + 7.97183i −0.0215455 + 0.0215455i
\(371\) −42.2487 42.2487i −0.113878 0.113878i
\(372\) 0 0
\(373\) −131.836 −0.353447 −0.176724 0.984261i \(-0.556550\pi\)
−0.176724 + 0.984261i \(0.556550\pi\)
\(374\) 18.4308i 0.0492802i
\(375\) 0 0
\(376\) 123.215i 0.327701i
\(377\) 16.2769 51.3487i 0.0431747 0.136203i
\(378\) 0 0
\(379\) −24.7987 + 24.7987i −0.0654319 + 0.0654319i −0.739065 0.673634i \(-0.764733\pi\)
0.673634 + 0.739065i \(0.264733\pi\)
\(380\) −74.7180 −0.196626
\(381\) 0 0
\(382\) −129.282 + 129.282i −0.338435 + 0.338435i
\(383\) −174.555 + 174.555i −0.455758 + 0.455758i −0.897260 0.441502i \(-0.854446\pi\)
0.441502 + 0.897260i \(0.354446\pi\)
\(384\) 0 0
\(385\) −3.21539 3.21539i −0.00835166 0.00835166i
\(386\) 320.564 0.830477
\(387\) 0 0
\(388\) −8.06664 8.06664i −0.0207903 0.0207903i
\(389\) 644.305i 1.65631i 0.560498 + 0.828156i \(0.310610\pi\)
−0.560498 + 0.828156i \(0.689390\pi\)
\(390\) 0 0
\(391\) −28.3078 −0.0723985
\(392\) 95.8564 95.8564i 0.244532 0.244532i
\(393\) 0 0
\(394\) 218.536i 0.554660i
\(395\) −5.33836 + 5.33836i −0.0135148 + 0.0135148i
\(396\) 0 0
\(397\) 432.692 + 432.692i 1.08990 + 1.08990i 0.995537 + 0.0943673i \(0.0300828\pi\)
0.0943673 + 0.995537i \(0.469917\pi\)
\(398\) −25.1000 25.1000i −0.0630652 0.0630652i
\(399\) 0 0
\(400\) 87.1384i 0.217846i
\(401\) 274.550 + 274.550i 0.684663 + 0.684663i 0.961047 0.276384i \(-0.0891362\pi\)
−0.276384 + 0.961047i \(0.589136\pi\)
\(402\) 0 0
\(403\) −211.440 407.699i −0.524664 1.01166i
\(404\) −222.928 −0.551802
\(405\) 0 0
\(406\) 6.06664 0.0149425
\(407\) 10.8897i 0.0267561i
\(408\) 0 0
\(409\) 76.1872 76.1872i 0.186277 0.186277i −0.607808 0.794084i \(-0.707951\pi\)
0.794084 + 0.607808i \(0.207951\pi\)
\(410\) 112.708 + 112.708i 0.274897 + 0.274897i
\(411\) 0 0
\(412\) 142.641 0.346216
\(413\) 97.5411i 0.236177i
\(414\) 0 0
\(415\) 278.438i 0.670936i
\(416\) 33.8564 + 65.2820i 0.0813856 + 0.156928i
\(417\) 0 0
\(418\) 51.0333 51.0333i 0.122089 0.122089i
\(419\) −76.8231 −0.183349 −0.0916743 0.995789i \(-0.529222\pi\)
−0.0916743 + 0.995789i \(0.529222\pi\)
\(420\) 0 0
\(421\) 117.756 117.756i 0.279707 0.279707i −0.553285 0.832992i \(-0.686626\pi\)
0.832992 + 0.553285i \(0.186626\pi\)
\(422\) −206.718 + 206.718i −0.489853 + 0.489853i
\(423\) 0 0
\(424\) −115.426 115.426i −0.272230 0.272230i
\(425\) −115.905 −0.272718
\(426\) 0 0
\(427\) 75.7128 + 75.7128i 0.177313 + 0.177313i
\(428\) 233.072i 0.544560i
\(429\) 0 0
\(430\) −94.2769 −0.219249
\(431\) −362.478 + 362.478i −0.841017 + 0.841017i −0.988991 0.147975i \(-0.952725\pi\)
0.147975 + 0.988991i \(0.452725\pi\)
\(432\) 0 0
\(433\) 197.292i 0.455641i −0.973703 0.227820i \(-0.926840\pi\)
0.973703 0.227820i \(-0.0731599\pi\)
\(434\) 36.5744 36.5744i 0.0842728 0.0842728i
\(435\) 0 0
\(436\) 218.631 + 218.631i 0.501447 + 0.501447i
\(437\) −78.3820 78.3820i −0.179364 0.179364i
\(438\) 0 0
\(439\) 272.238i 0.620133i 0.950715 + 0.310067i \(0.100351\pi\)
−0.950715 + 0.310067i \(0.899649\pi\)
\(440\) −8.78461 8.78461i −0.0199650 0.0199650i
\(441\) 0 0
\(442\) 86.8334 45.0333i 0.196456 0.101885i
\(443\) −74.7358 −0.168704 −0.0843519 0.996436i \(-0.526882\pi\)
−0.0843519 + 0.996436i \(0.526882\pi\)
\(444\) 0 0
\(445\) −49.4923 −0.111219
\(446\) 278.823i 0.625164i
\(447\) 0 0
\(448\) −5.85641 + 5.85641i −0.0130723 + 0.0130723i
\(449\) −516.224 516.224i −1.14972 1.14972i −0.986607 0.163113i \(-0.947847\pi\)
−0.163113 0.986607i \(-0.552153\pi\)
\(450\) 0 0
\(451\) −153.962 −0.341378
\(452\) 296.554i 0.656092i
\(453\) 0 0
\(454\) 194.736i 0.428934i
\(455\) 7.29234 23.0052i 0.0160271 0.0505608i
\(456\) 0 0
\(457\) −50.9615 + 50.9615i −0.111513 + 0.111513i −0.760662 0.649149i \(-0.775125\pi\)
0.649149 + 0.760662i \(0.275125\pi\)
\(458\) −408.354 −0.891602
\(459\) 0 0
\(460\) −13.4923 + 13.4923i −0.0293310 + 0.0293310i
\(461\) −202.550 + 202.550i −0.439371 + 0.439371i −0.891800 0.452429i \(-0.850557\pi\)
0.452429 + 0.891800i \(0.350557\pi\)
\(462\) 0 0
\(463\) −223.247 223.247i −0.482176 0.482176i 0.423650 0.905826i \(-0.360749\pi\)
−0.905826 + 0.423650i \(0.860749\pi\)
\(464\) 16.5744 0.0357206
\(465\) 0 0
\(466\) −231.962 231.962i −0.497772 0.497772i
\(467\) 161.818i 0.346505i −0.984877 0.173253i \(-0.944572\pi\)
0.984877 0.173253i \(-0.0554277\pi\)
\(468\) 0 0
\(469\) 68.3641 0.145766
\(470\) 78.1154 78.1154i 0.166203 0.166203i
\(471\) 0 0
\(472\) 266.487i 0.564591i
\(473\) 64.3923 64.3923i 0.136136 0.136136i
\(474\) 0 0
\(475\) −320.932 320.932i −0.675646 0.675646i
\(476\) 7.78976 + 7.78976i 0.0163651 + 0.0163651i
\(477\) 0 0
\(478\) 279.962i 0.585694i
\(479\) 89.1295 + 89.1295i 0.186074 + 0.186074i 0.793996 0.607922i \(-0.207997\pi\)
−0.607922 + 0.793996i \(0.707997\pi\)
\(480\) 0 0
\(481\) 51.3050 26.6077i 0.106663 0.0553175i
\(482\) −106.918 −0.221821
\(483\) 0 0
\(484\) −230.000 −0.475207
\(485\) 10.2281i 0.0210888i
\(486\) 0 0
\(487\) −527.440 + 527.440i −1.08304 + 1.08304i −0.0868139 + 0.996225i \(0.527669\pi\)
−0.996225 + 0.0868139i \(0.972331\pi\)
\(488\) 206.851 + 206.851i 0.423876 + 0.423876i
\(489\) 0 0
\(490\) −121.541 −0.248043
\(491\) 700.726i 1.42714i −0.700584 0.713570i \(-0.747077\pi\)
0.700584 0.713570i \(-0.252923\pi\)
\(492\) 0 0
\(493\) 22.0460i 0.0447181i
\(494\) 365.128 + 115.741i 0.739126 + 0.234293i
\(495\) 0 0
\(496\) 99.9230 99.9230i 0.201458 0.201458i
\(497\) 39.3975 0.0792705
\(498\) 0 0
\(499\) 279.065 279.065i 0.559249 0.559249i −0.369845 0.929094i \(-0.620589\pi\)
0.929094 + 0.369845i \(0.120589\pi\)
\(500\) −118.641 + 118.641i −0.237282 + 0.237282i
\(501\) 0 0
\(502\) 421.377 + 421.377i 0.839396 + 0.839396i
\(503\) 23.9821 0.0476782 0.0238391 0.999716i \(-0.492411\pi\)
0.0238391 + 0.999716i \(0.492411\pi\)
\(504\) 0 0
\(505\) 141.331 + 141.331i 0.279863 + 0.279863i
\(506\) 18.4308i 0.0364245i
\(507\) 0 0
\(508\) −140.077 −0.275742
\(509\) 287.678 287.678i 0.565183 0.565183i −0.365592 0.930775i \(-0.619134\pi\)
0.930775 + 0.365592i \(0.119134\pi\)
\(510\) 0 0
\(511\) 8.31535i 0.0162727i
\(512\) −16.0000 + 16.0000i −0.0312500 + 0.0312500i
\(513\) 0 0
\(514\) −249.664 249.664i −0.485728 0.485728i
\(515\) −90.4308 90.4308i −0.175594 0.175594i
\(516\) 0 0
\(517\) 106.708i 0.206398i
\(518\) 4.60254 + 4.60254i 0.00888521 + 0.00888521i
\(519\) 0 0
\(520\) 19.9230 62.8513i 0.0383136 0.120868i
\(521\) 921.349 1.76842 0.884212 0.467086i \(-0.154696\pi\)
0.884212 + 0.467086i \(0.154696\pi\)
\(522\) 0 0
\(523\) −558.677 −1.06822 −0.534108 0.845416i \(-0.679352\pi\)
−0.534108 + 0.845416i \(0.679352\pi\)
\(524\) 477.779i 0.911793i
\(525\) 0 0
\(526\) −94.8897 + 94.8897i −0.180399 + 0.180399i
\(527\) −132.910 132.910i −0.252202 0.252202i
\(528\) 0 0
\(529\) 500.692 0.946488
\(530\) 146.354i 0.276139i
\(531\) 0 0
\(532\) 43.1384i 0.0810873i
\(533\) −376.186 725.363i −0.705790 1.36091i
\(534\) 0 0
\(535\) −147.762 + 147.762i −0.276190 + 0.276190i
\(536\) 186.774 0.348460
\(537\) 0 0
\(538\) −208.774 + 208.774i −0.388056 + 0.388056i
\(539\) 83.0141 83.0141i 0.154015 0.154015i
\(540\) 0 0
\(541\) −101.756 101.756i −0.188090 0.188090i 0.606780 0.794870i \(-0.292461\pi\)
−0.794870 + 0.606780i \(0.792461\pi\)
\(542\) −762.095 −1.40608
\(543\) 0 0
\(544\) 21.2820 + 21.2820i 0.0391214 + 0.0391214i
\(545\) 277.213i 0.508647i
\(546\) 0 0
\(547\) 301.800 0.551737 0.275868 0.961195i \(-0.411035\pi\)
0.275868 + 0.961195i \(0.411035\pi\)
\(548\) 183.895 183.895i 0.335575 0.335575i
\(549\) 0 0
\(550\) 75.4641i 0.137207i
\(551\) 61.0436 61.0436i 0.110787 0.110787i
\(552\) 0 0
\(553\) 3.08211 + 3.08211i 0.00557343 + 0.00557343i
\(554\) 68.7846 + 68.7846i 0.124160 + 0.124160i
\(555\) 0 0
\(556\) 278.277i 0.500498i
\(557\) 285.258 + 285.258i 0.512132 + 0.512132i 0.915179 0.403047i \(-0.132049\pi\)
−0.403047 + 0.915179i \(0.632049\pi\)
\(558\) 0 0
\(559\) 460.708 + 146.038i 0.824164 + 0.261250i
\(560\) 7.42563 0.0132600
\(561\) 0 0
\(562\) 139.244 0.247764
\(563\) 863.174i 1.53317i −0.642143 0.766585i \(-0.721955\pi\)
0.642143 0.766585i \(-0.278045\pi\)
\(564\) 0 0
\(565\) 188.008 188.008i 0.332757 0.332757i
\(566\) 425.808 + 425.808i 0.752310 + 0.752310i
\(567\) 0 0
\(568\) 107.636 0.189500
\(569\) 317.223i 0.557510i −0.960362 0.278755i \(-0.910078\pi\)
0.960362 0.278755i \(-0.0899217\pi\)
\(570\) 0 0
\(571\) 73.2539i 0.128290i −0.997941 0.0641452i \(-0.979568\pi\)
0.997941 0.0641452i \(-0.0204321\pi\)
\(572\) 29.3205 + 56.5359i 0.0512596 + 0.0988390i
\(573\) 0 0
\(574\) 65.0718 65.0718i 0.113365 0.113365i
\(575\) −115.905 −0.201574
\(576\) 0 0
\(577\) −81.6410 + 81.6410i −0.141492 + 0.141492i −0.774305 0.632813i \(-0.781900\pi\)
0.632813 + 0.774305i \(0.281900\pi\)
\(578\) −260.692 + 260.692i −0.451025 + 0.451025i
\(579\) 0 0
\(580\) −10.5077 10.5077i −0.0181168 0.0181168i
\(581\) 160.756 0.276689
\(582\) 0 0
\(583\) −99.9615 99.9615i −0.171461 0.171461i
\(584\) 22.7180i 0.0389006i
\(585\) 0 0
\(586\) 612.084 1.04451
\(587\) −382.219 + 382.219i −0.651140 + 0.651140i −0.953268 0.302128i \(-0.902303\pi\)
0.302128 + 0.953268i \(0.402303\pi\)
\(588\) 0 0
\(589\) 736.036i 1.24964i
\(590\) 168.946 168.946i 0.286349 0.286349i
\(591\) 0 0
\(592\) 12.5744 + 12.5744i 0.0212405 + 0.0212405i
\(593\) −171.355 171.355i −0.288963 0.288963i 0.547707 0.836670i \(-0.315501\pi\)
−0.836670 + 0.547707i \(0.815501\pi\)
\(594\) 0 0
\(595\) 9.87703i 0.0166000i
\(596\) 252.449 + 252.449i 0.423572 + 0.423572i
\(597\) 0 0
\(598\) 86.8334 45.0333i 0.145206 0.0753066i
\(599\) 109.608 0.182984 0.0914922 0.995806i \(-0.470836\pi\)
0.0914922 + 0.995806i \(0.470836\pi\)
\(600\) 0 0
\(601\) 779.108 1.29635 0.648176 0.761491i \(-0.275532\pi\)
0.648176 + 0.761491i \(0.275532\pi\)
\(602\) 54.4308i 0.0904166i
\(603\) 0 0
\(604\) 248.813 248.813i 0.411942 0.411942i
\(605\) 145.814 + 145.814i 0.241015 + 0.241015i
\(606\) 0 0
\(607\) 1144.40 1.88534 0.942669 0.333730i \(-0.108307\pi\)
0.942669 + 0.333730i \(0.108307\pi\)
\(608\) 117.856i 0.193843i
\(609\) 0 0
\(610\) 262.277i 0.429962i
\(611\) −502.734 + 260.727i −0.822806 + 0.426722i
\(612\) 0 0
\(613\) 292.349 292.349i 0.476915 0.476915i −0.427229 0.904144i \(-0.640510\pi\)
0.904144 + 0.427229i \(0.140510\pi\)
\(614\) −493.023 −0.802969
\(615\) 0 0
\(616\) −5.07180 + 5.07180i −0.00823344 + 0.00823344i
\(617\) 369.391 369.391i 0.598689 0.598689i −0.341275 0.939964i \(-0.610859\pi\)
0.939964 + 0.341275i \(0.110859\pi\)
\(618\) 0 0
\(619\) −446.070 446.070i −0.720631 0.720631i 0.248103 0.968734i \(-0.420193\pi\)
−0.968734 + 0.248103i \(0.920193\pi\)
\(620\) −126.697 −0.204351
\(621\) 0 0
\(622\) −313.377 313.377i −0.503821 0.503821i
\(623\) 28.5744i 0.0458658i
\(624\) 0 0
\(625\) −394.184 −0.630695
\(626\) 262.841 262.841i 0.419874 0.419874i
\(627\) 0 0
\(628\) 537.569i 0.856002i
\(629\) 16.7255 16.7255i 0.0265906 0.0265906i
\(630\) 0 0
\(631\) −604.406 604.406i −0.957855 0.957855i 0.0412923 0.999147i \(-0.486853\pi\)
−0.999147 + 0.0412923i \(0.986853\pi\)
\(632\) 8.42047 + 8.42047i 0.0133235 + 0.0133235i
\(633\) 0 0
\(634\) 297.962i 0.469971i
\(635\) 88.8052 + 88.8052i 0.139851 + 0.139851i
\(636\) 0 0
\(637\) 593.941 + 188.272i 0.932403 + 0.295560i
\(638\) 14.3538 0.0224982
\(639\) 0 0
\(640\) 20.2872 0.0316987
\(641\) 1213.91i 1.89378i 0.321565 + 0.946888i \(0.395791\pi\)
−0.321565 + 0.946888i \(0.604209\pi\)
\(642\) 0 0
\(643\) 413.804 413.804i 0.643552 0.643552i −0.307875 0.951427i \(-0.599618\pi\)
0.951427 + 0.307875i \(0.0996178\pi\)
\(644\) 7.78976 + 7.78976i 0.0120959 + 0.0120959i
\(645\) 0 0
\(646\) 156.764 0.242669
\(647\) 117.913i 0.182245i −0.995840 0.0911227i \(-0.970954\pi\)
0.995840 0.0911227i \(-0.0290455\pi\)
\(648\) 0 0
\(649\) 230.785i 0.355600i
\(650\) 355.536 184.387i 0.546978 0.283673i
\(651\) 0 0
\(652\) −92.8897 + 92.8897i −0.142469 + 0.142469i
\(653\) 1088.62 1.66711 0.833553 0.552439i \(-0.186303\pi\)
0.833553 + 0.552439i \(0.186303\pi\)
\(654\) 0 0
\(655\) 302.900 302.900i 0.462443 0.462443i
\(656\) 177.779 177.779i 0.271005 0.271005i
\(657\) 0 0
\(658\) −45.1000 45.1000i −0.0685410 0.0685410i
\(659\) −1222.68 −1.85535 −0.927676 0.373387i \(-0.878196\pi\)
−0.927676 + 0.373387i \(0.878196\pi\)
\(660\) 0 0
\(661\) −667.851 667.851i −1.01036 1.01036i −0.999946 0.0104193i \(-0.996683\pi\)
−0.0104193 0.999946i \(-0.503317\pi\)
\(662\) 591.741i 0.893869i
\(663\) 0 0
\(664\) 439.195 0.661438
\(665\) 27.3487 27.3487i 0.0411258 0.0411258i
\(666\) 0 0
\(667\) 22.0460i 0.0330525i
\(668\) 239.023 239.023i 0.357819 0.357819i
\(669\) 0 0
\(670\) −118.410 118.410i −0.176732 0.176732i
\(671\) 179.138 + 179.138i 0.266972 + 0.266972i
\(672\) 0 0
\(673\) 411.779i 0.611857i 0.952055 + 0.305928i \(0.0989668\pi\)
−0.952055 + 0.305928i \(0.901033\pi\)
\(674\) −48.9385 48.9385i −0.0726091 0.0726091i
\(675\) 0 0
\(676\) −194.718 + 276.277i −0.288044 + 0.408694i
\(677\) 948.600 1.40118 0.700591 0.713563i \(-0.252920\pi\)
0.700591 + 0.713563i \(0.252920\pi\)
\(678\) 0 0
\(679\) 5.90519 0.00869690
\(680\) 26.9845i 0.0396831i
\(681\) 0 0
\(682\) 86.5359 86.5359i 0.126885 0.126885i
\(683\) −101.809 101.809i −0.149061 0.149061i 0.628637 0.777699i \(-0.283613\pi\)
−0.777699 + 0.628637i \(0.783613\pi\)
\(684\) 0 0
\(685\) −233.169 −0.340393
\(686\) 141.913i 0.206870i
\(687\) 0 0
\(688\) 148.708i 0.216145i
\(689\) 226.708 715.195i 0.329039 1.03802i
\(690\) 0 0
\(691\) −111.135 + 111.135i −0.160832 + 0.160832i −0.782935 0.622103i \(-0.786278\pi\)
0.622103 + 0.782935i \(0.286278\pi\)
\(692\) −485.205 −0.701163
\(693\) 0 0
\(694\) −552.133 + 552.133i −0.795581 + 0.795581i
\(695\) −176.420 + 176.420i −0.253842 + 0.253842i
\(696\) 0 0
\(697\) −236.469 236.469i −0.339267 0.339267i
\(698\) −378.420 −0.542150
\(699\) 0 0
\(700\) 31.8949 + 31.8949i 0.0455641 + 0.0455641i
\(701\) 779.520i 1.11201i 0.831178 + 0.556006i \(0.187667\pi\)
−0.831178 + 0.556006i \(0.812333\pi\)
\(702\) 0 0
\(703\) 92.6232 0.131754
\(704\) −13.8564 + 13.8564i −0.0196824 + 0.0196824i
\(705\) 0 0
\(706\) 103.741i 0.146942i
\(707\) 81.5974 81.5974i 0.115414 0.115414i
\(708\) 0 0
\(709\) 43.0179 + 43.0179i 0.0606740 + 0.0606740i 0.736793 0.676119i \(-0.236339\pi\)
−0.676119 + 0.736793i \(0.736339\pi\)
\(710\) −68.2384 68.2384i −0.0961104 0.0961104i
\(711\) 0 0
\(712\) 78.0666i 0.109644i
\(713\) −132.910 132.910i −0.186410 0.186410i
\(714\) 0 0
\(715\) 17.2539 54.4308i 0.0241313 0.0761270i
\(716\) 53.4359 0.0746312
\(717\) 0 0
\(718\) −410.238 −0.571363
\(719\) 335.290i 0.466328i 0.972437 + 0.233164i \(0.0749078\pi\)
−0.972437 + 0.233164i \(0.925092\pi\)
\(720\) 0 0
\(721\) −52.2102 + 52.2102i −0.0724136 + 0.0724136i
\(722\) 73.0666 + 73.0666i 0.101200 + 0.101200i
\(723\) 0 0
\(724\) 512.287 0.707579
\(725\) 90.2666i 0.124506i
\(726\) 0 0
\(727\) 537.577i 0.739445i 0.929142 + 0.369723i \(0.120547\pi\)
−0.929142 + 0.369723i \(0.879453\pi\)
\(728\) −36.2872 11.5026i −0.0498450 0.0158002i
\(729\) 0 0
\(730\) 14.4026 14.4026i 0.0197296 0.0197296i
\(731\) 197.800 0.270588
\(732\) 0 0
\(733\) −479.946 + 479.946i −0.654770 + 0.654770i −0.954138 0.299368i \(-0.903224\pi\)
0.299368 + 0.954138i \(0.403224\pi\)
\(734\) 351.292 351.292i 0.478600 0.478600i
\(735\) 0 0
\(736\) 21.2820 + 21.2820i 0.0289158 + 0.0289158i
\(737\) 161.751 0.219473
\(738\) 0 0
\(739\) 512.788 + 512.788i 0.693895 + 0.693895i 0.963087 0.269192i \(-0.0867565\pi\)
−0.269192 + 0.963087i \(0.586757\pi\)
\(740\) 15.9437i 0.0215455i
\(741\) 0 0
\(742\) 84.4974 0.113878
\(743\) −801.509 + 801.509i −1.07875 + 1.07875i −0.0821246 + 0.996622i \(0.526171\pi\)
−0.996622 + 0.0821246i \(0.973829\pi\)
\(744\) 0 0
\(745\) 320.092i 0.429654i
\(746\) 131.836 131.836i 0.176724 0.176724i
\(747\) 0 0
\(748\) 18.4308 + 18.4308i 0.0246401 + 0.0246401i
\(749\) 85.3102 + 85.3102i 0.113899 + 0.113899i
\(750\) 0 0
\(751\) 1384.43i 1.84345i 0.387849 + 0.921723i \(0.373218\pi\)
−0.387849 + 0.921723i \(0.626782\pi\)
\(752\) −123.215 123.215i −0.163850 0.163850i
\(753\) 0 0
\(754\) 35.0718 + 67.6256i 0.0465143 + 0.0896891i
\(755\) −315.482 −0.417857
\(756\) 0 0
\(757\) −125.836 −0.166230 −0.0831148 0.996540i \(-0.526487\pi\)
−0.0831148 + 0.996540i \(0.526487\pi\)
\(758\) 49.5974i 0.0654319i
\(759\) 0 0
\(760\) 74.7180 74.7180i 0.0983131 0.0983131i
\(761\) 3.55514 + 3.55514i 0.00467166 + 0.00467166i 0.709439 0.704767i \(-0.248949\pi\)
−0.704767 + 0.709439i \(0.748949\pi\)
\(762\) 0 0
\(763\) −160.049 −0.209762
\(764\) 258.564i 0.338435i
\(765\) 0 0
\(766\) 349.110i 0.455758i
\(767\) −1087.30 + 563.894i −1.41760 + 0.735194i
\(768\) 0 0
\(769\) −958.405 + 958.405i −1.24630 + 1.24630i −0.288959 + 0.957342i \(0.593309\pi\)
−0.957342 + 0.288959i \(0.906691\pi\)
\(770\) 6.43078 0.00835166
\(771\) 0 0
\(772\) −320.564 + 320.564i −0.415238 + 0.415238i
\(773\) −76.8165 + 76.8165i −0.0993746 + 0.0993746i −0.755046 0.655672i \(-0.772386\pi\)
0.655672 + 0.755046i \(0.272386\pi\)
\(774\) 0 0
\(775\) −544.196 544.196i −0.702189 0.702189i
\(776\) 16.1333 0.0207903
\(777\) 0 0
\(778\) −644.305 644.305i −0.828156 0.828156i
\(779\) 1309.53i 1.68104i
\(780\) 0 0
\(781\) 93.2154 0.119354
\(782\) 28.3078 28.3078i 0.0361992 0.0361992i
\(783\) 0 0
\(784\) 191.713i 0.244532i
\(785\) 340.805 340.805i 0.434147 0.434147i
\(786\) 0 0
\(787\) −486.883 486.883i −0.618657 0.618657i 0.326530 0.945187i \(-0.394121\pi\)
−0.945187 + 0.326530i \(0.894121\pi\)
\(788\) −218.536 218.536i −0.277330 0.277330i
\(789\) 0 0
\(790\) 10.6767i 0.0135148i
\(791\) −108.546 108.546i −0.137227 0.137227i
\(792\) 0 0
\(793\) −406.277 + 1281.68i −0.512329 + 1.61624i
\(794\) −865.384 −1.08990
\(795\) 0 0
\(796\) 50.1999 0.0630652
\(797\) 713.587i 0.895341i 0.894198 + 0.447671i \(0.147746\pi\)
−0.894198 + 0.447671i \(0.852254\pi\)
\(798\) 0 0
\(799\) −163.892 + 163.892i −0.205122 + 0.205122i
\(800\) 87.1384 + 87.1384i 0.108923 + 0.108923i
\(801\) 0 0
\(802\) −549.100 −0.684663
\(803\) 19.6743i 0.0245010i
\(804\) 0 0
\(805\) 9.87703i 0.0122696i
\(806\) 619.138 + 196.259i 0.768162 + 0.243498i
\(807\) 0 0
\(808\) 222.928 222.928i 0.275901 0.275901i
\(809\) 257.600 0.318418 0.159209 0.987245i \(-0.449106\pi\)
0.159209 + 0.987245i \(0.449106\pi\)
\(810\) 0 0
\(811\) −127.258 + 127.258i −0.156914 + 0.156914i −0.781198 0.624283i \(-0.785391\pi\)
0.624283 + 0.781198i \(0.285391\pi\)
\(812\) −6.06664 + 6.06664i −0.00747123 + 0.00747123i
\(813\) 0 0
\(814\) 10.8897 + 10.8897i 0.0133780 + 0.0133780i
\(815\) 117.779 0.144515
\(816\) 0 0
\(817\) 547.692 + 547.692i 0.670370 + 0.670370i
\(818\) 152.374i 0.186277i
\(819\) 0 0
\(820\) −225.415 −0.274897
\(821\) −1116.87 + 1116.87i −1.36038 + 1.36038i −0.486953 + 0.873428i \(0.661892\pi\)
−0.873428 + 0.486953i \(0.838108\pi\)
\(822\) 0 0
\(823\) 617.920i 0.750814i 0.926860 + 0.375407i \(0.122497\pi\)
−0.926860 + 0.375407i \(0.877503\pi\)
\(824\) −142.641 + 142.641i −0.173108 + 0.173108i
\(825\) 0 0
\(826\) −97.5411 97.5411i −0.118088 0.118088i
\(827\) −349.847 349.847i −0.423032 0.423032i 0.463214 0.886246i \(-0.346696\pi\)
−0.886246 + 0.463214i \(0.846696\pi\)
\(828\) 0 0
\(829\) 247.646i 0.298729i −0.988782 0.149364i \(-0.952277\pi\)
0.988782 0.149364i \(-0.0477227\pi\)
\(830\) −278.438 278.438i −0.335468 0.335468i
\(831\) 0 0
\(832\) −99.1384 31.4256i −0.119157 0.0377712i
\(833\) 255.002 0.306125
\(834\) 0 0
\(835\) −303.069 −0.362957
\(836\) 102.067i 0.122089i
\(837\) 0 0
\(838\) 76.8231 76.8231i 0.0916743 0.0916743i
\(839\) 598.868 + 598.868i 0.713788 + 0.713788i 0.967325 0.253538i \(-0.0815943\pi\)
−0.253538 + 0.967325i \(0.581594\pi\)
\(840\) 0 0
\(841\) −823.831 −0.979585
\(842\) 235.513i 0.279707i
\(843\) 0 0
\(844\) 413.436i 0.489853i
\(845\) 298.599 51.7063i 0.353371 0.0611909i
\(846\) 0 0
\(847\) 84.1858 84.1858i 0.0993930 0.0993930i
\(848\) 230.851 0.272230
\(849\) 0 0
\(850\) 115.905 115.905i 0.136359 0.136359i
\(851\) 16.7255 16.7255i 0.0196540 0.0196540i
\(852\) 0 0
\(853\) −519.210 519.210i −0.608687 0.608687i 0.333916 0.942603i \(-0.391630\pi\)
−0.942603 + 0.333916i \(0.891630\pi\)
\(854\) −151.426 −0.177313
\(855\) 0 0
\(856\) 233.072 + 233.072i 0.272280 + 0.272280i
\(857\) 226.756i 0.264593i −0.991210 0.132297i \(-0.957765\pi\)
0.991210 0.132297i \(-0.0422351\pi\)
\(858\) 0 0
\(859\) 950.656 1.10670 0.553350 0.832949i \(-0.313349\pi\)
0.553350 + 0.832949i \(0.313349\pi\)
\(860\) 94.2769 94.2769i 0.109624 0.109624i
\(861\) 0 0
\(862\) 724.956i 0.841017i
\(863\) −773.711 + 773.711i −0.896537 + 0.896537i −0.995128 0.0985910i \(-0.968566\pi\)
0.0985910 + 0.995128i \(0.468566\pi\)
\(864\) 0 0
\(865\) 307.608 + 307.608i 0.355616 + 0.355616i
\(866\) 197.292 + 197.292i 0.227820 + 0.227820i
\(867\) 0 0
\(868\) 73.1487i 0.0842728i
\(869\) 7.29234 + 7.29234i 0.00839165 + 0.00839165i
\(870\) 0 0
\(871\) 395.219 + 762.063i 0.453753 + 0.874929i
\(872\) −437.261 −0.501447
\(873\) 0 0
\(874\) 156.764 0.179364
\(875\) 86.8513i 0.0992586i
\(876\) 0 0
\(877\) 646.713 646.713i 0.737415 0.737415i −0.234662 0.972077i \(-0.575398\pi\)
0.972077 + 0.234662i \(0.0753984\pi\)
\(878\) −272.238 272.238i −0.310067 0.310067i
\(879\) 0 0
\(880\) 17.5692 0.0199650
\(881\) 783.997i 0.889895i 0.895557 + 0.444947i \(0.146778\pi\)
−0.895557 + 0.444947i \(0.853222\pi\)
\(882\) 0 0
\(883\) 1089.81i 1.23421i −0.786881 0.617105i \(-0.788305\pi\)
0.786881 0.617105i \(-0.211695\pi\)
\(884\) −41.8001 + 131.867i −0.0472852 + 0.149170i
\(885\) 0 0
\(886\) 74.7358 74.7358i 0.0843519 0.0843519i
\(887\) 1057.03 1.19169 0.595846 0.803099i \(-0.296817\pi\)
0.595846 + 0.803099i \(0.296817\pi\)
\(888\) 0 0
\(889\) 51.2717 51.2717i 0.0576735 0.0576735i
\(890\) 49.4923 49.4923i 0.0556093 0.0556093i
\(891\) 0 0
\(892\) −278.823 278.823i −0.312582 0.312582i
\(893\) −907.608 −1.01636
\(894\) 0 0
\(895\) −33.8770 33.8770i −0.0378514 0.0378514i
\(896\) 11.7128i 0.0130723i
\(897\) 0 0
\(898\) 1032.45 1.14972
\(899\) 103.510 103.510i 0.115139 0.115139i
\(900\) 0 0
\(901\) 307.061i 0.340801i
\(902\) 153.962 153.962i 0.170689 0.170689i
\(903\) 0 0
\(904\) −296.554 296.554i −0.328046 0.328046i
\(905\) −324.777 324.777i −0.358870 0.358870i
\(906\) 0 0
\(907\) 546.669i 0.602722i 0.953510 + 0.301361i \(0.0974410\pi\)
−0.953510 + 0.301361i \(0.902559\pi\)
\(908\) −194.736 194.736i −0.214467 0.214467i
\(909\) 0 0
\(910\) 15.7128 + 30.2975i 0.0172668 + 0.0332940i
\(911\) −724.743 −0.795547 −0.397774 0.917484i \(-0.630217\pi\)
−0.397774 + 0.917484i \(0.630217\pi\)
\(912\) 0 0
\(913\) 380.354 0.416598
\(914\) 101.923i 0.111513i
\(915\) 0 0
\(916\) 408.354 408.354i 0.445801 0.445801i
\(917\) −174.879 174.879i −0.190708 0.190708i
\(918\) 0 0
\(919\) −941.108 −1.02406 −0.512028 0.858969i \(-0.671106\pi\)
−0.512028 + 0.858969i \(0.671106\pi\)
\(920\) 26.9845i 0.0293310i
\(921\) 0 0
\(922\) 405.100i 0.439371i
\(923\) 227.760 + 439.168i 0.246761 + 0.475805i
\(924\) 0 0
\(925\) 68.4820 68.4820i 0.0740345 0.0740345i
\(926\) 446.495 0.482176
\(927\) 0 0
\(928\) −16.5744 + 16.5744i −0.0178603 + 0.0178603i
\(929\) 260.130 260.130i 0.280010 0.280010i −0.553103 0.833113i \(-0.686556\pi\)
0.833113 + 0.553103i \(0.186556\pi\)
\(930\) 0 0
\(931\) 706.081 + 706.081i 0.758411 + 0.758411i
\(932\) 463.923 0.497772
\(933\) 0 0
\(934\) 161.818 + 161.818i 0.173253 + 0.173253i
\(935\) 23.3693i 0.0249939i
\(936\) 0 0
\(937\) 1387.56 1.48085 0.740426 0.672138i \(-0.234624\pi\)
0.740426 + 0.672138i \(0.234624\pi\)
\(938\) −68.3641 + 68.3641i −0.0728829 + 0.0728829i
\(939\) 0 0
\(940\) 156.231i 0.166203i
\(941\) 61.6012 61.6012i 0.0654635 0.0654635i −0.673617 0.739081i \(-0.735260\pi\)
0.739081 + 0.673617i \(0.235260\pi\)
\(942\) 0 0
\(943\) −236.469 236.469i −0.250763 0.250763i
\(944\) −266.487 266.487i −0.282296 0.282296i
\(945\) 0 0
\(946\) 128.785i 0.136136i
\(947\) −54.5064 54.5064i −0.0575569 0.0575569i 0.677742 0.735299i \(-0.262958\pi\)
−0.735299 + 0.677742i \(0.762958\pi\)
\(948\) 0 0
\(949\) −92.6922 + 48.0718i −0.0976735 + 0.0506552i
\(950\) 641.864 0.675646
\(951\) 0 0
\(952\) −15.5795 −0.0163651
\(953\) 1079.56i 1.13280i −0.824131 0.566399i \(-0.808336\pi\)
0.824131 0.566399i \(-0.191664\pi\)
\(954\) 0 0
\(955\) −163.923 + 163.923i −0.171647 + 0.171647i
\(956\) 279.962 + 279.962i 0.292847 + 0.292847i
\(957\) 0 0
\(958\) −178.259 −0.186074
\(959\) 134.620i 0.140376i
\(960\) 0 0
\(961\) 287.077i 0.298727i
\(962\) −24.6973 + 77.9127i −0.0256729 + 0.0809904i
\(963\) 0 0
\(964\) 106.918 106.918i 0.110911 0.110911i
\(965\) 406.459 0.421201
\(966\) 0 0
\(967\) 493.745 493.745i 0.510594 0.510594i −0.404114 0.914709i \(-0.632420\pi\)
0.914709 + 0.404114i \(0.132420\pi\)
\(968\) 230.000 230.000i 0.237603 0.237603i
\(969\) 0 0
\(970\) −10.2281 10.2281i −0.0105444 0.0105444i
\(971\) 1694.52 1.74513 0.872566 0.488497i \(-0.162455\pi\)
0.872566 + 0.488497i \(0.162455\pi\)
\(972\) 0 0
\(973\) 101.856 + 101.856i 0.104683 + 0.104683i
\(974\) 1054.88i 1.08304i
\(975\) 0 0
\(976\) −413.703 −0.423876
\(977\) 390.060 390.060i 0.399243 0.399243i −0.478723 0.877966i \(-0.658900\pi\)
0.877966 + 0.478723i \(0.158900\pi\)
\(978\) 0 0
\(979\) 67.6077i 0.0690579i
\(980\) 121.541 121.541i 0.124021 0.124021i
\(981\) 0 0
\(982\) 700.726 + 700.726i 0.713570 + 0.713570i
\(983\) 1123.12 + 1123.12i 1.14254 + 1.14254i 0.987984 + 0.154559i \(0.0493956\pi\)
0.154559 + 0.987984i \(0.450604\pi\)
\(984\) 0 0
\(985\) 277.092i 0.281312i
\(986\) 22.0460 + 22.0460i 0.0223590 + 0.0223590i
\(987\) 0 0
\(988\) −480.869 + 249.387i −0.486710 + 0.252416i
\(989\) 197.800 0.200000
\(990\) 0 0
\(991\) 610.985 0.616533 0.308267 0.951300i \(-0.400251\pi\)
0.308267 + 0.951300i \(0.400251\pi\)
\(992\) 199.846i 0.201458i
\(993\) 0 0
\(994\) −39.3975 + 39.3975i −0.0396353 + 0.0396353i
\(995\) −31.8255 31.8255i −0.0319854 0.0319854i
\(996\) 0 0
\(997\) −412.123 −0.413363 −0.206682 0.978408i \(-0.566266\pi\)
−0.206682 + 0.978408i \(0.566266\pi\)
\(998\) 558.131i 0.559249i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 234.3.i.b.109.2 4
3.2 odd 2 78.3.f.a.31.2 4
12.11 even 2 624.3.ba.a.577.1 4
13.8 odd 4 inner 234.3.i.b.73.2 4
39.5 even 4 1014.3.f.a.775.2 4
39.8 even 4 78.3.f.a.73.2 yes 4
39.38 odd 2 1014.3.f.a.577.2 4
156.47 odd 4 624.3.ba.a.385.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
78.3.f.a.31.2 4 3.2 odd 2
78.3.f.a.73.2 yes 4 39.8 even 4
234.3.i.b.73.2 4 13.8 odd 4 inner
234.3.i.b.109.2 4 1.1 even 1 trivial
624.3.ba.a.385.1 4 156.47 odd 4
624.3.ba.a.577.1 4 12.11 even 2
1014.3.f.a.577.2 4 39.38 odd 2
1014.3.f.a.775.2 4 39.5 even 4