Properties

Label 234.3.i.b.109.1
Level $234$
Weight $3$
Character 234.109
Analytic conductor $6.376$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [234,3,Mod(73,234)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(234, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("234.73");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 234 = 2 \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 234.i (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.37603818603\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(i)\)
Coefficient field: \(\Q(\zeta_{12})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: no (minimal twist has level 78)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 109.1
Root \(-0.866025 - 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 234.109
Dual form 234.3.i.b.73.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.00000 + 1.00000i) q^{2} -2.00000i q^{4} +(-4.73205 + 4.73205i) q^{5} +(-2.73205 - 2.73205i) q^{7} +(2.00000 + 2.00000i) q^{8} -9.46410i q^{10} +(-1.73205 - 1.73205i) q^{11} +(9.92820 - 8.39230i) q^{13} +5.46410 q^{14} -4.00000 q^{16} -29.3205i q^{17} +(-11.2679 + 11.2679i) q^{19} +(9.46410 + 9.46410i) q^{20} +3.46410 q^{22} -29.3205i q^{23} -19.7846i q^{25} +(-1.53590 + 18.3205i) q^{26} +(-5.46410 + 5.46410i) q^{28} -31.8564 q^{29} +(26.9808 - 26.9808i) q^{31} +(4.00000 - 4.00000i) q^{32} +(29.3205 + 29.3205i) q^{34} +25.8564 q^{35} +(-30.8564 - 30.8564i) q^{37} -22.5359i q^{38} -18.9282 q^{40} +(14.4449 - 14.4449i) q^{41} +25.1769i q^{43} +(-3.46410 + 3.46410i) q^{44} +(29.3205 + 29.3205i) q^{46} +(41.1962 + 41.1962i) q^{47} -34.0718i q^{49} +(19.7846 + 19.7846i) q^{50} +(-16.7846 - 19.8564i) q^{52} -2.28719 q^{53} +16.3923 q^{55} -10.9282i q^{56} +(31.8564 - 31.8564i) q^{58} +(-54.6218 - 54.6218i) q^{59} -7.42563 q^{61} +53.9615i q^{62} +8.00000i q^{64} +(-7.26795 + 86.6936i) q^{65} +(-60.6936 + 60.6936i) q^{67} -58.6410 q^{68} +(-25.8564 + 25.8564i) q^{70} +(-38.9090 + 38.9090i) q^{71} +(40.3205 + 40.3205i) q^{73} +61.7128 q^{74} +(22.5359 + 22.5359i) q^{76} +9.46410i q^{77} -148.210 q^{79} +(18.9282 - 18.9282i) q^{80} +28.8897i q^{82} +(-73.7987 + 73.7987i) q^{83} +(138.746 + 138.746i) q^{85} +(-25.1769 - 25.1769i) q^{86} -6.92820i q^{88} +(-25.5167 - 25.5167i) q^{89} +(-50.0526 - 4.19615i) q^{91} -58.6410 q^{92} -82.3923 q^{94} -106.641i q^{95} +(-86.0333 + 86.0333i) q^{97} +(34.0718 + 34.0718i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{2} - 12 q^{5} - 4 q^{7} + 8 q^{8} + 12 q^{13} + 8 q^{14} - 16 q^{16} - 52 q^{19} + 24 q^{20} - 20 q^{26} - 8 q^{28} - 72 q^{29} + 4 q^{31} + 16 q^{32} + 48 q^{34} + 48 q^{35} - 68 q^{37} - 48 q^{40}+ \cdots + 164 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/234\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(209\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 + 1.00000i −0.500000 + 0.500000i
\(3\) 0 0
\(4\) 2.00000i 0.500000i
\(5\) −4.73205 + 4.73205i −0.946410 + 0.946410i −0.998635 0.0522252i \(-0.983369\pi\)
0.0522252 + 0.998635i \(0.483369\pi\)
\(6\) 0 0
\(7\) −2.73205 2.73205i −0.390293 0.390293i 0.484499 0.874792i \(-0.339002\pi\)
−0.874792 + 0.484499i \(0.839002\pi\)
\(8\) 2.00000 + 2.00000i 0.250000 + 0.250000i
\(9\) 0 0
\(10\) 9.46410i 0.946410i
\(11\) −1.73205 1.73205i −0.157459 0.157459i 0.623981 0.781440i \(-0.285514\pi\)
−0.781440 + 0.623981i \(0.785514\pi\)
\(12\) 0 0
\(13\) 9.92820 8.39230i 0.763708 0.645562i
\(14\) 5.46410 0.390293
\(15\) 0 0
\(16\) −4.00000 −0.250000
\(17\) 29.3205i 1.72474i −0.506282 0.862368i \(-0.668981\pi\)
0.506282 0.862368i \(-0.331019\pi\)
\(18\) 0 0
\(19\) −11.2679 + 11.2679i −0.593050 + 0.593050i −0.938454 0.345404i \(-0.887742\pi\)
0.345404 + 0.938454i \(0.387742\pi\)
\(20\) 9.46410 + 9.46410i 0.473205 + 0.473205i
\(21\) 0 0
\(22\) 3.46410 0.157459
\(23\) 29.3205i 1.27480i −0.770531 0.637402i \(-0.780009\pi\)
0.770531 0.637402i \(-0.219991\pi\)
\(24\) 0 0
\(25\) 19.7846i 0.791384i
\(26\) −1.53590 + 18.3205i −0.0590730 + 0.704635i
\(27\) 0 0
\(28\) −5.46410 + 5.46410i −0.195146 + 0.195146i
\(29\) −31.8564 −1.09850 −0.549248 0.835659i \(-0.685086\pi\)
−0.549248 + 0.835659i \(0.685086\pi\)
\(30\) 0 0
\(31\) 26.9808 26.9808i 0.870347 0.870347i −0.122163 0.992510i \(-0.538983\pi\)
0.992510 + 0.122163i \(0.0389830\pi\)
\(32\) 4.00000 4.00000i 0.125000 0.125000i
\(33\) 0 0
\(34\) 29.3205 + 29.3205i 0.862368 + 0.862368i
\(35\) 25.8564 0.738754
\(36\) 0 0
\(37\) −30.8564 30.8564i −0.833957 0.833957i 0.154099 0.988055i \(-0.450753\pi\)
−0.988055 + 0.154099i \(0.950753\pi\)
\(38\) 22.5359i 0.593050i
\(39\) 0 0
\(40\) −18.9282 −0.473205
\(41\) 14.4449 14.4449i 0.352314 0.352314i −0.508656 0.860970i \(-0.669858\pi\)
0.860970 + 0.508656i \(0.169858\pi\)
\(42\) 0 0
\(43\) 25.1769i 0.585510i 0.956188 + 0.292755i \(0.0945720\pi\)
−0.956188 + 0.292755i \(0.905428\pi\)
\(44\) −3.46410 + 3.46410i −0.0787296 + 0.0787296i
\(45\) 0 0
\(46\) 29.3205 + 29.3205i 0.637402 + 0.637402i
\(47\) 41.1962 + 41.1962i 0.876514 + 0.876514i 0.993172 0.116658i \(-0.0372182\pi\)
−0.116658 + 0.993172i \(0.537218\pi\)
\(48\) 0 0
\(49\) 34.0718i 0.695343i
\(50\) 19.7846 + 19.7846i 0.395692 + 0.395692i
\(51\) 0 0
\(52\) −16.7846 19.8564i −0.322781 0.381854i
\(53\) −2.28719 −0.0431545 −0.0215772 0.999767i \(-0.506869\pi\)
−0.0215772 + 0.999767i \(0.506869\pi\)
\(54\) 0 0
\(55\) 16.3923 0.298042
\(56\) 10.9282i 0.195146i
\(57\) 0 0
\(58\) 31.8564 31.8564i 0.549248 0.549248i
\(59\) −54.6218 54.6218i −0.925793 0.925793i 0.0716379 0.997431i \(-0.477177\pi\)
−0.997431 + 0.0716379i \(0.977177\pi\)
\(60\) 0 0
\(61\) −7.42563 −0.121732 −0.0608658 0.998146i \(-0.519386\pi\)
−0.0608658 + 0.998146i \(0.519386\pi\)
\(62\) 53.9615i 0.870347i
\(63\) 0 0
\(64\) 8.00000i 0.125000i
\(65\) −7.26795 + 86.6936i −0.111815 + 1.33375i
\(66\) 0 0
\(67\) −60.6936 + 60.6936i −0.905874 + 0.905874i −0.995936 0.0900619i \(-0.971294\pi\)
0.0900619 + 0.995936i \(0.471294\pi\)
\(68\) −58.6410 −0.862368
\(69\) 0 0
\(70\) −25.8564 + 25.8564i −0.369377 + 0.369377i
\(71\) −38.9090 + 38.9090i −0.548014 + 0.548014i −0.925866 0.377852i \(-0.876663\pi\)
0.377852 + 0.925866i \(0.376663\pi\)
\(72\) 0 0
\(73\) 40.3205 + 40.3205i 0.552336 + 0.552336i 0.927114 0.374779i \(-0.122281\pi\)
−0.374779 + 0.927114i \(0.622281\pi\)
\(74\) 61.7128 0.833957
\(75\) 0 0
\(76\) 22.5359 + 22.5359i 0.296525 + 0.296525i
\(77\) 9.46410i 0.122910i
\(78\) 0 0
\(79\) −148.210 −1.87608 −0.938039 0.346528i \(-0.887360\pi\)
−0.938039 + 0.346528i \(0.887360\pi\)
\(80\) 18.9282 18.9282i 0.236603 0.236603i
\(81\) 0 0
\(82\) 28.8897i 0.352314i
\(83\) −73.7987 + 73.7987i −0.889141 + 0.889141i −0.994441 0.105300i \(-0.966420\pi\)
0.105300 + 0.994441i \(0.466420\pi\)
\(84\) 0 0
\(85\) 138.746 + 138.746i 1.63231 + 1.63231i
\(86\) −25.1769 25.1769i −0.292755 0.292755i
\(87\) 0 0
\(88\) 6.92820i 0.0787296i
\(89\) −25.5167 25.5167i −0.286704 0.286704i 0.549071 0.835775i \(-0.314981\pi\)
−0.835775 + 0.549071i \(0.814981\pi\)
\(90\) 0 0
\(91\) −50.0526 4.19615i −0.550028 0.0461116i
\(92\) −58.6410 −0.637402
\(93\) 0 0
\(94\) −82.3923 −0.876514
\(95\) 106.641i 1.12254i
\(96\) 0 0
\(97\) −86.0333 + 86.0333i −0.886941 + 0.886941i −0.994228 0.107287i \(-0.965784\pi\)
0.107287 + 0.994228i \(0.465784\pi\)
\(98\) 34.0718 + 34.0718i 0.347671 + 0.347671i
\(99\) 0 0
\(100\) −39.5692 −0.395692
\(101\) 104.536i 1.03501i −0.855681 0.517504i \(-0.826861\pi\)
0.855681 0.517504i \(-0.173139\pi\)
\(102\) 0 0
\(103\) 36.6795i 0.356112i 0.984020 + 0.178056i \(0.0569808\pi\)
−0.984020 + 0.178056i \(0.943019\pi\)
\(104\) 36.6410 + 3.07180i 0.352317 + 0.0295365i
\(105\) 0 0
\(106\) 2.28719 2.28719i 0.0215772 0.0215772i
\(107\) 123.464 1.15387 0.576935 0.816790i \(-0.304249\pi\)
0.576935 + 0.816790i \(0.304249\pi\)
\(108\) 0 0
\(109\) 119.315 119.315i 1.09464 1.09464i 0.0996097 0.995027i \(-0.468241\pi\)
0.995027 0.0996097i \(-0.0317594\pi\)
\(110\) −16.3923 + 16.3923i −0.149021 + 0.149021i
\(111\) 0 0
\(112\) 10.9282 + 10.9282i 0.0975732 + 0.0975732i
\(113\) 184.277 1.63077 0.815384 0.578920i \(-0.196526\pi\)
0.815384 + 0.578920i \(0.196526\pi\)
\(114\) 0 0
\(115\) 138.746 + 138.746i 1.20649 + 1.20649i
\(116\) 63.7128i 0.549248i
\(117\) 0 0
\(118\) 109.244 0.925793
\(119\) −80.1051 + 80.1051i −0.673152 + 0.673152i
\(120\) 0 0
\(121\) 115.000i 0.950413i
\(122\) 7.42563 7.42563i 0.0608658 0.0608658i
\(123\) 0 0
\(124\) −53.9615 53.9615i −0.435174 0.435174i
\(125\) −24.6795 24.6795i −0.197436 0.197436i
\(126\) 0 0
\(127\) 173.962i 1.36978i −0.728648 0.684888i \(-0.759851\pi\)
0.728648 0.684888i \(-0.240149\pi\)
\(128\) −8.00000 8.00000i −0.0625000 0.0625000i
\(129\) 0 0
\(130\) −79.4256 93.9615i −0.610966 0.722781i
\(131\) −121.110 −0.924506 −0.462253 0.886748i \(-0.652959\pi\)
−0.462253 + 0.886748i \(0.652959\pi\)
\(132\) 0 0
\(133\) 61.5692 0.462926
\(134\) 121.387i 0.905874i
\(135\) 0 0
\(136\) 58.6410 58.6410i 0.431184 0.431184i
\(137\) 130.053 + 130.053i 0.949289 + 0.949289i 0.998775 0.0494861i \(-0.0157583\pi\)
−0.0494861 + 0.998775i \(0.515758\pi\)
\(138\) 0 0
\(139\) −27.1384 −0.195241 −0.0976203 0.995224i \(-0.531123\pi\)
−0.0976203 + 0.995224i \(0.531123\pi\)
\(140\) 51.7128i 0.369377i
\(141\) 0 0
\(142\) 77.8179i 0.548014i
\(143\) −31.7321 2.66025i −0.221902 0.0186032i
\(144\) 0 0
\(145\) 150.746 150.746i 1.03963 1.03963i
\(146\) −80.6410 −0.552336
\(147\) 0 0
\(148\) −61.7128 + 61.7128i −0.416978 + 0.416978i
\(149\) 168.224 168.224i 1.12902 1.12902i 0.138686 0.990336i \(-0.455712\pi\)
0.990336 0.138686i \(-0.0442878\pi\)
\(150\) 0 0
\(151\) −38.4064 38.4064i −0.254347 0.254347i 0.568403 0.822750i \(-0.307561\pi\)
−0.822750 + 0.568403i \(0.807561\pi\)
\(152\) −45.0718 −0.296525
\(153\) 0 0
\(154\) −9.46410 9.46410i −0.0614552 0.0614552i
\(155\) 255.349i 1.64741i
\(156\) 0 0
\(157\) −227.215 −1.44723 −0.723616 0.690203i \(-0.757521\pi\)
−0.723616 + 0.690203i \(0.757521\pi\)
\(158\) 148.210 148.210i 0.938039 0.938039i
\(159\) 0 0
\(160\) 37.8564i 0.236603i
\(161\) −80.1051 + 80.1051i −0.497547 + 0.497547i
\(162\) 0 0
\(163\) 12.4449 + 12.4449i 0.0763489 + 0.0763489i 0.744250 0.667901i \(-0.232807\pi\)
−0.667901 + 0.744250i \(0.732807\pi\)
\(164\) −28.8897 28.8897i −0.176157 0.176157i
\(165\) 0 0
\(166\) 147.597i 0.889141i
\(167\) −119.512 119.512i −0.715638 0.715638i 0.252071 0.967709i \(-0.418888\pi\)
−0.967709 + 0.252071i \(0.918888\pi\)
\(168\) 0 0
\(169\) 28.1384 166.641i 0.166500 0.986042i
\(170\) −277.492 −1.63231
\(171\) 0 0
\(172\) 50.3538 0.292755
\(173\) 69.3975i 0.401141i −0.979679 0.200571i \(-0.935720\pi\)
0.979679 0.200571i \(-0.0642796\pi\)
\(174\) 0 0
\(175\) −54.0526 + 54.0526i −0.308872 + 0.308872i
\(176\) 6.92820 + 6.92820i 0.0393648 + 0.0393648i
\(177\) 0 0
\(178\) 51.0333 0.286704
\(179\) 165.282i 0.923363i 0.887046 + 0.461682i \(0.152754\pi\)
−0.887046 + 0.461682i \(0.847246\pi\)
\(180\) 0 0
\(181\) 283.856i 1.56827i 0.620592 + 0.784134i \(0.286892\pi\)
−0.620592 + 0.784134i \(0.713108\pi\)
\(182\) 54.2487 45.8564i 0.298070 0.251958i
\(183\) 0 0
\(184\) 58.6410 58.6410i 0.318701 0.318701i
\(185\) 292.028 1.57853
\(186\) 0 0
\(187\) −50.7846 + 50.7846i −0.271575 + 0.271575i
\(188\) 82.3923 82.3923i 0.438257 0.438257i
\(189\) 0 0
\(190\) 106.641 + 106.641i 0.561269 + 0.561269i
\(191\) −9.28203 −0.0485970 −0.0242985 0.999705i \(-0.507735\pi\)
−0.0242985 + 0.999705i \(0.507735\pi\)
\(192\) 0 0
\(193\) −21.7180 21.7180i −0.112528 0.112528i 0.648601 0.761129i \(-0.275355\pi\)
−0.761129 + 0.648601i \(0.775355\pi\)
\(194\) 172.067i 0.886941i
\(195\) 0 0
\(196\) −68.1436 −0.347671
\(197\) 112.732 112.732i 0.572244 0.572244i −0.360511 0.932755i \(-0.617398\pi\)
0.932755 + 0.360511i \(0.117398\pi\)
\(198\) 0 0
\(199\) 245.100i 1.23166i −0.787880 0.615829i \(-0.788821\pi\)
0.787880 0.615829i \(-0.211179\pi\)
\(200\) 39.5692 39.5692i 0.197846 0.197846i
\(201\) 0 0
\(202\) 104.536 + 104.536i 0.517504 + 0.517504i
\(203\) 87.0333 + 87.0333i 0.428736 + 0.428736i
\(204\) 0 0
\(205\) 136.708i 0.666867i
\(206\) −36.6795 36.6795i −0.178056 0.178056i
\(207\) 0 0
\(208\) −39.7128 + 33.5692i −0.190927 + 0.161390i
\(209\) 39.0333 0.186762
\(210\) 0 0
\(211\) 345.282 1.63641 0.818204 0.574928i \(-0.194970\pi\)
0.818204 + 0.574928i \(0.194970\pi\)
\(212\) 4.57437i 0.0215772i
\(213\) 0 0
\(214\) −123.464 + 123.464i −0.576935 + 0.576935i
\(215\) −119.138 119.138i −0.554132 0.554132i
\(216\) 0 0
\(217\) −147.426 −0.679381
\(218\) 238.631i 1.09464i
\(219\) 0 0
\(220\) 32.7846i 0.149021i
\(221\) −246.067 291.100i −1.11342 1.31719i
\(222\) 0 0
\(223\) 170.588 170.588i 0.764971 0.764971i −0.212246 0.977216i \(-0.568078\pi\)
0.977216 + 0.212246i \(0.0680777\pi\)
\(224\) −21.8564 −0.0975732
\(225\) 0 0
\(226\) −184.277 + 184.277i −0.815384 + 0.815384i
\(227\) −169.368 + 169.368i −0.746114 + 0.746114i −0.973747 0.227633i \(-0.926901\pi\)
0.227633 + 0.973747i \(0.426901\pi\)
\(228\) 0 0
\(229\) 141.823 + 141.823i 0.619315 + 0.619315i 0.945356 0.326041i \(-0.105715\pi\)
−0.326041 + 0.945356i \(0.605715\pi\)
\(230\) −277.492 −1.20649
\(231\) 0 0
\(232\) −63.7128 63.7128i −0.274624 0.274624i
\(233\) 128.038i 0.549521i 0.961513 + 0.274761i \(0.0885986\pi\)
−0.961513 + 0.274761i \(0.911401\pi\)
\(234\) 0 0
\(235\) −389.885 −1.65908
\(236\) −109.244 + 109.244i −0.462896 + 0.462896i
\(237\) 0 0
\(238\) 160.210i 0.673152i
\(239\) −88.0192 + 88.0192i −0.368281 + 0.368281i −0.866850 0.498569i \(-0.833859\pi\)
0.498569 + 0.866850i \(0.333859\pi\)
\(240\) 0 0
\(241\) −147.459 147.459i −0.611863 0.611863i 0.331568 0.943431i \(-0.392422\pi\)
−0.943431 + 0.331568i \(0.892422\pi\)
\(242\) 115.000 + 115.000i 0.475207 + 0.475207i
\(243\) 0 0
\(244\) 14.8513i 0.0608658i
\(245\) 161.229 + 161.229i 0.658079 + 0.658079i
\(246\) 0 0
\(247\) −17.3064 + 206.435i −0.0700665 + 0.835767i
\(248\) 107.923 0.435174
\(249\) 0 0
\(250\) 49.3590 0.197436
\(251\) 181.377i 0.722617i 0.932446 + 0.361308i \(0.117670\pi\)
−0.932446 + 0.361308i \(0.882330\pi\)
\(252\) 0 0
\(253\) −50.7846 + 50.7846i −0.200730 + 0.200730i
\(254\) 173.962 + 173.962i 0.684888 + 0.684888i
\(255\) 0 0
\(256\) 16.0000 0.0625000
\(257\) 297.664i 1.15823i −0.815247 0.579113i \(-0.803399\pi\)
0.815247 0.579113i \(-0.196601\pi\)
\(258\) 0 0
\(259\) 168.603i 0.650975i
\(260\) 173.387 + 14.5359i 0.666874 + 0.0559073i
\(261\) 0 0
\(262\) 121.110 121.110i 0.462253 0.462253i
\(263\) −22.8897 −0.0870332 −0.0435166 0.999053i \(-0.513856\pi\)
−0.0435166 + 0.999053i \(0.513856\pi\)
\(264\) 0 0
\(265\) 10.8231 10.8231i 0.0408418 0.0408418i
\(266\) −61.5692 + 61.5692i −0.231463 + 0.231463i
\(267\) 0 0
\(268\) 121.387 + 121.387i 0.452937 + 0.452937i
\(269\) −220.774 −0.820722 −0.410361 0.911923i \(-0.634597\pi\)
−0.410361 + 0.911923i \(0.634597\pi\)
\(270\) 0 0
\(271\) 148.953 + 148.953i 0.549641 + 0.549641i 0.926337 0.376696i \(-0.122940\pi\)
−0.376696 + 0.926337i \(0.622940\pi\)
\(272\) 117.282i 0.431184i
\(273\) 0 0
\(274\) −260.105 −0.949289
\(275\) −34.2679 + 34.2679i −0.124611 + 0.124611i
\(276\) 0 0
\(277\) 27.2154i 0.0982505i −0.998793 0.0491253i \(-0.984357\pi\)
0.998793 0.0491253i \(-0.0156434\pi\)
\(278\) 27.1384 27.1384i 0.0976203 0.0976203i
\(279\) 0 0
\(280\) 51.7128 + 51.7128i 0.184689 + 0.184689i
\(281\) 51.6218 + 51.6218i 0.183707 + 0.183707i 0.792969 0.609262i \(-0.208534\pi\)
−0.609262 + 0.792969i \(0.708534\pi\)
\(282\) 0 0
\(283\) 93.8076i 0.331476i 0.986170 + 0.165738i \(0.0530006\pi\)
−0.986170 + 0.165738i \(0.946999\pi\)
\(284\) 77.8179 + 77.8179i 0.274007 + 0.274007i
\(285\) 0 0
\(286\) 34.3923 29.0718i 0.120253 0.101650i
\(287\) −78.9282 −0.275011
\(288\) 0 0
\(289\) −570.692 −1.97471
\(290\) 301.492i 1.03963i
\(291\) 0 0
\(292\) 80.6410 80.6410i 0.276168 0.276168i
\(293\) 120.042 + 120.042i 0.409701 + 0.409701i 0.881634 0.471934i \(-0.156444\pi\)
−0.471934 + 0.881634i \(0.656444\pi\)
\(294\) 0 0
\(295\) 516.946 1.75236
\(296\) 123.426i 0.416978i
\(297\) 0 0
\(298\) 336.449i 1.12902i
\(299\) −246.067 291.100i −0.822965 0.973578i
\(300\) 0 0
\(301\) 68.7846 68.7846i 0.228520 0.228520i
\(302\) 76.8128 0.254347
\(303\) 0 0
\(304\) 45.0718 45.0718i 0.148262 0.148262i
\(305\) 35.1384 35.1384i 0.115208 0.115208i
\(306\) 0 0
\(307\) 7.48849 + 7.48849i 0.0243925 + 0.0243925i 0.719198 0.694805i \(-0.244509\pi\)
−0.694805 + 0.719198i \(0.744509\pi\)
\(308\) 18.9282 0.0614552
\(309\) 0 0
\(310\) −255.349 255.349i −0.823705 0.823705i
\(311\) 289.377i 0.930472i −0.885187 0.465236i \(-0.845969\pi\)
0.885187 0.465236i \(-0.154031\pi\)
\(312\) 0 0
\(313\) 346.841 1.10812 0.554059 0.832477i \(-0.313078\pi\)
0.554059 + 0.832477i \(0.313078\pi\)
\(314\) 227.215 227.215i 0.723616 0.723616i
\(315\) 0 0
\(316\) 296.420i 0.938039i
\(317\) 97.0192 97.0192i 0.306054 0.306054i −0.537322 0.843377i \(-0.680564\pi\)
0.843377 + 0.537322i \(0.180564\pi\)
\(318\) 0 0
\(319\) 55.1769 + 55.1769i 0.172968 + 0.172968i
\(320\) −37.8564 37.8564i −0.118301 0.118301i
\(321\) 0 0
\(322\) 160.210i 0.497547i
\(323\) 330.382 + 330.382i 1.02285 + 1.02285i
\(324\) 0 0
\(325\) −166.038 196.426i −0.510888 0.604387i
\(326\) −24.8897 −0.0763489
\(327\) 0 0
\(328\) 57.7795 0.176157
\(329\) 225.100i 0.684194i
\(330\) 0 0
\(331\) −126.130 + 126.130i −0.381056 + 0.381056i −0.871483 0.490427i \(-0.836841\pi\)
0.490427 + 0.871483i \(0.336841\pi\)
\(332\) 147.597 + 147.597i 0.444570 + 0.444570i
\(333\) 0 0
\(334\) 239.023 0.715638
\(335\) 574.410i 1.71466i
\(336\) 0 0
\(337\) 423.061i 1.25538i 0.778465 + 0.627688i \(0.215998\pi\)
−0.778465 + 0.627688i \(0.784002\pi\)
\(338\) 138.503 + 194.779i 0.409771 + 0.576271i
\(339\) 0 0
\(340\) 277.492 277.492i 0.816154 0.816154i
\(341\) −93.4641 −0.274088
\(342\) 0 0
\(343\) −226.956 + 226.956i −0.661680 + 0.661680i
\(344\) −50.3538 + 50.3538i −0.146377 + 0.146377i
\(345\) 0 0
\(346\) 69.3975 + 69.3975i 0.200571 + 0.200571i
\(347\) 191.867 0.552930 0.276465 0.961024i \(-0.410837\pi\)
0.276465 + 0.961024i \(0.410837\pi\)
\(348\) 0 0
\(349\) 36.7898 + 36.7898i 0.105415 + 0.105415i 0.757847 0.652432i \(-0.226251\pi\)
−0.652432 + 0.757847i \(0.726251\pi\)
\(350\) 108.105i 0.308872i
\(351\) 0 0
\(352\) −13.8564 −0.0393648
\(353\) −117.870 + 117.870i −0.333911 + 0.333911i −0.854070 0.520159i \(-0.825873\pi\)
0.520159 + 0.854070i \(0.325873\pi\)
\(354\) 0 0
\(355\) 368.238i 1.03729i
\(356\) −51.0333 + 51.0333i −0.143352 + 0.143352i
\(357\) 0 0
\(358\) −165.282 165.282i −0.461682 0.461682i
\(359\) −13.1192 13.1192i −0.0365437 0.0365437i 0.688599 0.725143i \(-0.258226\pi\)
−0.725143 + 0.688599i \(0.758226\pi\)
\(360\) 0 0
\(361\) 107.067i 0.296583i
\(362\) −283.856 283.856i −0.784134 0.784134i
\(363\) 0 0
\(364\) −8.39230 + 100.105i −0.0230558 + 0.275014i
\(365\) −381.597 −1.04547
\(366\) 0 0
\(367\) −600.708 −1.63681 −0.818403 0.574645i \(-0.805140\pi\)
−0.818403 + 0.574645i \(0.805140\pi\)
\(368\) 117.282i 0.318701i
\(369\) 0 0
\(370\) −292.028 + 292.028i −0.789265 + 0.789265i
\(371\) 6.24871 + 6.24871i 0.0168429 + 0.0168429i
\(372\) 0 0
\(373\) 671.836 1.80117 0.900584 0.434682i \(-0.143139\pi\)
0.900584 + 0.434682i \(0.143139\pi\)
\(374\) 101.569i 0.271575i
\(375\) 0 0
\(376\) 164.785i 0.438257i
\(377\) −316.277 + 267.349i −0.838931 + 0.709148i
\(378\) 0 0
\(379\) 158.799 158.799i 0.418994 0.418994i −0.465863 0.884857i \(-0.654256\pi\)
0.884857 + 0.465863i \(0.154256\pi\)
\(380\) −213.282 −0.561269
\(381\) 0 0
\(382\) 9.28203 9.28203i 0.0242985 0.0242985i
\(383\) −233.445 + 233.445i −0.609517 + 0.609517i −0.942820 0.333303i \(-0.891837\pi\)
0.333303 + 0.942820i \(0.391837\pi\)
\(384\) 0 0
\(385\) −44.7846 44.7846i −0.116324 0.116324i
\(386\) 43.4359 0.112528
\(387\) 0 0
\(388\) 172.067 + 172.067i 0.443471 + 0.443471i
\(389\) 27.6950i 0.0711953i 0.999366 + 0.0355976i \(0.0113335\pi\)
−0.999366 + 0.0355976i \(0.988667\pi\)
\(390\) 0 0
\(391\) −859.692 −2.19870
\(392\) 68.1436 68.1436i 0.173836 0.173836i
\(393\) 0 0
\(394\) 225.464i 0.572244i
\(395\) 701.338 701.338i 1.77554 1.77554i
\(396\) 0 0
\(397\) −398.692 398.692i −1.00426 1.00426i −0.999991 0.00427158i \(-0.998640\pi\)
−0.00427158 0.999991i \(-0.501360\pi\)
\(398\) 245.100 + 245.100i 0.615829 + 0.615829i
\(399\) 0 0
\(400\) 79.1384i 0.197846i
\(401\) 139.450 + 139.450i 0.347756 + 0.347756i 0.859273 0.511517i \(-0.170916\pi\)
−0.511517 + 0.859273i \(0.670916\pi\)
\(402\) 0 0
\(403\) 41.4397 494.301i 0.102828 1.22655i
\(404\) −209.072 −0.517504
\(405\) 0 0
\(406\) −174.067 −0.428736
\(407\) 106.890i 0.262628i
\(408\) 0 0
\(409\) 401.813 401.813i 0.982427 0.982427i −0.0174209 0.999848i \(-0.505546\pi\)
0.999848 + 0.0174209i \(0.00554553\pi\)
\(410\) −136.708 136.708i −0.333433 0.333433i
\(411\) 0 0
\(412\) 73.3590 0.178056
\(413\) 298.459i 0.722661i
\(414\) 0 0
\(415\) 698.438i 1.68298i
\(416\) 6.14359 73.2820i 0.0147683 0.176159i
\(417\) 0 0
\(418\) −39.0333 + 39.0333i −0.0933812 + 0.0933812i
\(419\) −139.177 −0.332164 −0.166082 0.986112i \(-0.553112\pi\)
−0.166082 + 0.986112i \(0.553112\pi\)
\(420\) 0 0
\(421\) 360.244 360.244i 0.855685 0.855685i −0.135141 0.990826i \(-0.543149\pi\)
0.990826 + 0.135141i \(0.0431487\pi\)
\(422\) −345.282 + 345.282i −0.818204 + 0.818204i
\(423\) 0 0
\(424\) −4.57437 4.57437i −0.0107886 0.0107886i
\(425\) −580.095 −1.36493
\(426\) 0 0
\(427\) 20.2872 + 20.2872i 0.0475110 + 0.0475110i
\(428\) 246.928i 0.576935i
\(429\) 0 0
\(430\) 238.277 0.554132
\(431\) −213.522 + 213.522i −0.495410 + 0.495410i −0.910006 0.414596i \(-0.863923\pi\)
0.414596 + 0.910006i \(0.363923\pi\)
\(432\) 0 0
\(433\) 446.708i 1.03166i −0.856692 0.515829i \(-0.827484\pi\)
0.856692 0.515829i \(-0.172516\pi\)
\(434\) 147.426 147.426i 0.339690 0.339690i
\(435\) 0 0
\(436\) −238.631 238.631i −0.547318 0.547318i
\(437\) 330.382 + 330.382i 0.756023 + 0.756023i
\(438\) 0 0
\(439\) 164.238i 0.374119i −0.982349 0.187060i \(-0.940104\pi\)
0.982349 0.187060i \(-0.0598958\pi\)
\(440\) 32.7846 + 32.7846i 0.0745105 + 0.0745105i
\(441\) 0 0
\(442\) 537.167 + 45.0333i 1.21531 + 0.101885i
\(443\) 458.736 1.03552 0.517761 0.855526i \(-0.326766\pi\)
0.517761 + 0.855526i \(0.326766\pi\)
\(444\) 0 0
\(445\) 241.492 0.542679
\(446\) 341.177i 0.764971i
\(447\) 0 0
\(448\) 21.8564 21.8564i 0.0487866 0.0487866i
\(449\) −221.776 221.776i −0.493932 0.493932i 0.415610 0.909543i \(-0.363568\pi\)
−0.909543 + 0.415610i \(0.863568\pi\)
\(450\) 0 0
\(451\) −50.0385 −0.110950
\(452\) 368.554i 0.815384i
\(453\) 0 0
\(454\) 338.736i 0.746114i
\(455\) 256.708 216.995i 0.564193 0.476912i
\(456\) 0 0
\(457\) 52.9615 52.9615i 0.115890 0.115890i −0.646784 0.762673i \(-0.723886\pi\)
0.762673 + 0.646784i \(0.223886\pi\)
\(458\) −283.646 −0.619315
\(459\) 0 0
\(460\) 277.492 277.492i 0.603244 0.603244i
\(461\) −67.4500 + 67.4500i −0.146312 + 0.146312i −0.776468 0.630156i \(-0.782991\pi\)
0.630156 + 0.776468i \(0.282991\pi\)
\(462\) 0 0
\(463\) 549.247 + 549.247i 1.18628 + 1.18628i 0.978088 + 0.208191i \(0.0667576\pi\)
0.208191 + 0.978088i \(0.433242\pi\)
\(464\) 127.426 0.274624
\(465\) 0 0
\(466\) −128.038 128.038i −0.274761 0.274761i
\(467\) 30.1821i 0.0646297i −0.999478 0.0323148i \(-0.989712\pi\)
0.999478 0.0323148i \(-0.0102879\pi\)
\(468\) 0 0
\(469\) 331.636 0.707113
\(470\) 389.885 389.885i 0.829542 0.829542i
\(471\) 0 0
\(472\) 218.487i 0.462896i
\(473\) 43.6077 43.6077i 0.0921939 0.0921939i
\(474\) 0 0
\(475\) 222.932 + 222.932i 0.469330 + 0.469330i
\(476\) 160.210 + 160.210i 0.336576 + 0.336576i
\(477\) 0 0
\(478\) 176.038i 0.368281i
\(479\) 258.870 + 258.870i 0.540439 + 0.540439i 0.923658 0.383218i \(-0.125184\pi\)
−0.383218 + 0.923658i \(0.625184\pi\)
\(480\) 0 0
\(481\) −565.305 47.3923i −1.17527 0.0985287i
\(482\) 294.918 0.611863
\(483\) 0 0
\(484\) −230.000 −0.475207
\(485\) 814.228i 1.67882i
\(486\) 0 0
\(487\) −274.560 + 274.560i −0.563779 + 0.563779i −0.930379 0.366600i \(-0.880522\pi\)
0.366600 + 0.930379i \(0.380522\pi\)
\(488\) −14.8513 14.8513i −0.0304329 0.0304329i
\(489\) 0 0
\(490\) −322.459 −0.658079
\(491\) 220.726i 0.449543i 0.974412 + 0.224771i \(0.0721635\pi\)
−0.974412 + 0.224771i \(0.927836\pi\)
\(492\) 0 0
\(493\) 934.046i 1.89462i
\(494\) −189.128 223.741i −0.382850 0.452917i
\(495\) 0 0
\(496\) −107.923 + 107.923i −0.217587 + 0.217587i
\(497\) 212.603 0.427772
\(498\) 0 0
\(499\) −625.065 + 625.065i −1.25264 + 1.25264i −0.298102 + 0.954534i \(0.596353\pi\)
−0.954534 + 0.298102i \(0.903647\pi\)
\(500\) −49.3590 + 49.3590i −0.0987180 + 0.0987180i
\(501\) 0 0
\(502\) −181.377 181.377i −0.361308 0.361308i
\(503\) 696.018 1.38373 0.691867 0.722025i \(-0.256789\pi\)
0.691867 + 0.722025i \(0.256789\pi\)
\(504\) 0 0
\(505\) 494.669 + 494.669i 0.979543 + 0.979543i
\(506\) 101.569i 0.200730i
\(507\) 0 0
\(508\) −347.923 −0.684888
\(509\) −401.678 + 401.678i −0.789151 + 0.789151i −0.981355 0.192204i \(-0.938437\pi\)
0.192204 + 0.981355i \(0.438437\pi\)
\(510\) 0 0
\(511\) 220.315i 0.431146i
\(512\) −16.0000 + 16.0000i −0.0312500 + 0.0312500i
\(513\) 0 0
\(514\) 297.664 + 297.664i 0.579113 + 0.579113i
\(515\) −173.569 173.569i −0.337028 0.337028i
\(516\) 0 0
\(517\) 142.708i 0.276030i
\(518\) −168.603 168.603i −0.325488 0.325488i
\(519\) 0 0
\(520\) −187.923 + 158.851i −0.361390 + 0.305483i
\(521\) 602.651 1.15672 0.578360 0.815782i \(-0.303693\pi\)
0.578360 + 0.815782i \(0.303693\pi\)
\(522\) 0 0
\(523\) 854.677 1.63418 0.817091 0.576509i \(-0.195586\pi\)
0.817091 + 0.576509i \(0.195586\pi\)
\(524\) 242.221i 0.462253i
\(525\) 0 0
\(526\) 22.8897 22.8897i 0.0435166 0.0435166i
\(527\) −791.090 791.090i −1.50112 1.50112i
\(528\) 0 0
\(529\) −330.692 −0.625127
\(530\) 21.6462i 0.0408418i
\(531\) 0 0
\(532\) 123.138i 0.231463i
\(533\) 22.1858 264.637i 0.0416245 0.496505i
\(534\) 0 0
\(535\) −584.238 + 584.238i −1.09203 + 1.09203i
\(536\) −242.774 −0.452937
\(537\) 0 0
\(538\) 220.774 220.774i 0.410361 0.410361i
\(539\) −59.0141 + 59.0141i −0.109488 + 0.109488i
\(540\) 0 0
\(541\) −344.244 344.244i −0.636310 0.636310i 0.313333 0.949643i \(-0.398554\pi\)
−0.949643 + 0.313333i \(0.898554\pi\)
\(542\) −297.905 −0.549641
\(543\) 0 0
\(544\) −117.282 117.282i −0.215592 0.215592i
\(545\) 1129.21i 2.07195i
\(546\) 0 0
\(547\) 842.200 1.53967 0.769835 0.638242i \(-0.220338\pi\)
0.769835 + 0.638242i \(0.220338\pi\)
\(548\) 260.105 260.105i 0.474644 0.474644i
\(549\) 0 0
\(550\) 68.5359i 0.124611i
\(551\) 358.956 358.956i 0.651463 0.651463i
\(552\) 0 0
\(553\) 404.918 + 404.918i 0.732220 + 0.732220i
\(554\) 27.2154 + 27.2154i 0.0491253 + 0.0491253i
\(555\) 0 0
\(556\) 54.2769i 0.0976203i
\(557\) −99.2576 99.2576i −0.178200 0.178200i 0.612370 0.790571i \(-0.290216\pi\)
−0.790571 + 0.612370i \(0.790216\pi\)
\(558\) 0 0
\(559\) 211.292 + 249.962i 0.377983 + 0.447158i
\(560\) −103.426 −0.184689
\(561\) 0 0
\(562\) −103.244 −0.183707
\(563\) 647.174i 1.14951i 0.818326 + 0.574755i \(0.194903\pi\)
−0.818326 + 0.574755i \(0.805097\pi\)
\(564\) 0 0
\(565\) −872.008 + 872.008i −1.54338 + 1.54338i
\(566\) −93.8076 93.8076i −0.165738 0.165738i
\(567\) 0 0
\(568\) −155.636 −0.274007
\(569\) 701.223i 1.23238i 0.787598 + 0.616189i \(0.211324\pi\)
−0.787598 + 0.616189i \(0.788676\pi\)
\(570\) 0 0
\(571\) 218.746i 0.383093i −0.981484 0.191547i \(-0.938650\pi\)
0.981484 0.191547i \(-0.0613503\pi\)
\(572\) −5.32051 + 63.4641i −0.00930159 + 0.110951i
\(573\) 0 0
\(574\) 78.9282 78.9282i 0.137506 0.137506i
\(575\) −580.095 −1.00886
\(576\) 0 0
\(577\) −12.3590 + 12.3590i −0.0214194 + 0.0214194i −0.717735 0.696316i \(-0.754821\pi\)
0.696316 + 0.717735i \(0.254821\pi\)
\(578\) 570.692 570.692i 0.987357 0.987357i
\(579\) 0 0
\(580\) −301.492 301.492i −0.519814 0.519814i
\(581\) 403.244 0.694051
\(582\) 0 0
\(583\) 3.96152 + 3.96152i 0.00679507 + 0.00679507i
\(584\) 161.282i 0.276168i
\(585\) 0 0
\(586\) −240.084 −0.409701
\(587\) 106.219 106.219i 0.180953 0.180953i −0.610818 0.791771i \(-0.709159\pi\)
0.791771 + 0.610818i \(0.209159\pi\)
\(588\) 0 0
\(589\) 608.036i 1.03232i
\(590\) −516.946 + 516.946i −0.876180 + 0.876180i
\(591\) 0 0
\(592\) 123.426 + 123.426i 0.208489 + 0.208489i
\(593\) −770.645 770.645i −1.29957 1.29957i −0.928675 0.370895i \(-0.879051\pi\)
−0.370895 0.928675i \(-0.620949\pi\)
\(594\) 0 0
\(595\) 758.123i 1.27416i
\(596\) −336.449 336.449i −0.564511 0.564511i
\(597\) 0 0
\(598\) 537.167 + 45.0333i 0.898272 + 0.0753066i
\(599\) 130.392 0.217683 0.108842 0.994059i \(-0.465286\pi\)
0.108842 + 0.994059i \(0.465286\pi\)
\(600\) 0 0
\(601\) −551.108 −0.916984 −0.458492 0.888698i \(-0.651610\pi\)
−0.458492 + 0.888698i \(0.651610\pi\)
\(602\) 137.569i 0.228520i
\(603\) 0 0
\(604\) −76.8128 + 76.8128i −0.127173 + 0.127173i
\(605\) 544.186 + 544.186i 0.899481 + 0.899481i
\(606\) 0 0
\(607\) 63.6001 0.104778 0.0523889 0.998627i \(-0.483316\pi\)
0.0523889 + 0.998627i \(0.483316\pi\)
\(608\) 90.1436i 0.148262i
\(609\) 0 0
\(610\) 70.2769i 0.115208i
\(611\) 754.734 + 63.2731i 1.23524 + 0.103557i
\(612\) 0 0
\(613\) −26.3487 + 26.3487i −0.0429832 + 0.0429832i −0.728272 0.685289i \(-0.759676\pi\)
0.685289 + 0.728272i \(0.259676\pi\)
\(614\) −14.9770 −0.0243925
\(615\) 0 0
\(616\) −18.9282 + 18.9282i −0.0307276 + 0.0307276i
\(617\) −375.391 + 375.391i −0.608413 + 0.608413i −0.942531 0.334118i \(-0.891562\pi\)
0.334118 + 0.942531i \(0.391562\pi\)
\(618\) 0 0
\(619\) 264.070 + 264.070i 0.426608 + 0.426608i 0.887471 0.460863i \(-0.152460\pi\)
−0.460863 + 0.887471i \(0.652460\pi\)
\(620\) 510.697 0.823705
\(621\) 0 0
\(622\) 289.377 + 289.377i 0.465236 + 0.465236i
\(623\) 139.426i 0.223797i
\(624\) 0 0
\(625\) 728.184 1.16510
\(626\) −346.841 + 346.841i −0.554059 + 0.554059i
\(627\) 0 0
\(628\) 454.431i 0.723616i
\(629\) −904.726 + 904.726i −1.43836 + 1.43836i
\(630\) 0 0
\(631\) −441.594 441.594i −0.699831 0.699831i 0.264543 0.964374i \(-0.414779\pi\)
−0.964374 + 0.264543i \(0.914779\pi\)
\(632\) −296.420 296.420i −0.469020 0.469020i
\(633\) 0 0
\(634\) 194.038i 0.306054i
\(635\) 823.195 + 823.195i 1.29637 + 1.29637i
\(636\) 0 0
\(637\) −285.941 338.272i −0.448887 0.531039i
\(638\) −110.354 −0.172968
\(639\) 0 0
\(640\) 75.7128 0.118301
\(641\) 829.910i 1.29471i −0.762188 0.647356i \(-0.775875\pi\)
0.762188 0.647356i \(-0.224125\pi\)
\(642\) 0 0
\(643\) 424.196 424.196i 0.659714 0.659714i −0.295598 0.955312i \(-0.595519\pi\)
0.955312 + 0.295598i \(0.0955190\pi\)
\(644\) 160.210 + 160.210i 0.248774 + 0.248774i
\(645\) 0 0
\(646\) −660.764 −1.02285
\(647\) 477.913i 0.738660i 0.929298 + 0.369330i \(0.120413\pi\)
−0.929298 + 0.369330i \(0.879587\pi\)
\(648\) 0 0
\(649\) 189.215i 0.291549i
\(650\) 362.464 + 30.3872i 0.557637 + 0.0467495i
\(651\) 0 0
\(652\) 24.8897 24.8897i 0.0381744 0.0381744i
\(653\) 243.380 0.372710 0.186355 0.982482i \(-0.440333\pi\)
0.186355 + 0.982482i \(0.440333\pi\)
\(654\) 0 0
\(655\) 573.100 573.100i 0.874962 0.874962i
\(656\) −57.7795 + 57.7795i −0.0880784 + 0.0880784i
\(657\) 0 0
\(658\) 225.100 + 225.100i 0.342097 + 0.342097i
\(659\) 190.677 0.289343 0.144671 0.989480i \(-0.453788\pi\)
0.144671 + 0.989480i \(0.453788\pi\)
\(660\) 0 0
\(661\) −446.149 446.149i −0.674960 0.674960i 0.283895 0.958855i \(-0.408373\pi\)
−0.958855 + 0.283895i \(0.908373\pi\)
\(662\) 252.259i 0.381056i
\(663\) 0 0
\(664\) −295.195 −0.444570
\(665\) −291.349 + 291.349i −0.438118 + 0.438118i
\(666\) 0 0
\(667\) 934.046i 1.40037i
\(668\) −239.023 + 239.023i −0.357819 + 0.357819i
\(669\) 0 0
\(670\) 574.410 + 574.410i 0.857329 + 0.857329i
\(671\) 12.8616 + 12.8616i 0.0191678 + 0.0191678i
\(672\) 0 0
\(673\) 176.221i 0.261843i 0.991393 + 0.130922i \(0.0417936\pi\)
−0.991393 + 0.130922i \(0.958206\pi\)
\(674\) −423.061 423.061i −0.627688 0.627688i
\(675\) 0 0
\(676\) −333.282 56.2769i −0.493021 0.0832498i
\(677\) −672.600 −0.993500 −0.496750 0.867894i \(-0.665473\pi\)
−0.496750 + 0.867894i \(0.665473\pi\)
\(678\) 0 0
\(679\) 470.095 0.692334
\(680\) 554.985i 0.816154i
\(681\) 0 0
\(682\) 93.4641 93.4641i 0.137044 0.137044i
\(683\) −306.191 306.191i −0.448303 0.448303i 0.446487 0.894790i \(-0.352675\pi\)
−0.894790 + 0.446487i \(0.852675\pi\)
\(684\) 0 0
\(685\) −1230.83 −1.79683
\(686\) 453.913i 0.661680i
\(687\) 0 0
\(688\) 100.708i 0.146377i
\(689\) −22.7077 + 19.1948i −0.0329574 + 0.0278589i
\(690\) 0 0
\(691\) −474.865 + 474.865i −0.687215 + 0.687215i −0.961615 0.274401i \(-0.911521\pi\)
0.274401 + 0.961615i \(0.411521\pi\)
\(692\) −138.795 −0.200571
\(693\) 0 0
\(694\) −191.867 + 191.867i −0.276465 + 0.276465i
\(695\) 128.420 128.420i 0.184778 0.184778i
\(696\) 0 0
\(697\) −423.531 423.531i −0.607648 0.607648i
\(698\) −73.5795 −0.105415
\(699\) 0 0
\(700\) 108.105 + 108.105i 0.154436 + 0.154436i
\(701\) 204.480i 0.291697i 0.989307 + 0.145848i \(0.0465912\pi\)
−0.989307 + 0.145848i \(0.953409\pi\)
\(702\) 0 0
\(703\) 695.377 0.989156
\(704\) 13.8564 13.8564i 0.0196824 0.0196824i
\(705\) 0 0
\(706\) 235.741i 0.333911i
\(707\) −285.597 + 285.597i −0.403957 + 0.403957i
\(708\) 0 0
\(709\) −629.018 629.018i −0.887190 0.887190i 0.107062 0.994252i \(-0.465856\pi\)
−0.994252 + 0.107062i \(0.965856\pi\)
\(710\) 368.238 + 368.238i 0.518646 + 0.518646i
\(711\) 0 0
\(712\) 102.067i 0.143352i
\(713\) −791.090 791.090i −1.10952 1.10952i
\(714\) 0 0
\(715\) 162.746 137.569i 0.227617 0.192405i
\(716\) 330.564 0.461682
\(717\) 0 0
\(718\) 26.2384 0.0365437
\(719\) 863.290i 1.20068i −0.799745 0.600340i \(-0.795032\pi\)
0.799745 0.600340i \(-0.204968\pi\)
\(720\) 0 0
\(721\) 100.210 100.210i 0.138988 0.138988i
\(722\) −107.067 107.067i −0.148292 0.148292i
\(723\) 0 0
\(724\) 567.713 0.784134
\(725\) 630.267i 0.869333i
\(726\) 0 0
\(727\) 605.577i 0.832980i −0.909140 0.416490i \(-0.863260\pi\)
0.909140 0.416490i \(-0.136740\pi\)
\(728\) −91.7128 108.497i −0.125979 0.149035i
\(729\) 0 0
\(730\) 381.597 381.597i 0.522736 0.522736i
\(731\) 738.200 1.00985
\(732\) 0 0
\(733\) 205.946 205.946i 0.280963 0.280963i −0.552530 0.833493i \(-0.686337\pi\)
0.833493 + 0.552530i \(0.186337\pi\)
\(734\) 600.708 600.708i 0.818403 0.818403i
\(735\) 0 0
\(736\) −117.282 117.282i −0.159351 0.159351i
\(737\) 210.249 0.285276
\(738\) 0 0
\(739\) −58.7884 58.7884i −0.0795513 0.0795513i 0.666212 0.745763i \(-0.267915\pi\)
−0.745763 + 0.666212i \(0.767915\pi\)
\(740\) 584.056i 0.789265i
\(741\) 0 0
\(742\) −12.4974 −0.0168429
\(743\) 885.509 885.509i 1.19180 1.19180i 0.215241 0.976561i \(-0.430946\pi\)
0.976561 0.215241i \(-0.0690536\pi\)
\(744\) 0 0
\(745\) 1592.09i 2.13704i
\(746\) −671.836 + 671.836i −0.900584 + 0.900584i
\(747\) 0 0
\(748\) 101.569 + 101.569i 0.135788 + 0.135788i
\(749\) −337.310 337.310i −0.450347 0.450347i
\(750\) 0 0
\(751\) 19.5720i 0.0260612i 0.999915 + 0.0130306i \(0.00414789\pi\)
−0.999915 + 0.0130306i \(0.995852\pi\)
\(752\) −164.785 164.785i −0.219128 0.219128i
\(753\) 0 0
\(754\) 48.9282 583.626i 0.0648915 0.774039i
\(755\) 363.482 0.481433
\(756\) 0 0
\(757\) 677.836 0.895424 0.447712 0.894178i \(-0.352239\pi\)
0.447712 + 0.894178i \(0.352239\pi\)
\(758\) 317.597i 0.418994i
\(759\) 0 0
\(760\) 213.282 213.282i 0.280634 0.280634i
\(761\) 62.4449 + 62.4449i 0.0820563 + 0.0820563i 0.746944 0.664887i \(-0.231520\pi\)
−0.664887 + 0.746944i \(0.731520\pi\)
\(762\) 0 0
\(763\) −651.951 −0.854458
\(764\) 18.5641i 0.0242985i
\(765\) 0 0
\(766\) 466.890i 0.609517i
\(767\) −1000.70 83.8935i −1.30469 0.109379i
\(768\) 0 0
\(769\) −71.5950 + 71.5950i −0.0931014 + 0.0931014i −0.752124 0.659022i \(-0.770970\pi\)
0.659022 + 0.752124i \(0.270970\pi\)
\(770\) 89.5692 0.116324
\(771\) 0 0
\(772\) −43.4359 + 43.4359i −0.0562642 + 0.0562642i
\(773\) 778.817 778.817i 1.00752 1.00752i 0.00755317 0.999971i \(-0.497596\pi\)
0.999971 0.00755317i \(-0.00240427\pi\)
\(774\) 0 0
\(775\) −533.804 533.804i −0.688779 0.688779i
\(776\) −344.133 −0.443471
\(777\) 0 0
\(778\) −27.6950 27.6950i −0.0355976 0.0355976i
\(779\) 325.528i 0.417879i
\(780\) 0 0
\(781\) 134.785 0.172580
\(782\) 859.692 859.692i 1.09935 1.09935i
\(783\) 0 0
\(784\) 136.287i 0.173836i
\(785\) 1075.19 1075.19i 1.36967 1.36967i
\(786\) 0 0
\(787\) 548.883 + 548.883i 0.697437 + 0.697437i 0.963857 0.266420i \(-0.0858407\pi\)
−0.266420 + 0.963857i \(0.585841\pi\)
\(788\) −225.464 225.464i −0.286122 0.286122i
\(789\) 0 0
\(790\) 1402.68i 1.77554i
\(791\) −503.454 503.454i −0.636478 0.636478i
\(792\) 0 0
\(793\) −73.7231 + 62.3181i −0.0929674 + 0.0785853i
\(794\) 797.384 1.00426
\(795\) 0 0
\(796\) −490.200 −0.615829
\(797\) 41.5871i 0.0521795i −0.999660 0.0260898i \(-0.991694\pi\)
0.999660 0.0260898i \(-0.00830557\pi\)
\(798\) 0 0
\(799\) 1207.89 1207.89i 1.51175 1.51175i
\(800\) −79.1384 79.1384i −0.0989230 0.0989230i
\(801\) 0 0
\(802\) −278.900 −0.347756
\(803\) 139.674i 0.173941i
\(804\) 0 0
\(805\) 758.123i 0.941768i
\(806\) 452.862 + 535.741i 0.561863 + 0.664691i
\(807\) 0 0
\(808\) 209.072 209.072i 0.258752 0.258752i
\(809\) 1338.40 1.65439 0.827194 0.561916i \(-0.189936\pi\)
0.827194 + 0.561916i \(0.189936\pi\)
\(810\) 0 0
\(811\) 257.258 257.258i 0.317210 0.317210i −0.530484 0.847695i \(-0.677990\pi\)
0.847695 + 0.530484i \(0.177990\pi\)
\(812\) 174.067 174.067i 0.214368 0.214368i
\(813\) 0 0
\(814\) −106.890 106.890i −0.131314 0.131314i
\(815\) −117.779 −0.144515
\(816\) 0 0
\(817\) −283.692 283.692i −0.347236 0.347236i
\(818\) 803.626i 0.982427i
\(819\) 0 0
\(820\) 273.415 0.333433
\(821\) 306.873 306.873i 0.373779 0.373779i −0.495072 0.868852i \(-0.664858\pi\)
0.868852 + 0.495072i \(0.164858\pi\)
\(822\) 0 0
\(823\) 1037.92i 1.26114i −0.776131 0.630571i \(-0.782821\pi\)
0.776131 0.630571i \(-0.217179\pi\)
\(824\) −73.3590 + 73.3590i −0.0890279 + 0.0890279i
\(825\) 0 0
\(826\) −298.459 298.459i −0.361330 0.361330i
\(827\) −658.153 658.153i −0.795831 0.795831i 0.186604 0.982435i \(-0.440252\pi\)
−0.982435 + 0.186604i \(0.940252\pi\)
\(828\) 0 0
\(829\) 372.354i 0.449160i −0.974456 0.224580i \(-0.927899\pi\)
0.974456 0.224580i \(-0.0721010\pi\)
\(830\) 698.438 + 698.438i 0.841492 + 0.841492i
\(831\) 0 0
\(832\) 67.1384 + 79.4256i 0.0806952 + 0.0954635i
\(833\) −999.002 −1.19928
\(834\) 0 0
\(835\) 1131.07 1.35457
\(836\) 78.0666i 0.0933812i
\(837\) 0 0
\(838\) 139.177 139.177i 0.166082 0.166082i
\(839\) −1018.87 1018.87i −1.21438 1.21438i −0.969570 0.244813i \(-0.921273\pi\)
−0.244813 0.969570i \(-0.578727\pi\)
\(840\) 0 0
\(841\) 173.831 0.206695
\(842\) 720.487i 0.855685i
\(843\) 0 0
\(844\) 690.564i 0.818204i
\(845\) 655.401 + 921.706i 0.775623 + 1.09078i
\(846\) 0 0
\(847\) −314.186 + 314.186i −0.370940 + 0.370940i
\(848\) 9.14875 0.0107886
\(849\) 0 0
\(850\) 580.095 580.095i 0.682464 0.682464i
\(851\) −904.726 + 904.726i −1.06313 + 1.06313i
\(852\) 0 0
\(853\) −366.790 366.790i −0.430000 0.430000i 0.458628 0.888628i \(-0.348341\pi\)
−0.888628 + 0.458628i \(0.848341\pi\)
\(854\) −40.5744 −0.0475110
\(855\) 0 0
\(856\) 246.928 + 246.928i 0.288468 + 0.288468i
\(857\) 469.244i 0.547542i −0.961795 0.273771i \(-0.911729\pi\)
0.961795 0.273771i \(-0.0882711\pi\)
\(858\) 0 0
\(859\) −1238.66 −1.44197 −0.720987 0.692948i \(-0.756311\pi\)
−0.720987 + 0.692948i \(0.756311\pi\)
\(860\) −238.277 + 238.277i −0.277066 + 0.277066i
\(861\) 0 0
\(862\) 427.044i 0.495410i
\(863\) 5.71143 5.71143i 0.00661811 0.00661811i −0.703790 0.710408i \(-0.748510\pi\)
0.710408 + 0.703790i \(0.248510\pi\)
\(864\) 0 0
\(865\) 328.392 + 328.392i 0.379644 + 0.379644i
\(866\) 446.708 + 446.708i 0.515829 + 0.515829i
\(867\) 0 0
\(868\) 294.851i 0.339690i
\(869\) 256.708 + 256.708i 0.295406 + 0.295406i
\(870\) 0 0
\(871\) −93.2192 + 1111.94i −0.107025 + 1.27662i
\(872\) 477.261 0.547318
\(873\) 0 0
\(874\) −660.764 −0.756023
\(875\) 134.851i 0.154116i
\(876\) 0 0
\(877\) 591.287 591.287i 0.674216 0.674216i −0.284469 0.958685i \(-0.591817\pi\)
0.958685 + 0.284469i \(0.0918174\pi\)
\(878\) 164.238 + 164.238i 0.187060 + 0.187060i
\(879\) 0 0
\(880\) −65.5692 −0.0745105
\(881\) 663.997i 0.753686i −0.926277 0.376843i \(-0.877010\pi\)
0.926277 0.376843i \(-0.122990\pi\)
\(882\) 0 0
\(883\) 570.192i 0.645744i −0.946443 0.322872i \(-0.895352\pi\)
0.946443 0.322872i \(-0.104648\pi\)
\(884\) −582.200 + 492.133i −0.658597 + 0.556712i
\(885\) 0 0
\(886\) −458.736 + 458.736i −0.517761 + 0.517761i
\(887\) −481.031 −0.542312 −0.271156 0.962535i \(-0.587406\pi\)
−0.271156 + 0.962535i \(0.587406\pi\)
\(888\) 0 0
\(889\) −475.272 + 475.272i −0.534614 + 0.534614i
\(890\) −241.492 + 241.492i −0.271340 + 0.271340i
\(891\) 0 0
\(892\) −341.177 341.177i −0.382485 0.382485i
\(893\) −928.392 −1.03963
\(894\) 0 0
\(895\) −782.123 782.123i −0.873880 0.873880i
\(896\) 43.7128i 0.0487866i
\(897\) 0 0
\(898\) 443.551 0.493932
\(899\) −859.510 + 859.510i −0.956074 + 0.956074i
\(900\) 0 0
\(901\) 67.0615i 0.0744301i
\(902\) 50.0385 50.0385i 0.0554750 0.0554750i
\(903\) 0 0
\(904\) 368.554 + 368.554i 0.407692 + 0.407692i
\(905\) −1343.22 1343.22i −1.48422 1.48422i
\(906\) 0 0
\(907\) 193.331i 0.213154i 0.994304 + 0.106577i \(0.0339891\pi\)
−0.994304 + 0.106577i \(0.966011\pi\)
\(908\) 338.736 + 338.736i 0.373057 + 0.373057i
\(909\) 0 0
\(910\) −39.7128 + 473.703i −0.0436405 + 0.520552i
\(911\) 868.743 0.953615 0.476808 0.879008i \(-0.341794\pi\)
0.476808 + 0.879008i \(0.341794\pi\)
\(912\) 0 0
\(913\) 255.646 0.280007
\(914\) 105.923i 0.115890i
\(915\) 0 0
\(916\) 283.646 283.646i 0.309657 0.309657i
\(917\) 330.879 + 330.879i 0.360828 + 0.360828i
\(918\) 0 0
\(919\) 389.108 0.423403 0.211702 0.977334i \(-0.432100\pi\)
0.211702 + 0.977334i \(0.432100\pi\)
\(920\) 554.985i 0.603244i
\(921\) 0 0
\(922\) 134.900i 0.146312i
\(923\) −59.7602 + 712.832i −0.0647456 + 0.772299i
\(924\) 0 0
\(925\) −610.482 + 610.482i −0.659980 + 0.659980i
\(926\) −1098.49 −1.18628
\(927\) 0 0
\(928\) −127.426 + 127.426i −0.137312 + 0.137312i
\(929\) 429.870 429.870i 0.462724 0.462724i −0.436823 0.899547i \(-0.643897\pi\)
0.899547 + 0.436823i \(0.143897\pi\)
\(930\) 0 0
\(931\) 383.919 + 383.919i 0.412373 + 0.412373i
\(932\) 256.077 0.274761
\(933\) 0 0
\(934\) 30.1821 + 30.1821i 0.0323148 + 0.0323148i
\(935\) 480.631i 0.514044i
\(936\) 0 0
\(937\) 916.441 0.978059 0.489029 0.872267i \(-0.337351\pi\)
0.489029 + 0.872267i \(0.337351\pi\)
\(938\) −331.636 + 331.636i −0.353556 + 0.353556i
\(939\) 0 0
\(940\) 779.769i 0.829542i
\(941\) −835.601 + 835.601i −0.887993 + 0.887993i −0.994330 0.106337i \(-0.966088\pi\)
0.106337 + 0.994330i \(0.466088\pi\)
\(942\) 0 0
\(943\) −423.531 423.531i −0.449131 0.449131i
\(944\) 218.487 + 218.487i 0.231448 + 0.231448i
\(945\) 0 0
\(946\) 87.2154i 0.0921939i
\(947\) 378.506 + 378.506i 0.399690 + 0.399690i 0.878124 0.478434i \(-0.158795\pi\)
−0.478434 + 0.878124i \(0.658795\pi\)
\(948\) 0 0
\(949\) 738.692 + 61.9282i 0.778390 + 0.0652563i
\(950\) −445.864 −0.469330
\(951\) 0 0
\(952\) −320.420 −0.336576
\(953\) 839.556i 0.880961i 0.897762 + 0.440481i \(0.145192\pi\)
−0.897762 + 0.440481i \(0.854808\pi\)
\(954\) 0 0
\(955\) 43.9230 43.9230i 0.0459927 0.0459927i
\(956\) 176.038 + 176.038i 0.184141 + 0.184141i
\(957\) 0 0
\(958\) −517.741 −0.540439
\(959\) 710.620i 0.741001i
\(960\) 0 0
\(961\) 494.923i 0.515008i
\(962\) 612.697 517.913i 0.636900 0.538371i
\(963\) 0 0
\(964\) −294.918 + 294.918i −0.305931 + 0.305931i
\(965\) 205.541 0.212996
\(966\) 0 0
\(967\) −375.745 + 375.745i −0.388567 + 0.388567i −0.874176 0.485609i \(-0.838598\pi\)
0.485609 + 0.874176i \(0.338598\pi\)
\(968\) 230.000 230.000i 0.237603 0.237603i
\(969\) 0 0
\(970\) 814.228 + 814.228i 0.839410 + 0.839410i
\(971\) −134.523 −0.138541 −0.0692703 0.997598i \(-0.522067\pi\)
−0.0692703 + 0.997598i \(0.522067\pi\)
\(972\) 0 0
\(973\) 74.1436 + 74.1436i 0.0762010 + 0.0762010i
\(974\) 549.121i 0.563779i
\(975\) 0 0
\(976\) 29.7025 0.0304329
\(977\) −708.060 + 708.060i −0.724729 + 0.724729i −0.969565 0.244836i \(-0.921266\pi\)
0.244836 + 0.969565i \(0.421266\pi\)
\(978\) 0 0
\(979\) 88.3923i 0.0902884i
\(980\) 322.459 322.459i 0.329040 0.329040i
\(981\) 0 0
\(982\) −220.726 220.726i −0.224771 0.224771i
\(983\) 904.881 + 904.881i 0.920530 + 0.920530i 0.997067 0.0765369i \(-0.0243863\pi\)
−0.0765369 + 0.997067i \(0.524386\pi\)
\(984\) 0 0
\(985\) 1066.91i 1.08315i
\(986\) −934.046 934.046i −0.947308 0.947308i
\(987\) 0 0
\(988\) 412.869 + 34.6128i 0.417884 + 0.0350332i
\(989\) 738.200 0.746410
\(990\) 0 0
\(991\) 29.0155 0.0292790 0.0146395 0.999893i \(-0.495340\pi\)
0.0146395 + 0.999893i \(0.495340\pi\)
\(992\) 215.846i 0.217587i
\(993\) 0 0
\(994\) −212.603 + 212.603i −0.213886 + 0.213886i
\(995\) 1159.83 + 1159.83i 1.16565 + 1.16565i
\(996\) 0 0
\(997\) 336.123 0.337134 0.168567 0.985690i \(-0.446086\pi\)
0.168567 + 0.985690i \(0.446086\pi\)
\(998\) 1250.13i 1.25264i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 234.3.i.b.109.1 4
3.2 odd 2 78.3.f.a.31.1 4
12.11 even 2 624.3.ba.a.577.2 4
13.8 odd 4 inner 234.3.i.b.73.1 4
39.5 even 4 1014.3.f.a.775.1 4
39.8 even 4 78.3.f.a.73.1 yes 4
39.38 odd 2 1014.3.f.a.577.1 4
156.47 odd 4 624.3.ba.a.385.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
78.3.f.a.31.1 4 3.2 odd 2
78.3.f.a.73.1 yes 4 39.8 even 4
234.3.i.b.73.1 4 13.8 odd 4 inner
234.3.i.b.109.1 4 1.1 even 1 trivial
624.3.ba.a.385.2 4 156.47 odd 4
624.3.ba.a.577.2 4 12.11 even 2
1014.3.f.a.577.1 4 39.38 odd 2
1014.3.f.a.775.1 4 39.5 even 4