Properties

Label 234.3.i.a
Level $234$
Weight $3$
Character orbit 234.i
Analytic conductor $6.376$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [234,3,Mod(73,234)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(234, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("234.73"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 234 = 2 \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 234.i (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.37603818603\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-1}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 26)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(i = \sqrt{-1}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - i - 1) q^{2} + 2 i q^{4} + (3 i + 3) q^{5} + ( - 2 i + 2) q^{7} + ( - 2 i + 2) q^{8} - 6 i q^{10} + (6 i - 6) q^{11} + 13 i q^{13} - 4 q^{14} - 4 q^{16} - 6 i q^{17} + (26 i + 26) q^{19} + (6 i - 6) q^{20} + \cdots + ( - 41 i + 41) q^{98} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{2} + 6 q^{5} + 4 q^{7} + 4 q^{8} - 12 q^{11} - 8 q^{14} - 8 q^{16} + 52 q^{19} - 12 q^{20} + 24 q^{22} + 26 q^{26} + 8 q^{28} + 96 q^{29} - 28 q^{31} + 8 q^{32} - 12 q^{34} + 24 q^{35} + 74 q^{37}+ \cdots + 82 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/234\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(209\)
\(\chi(n)\) \(i\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
73.1
1.00000i
1.00000i
−1.00000 1.00000i 0 2.00000i 3.00000 + 3.00000i 0 2.00000 2.00000i 2.00000 2.00000i 0 6.00000i
109.1 −1.00000 + 1.00000i 0 2.00000i 3.00000 3.00000i 0 2.00000 + 2.00000i 2.00000 + 2.00000i 0 6.00000i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
13.d odd 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 234.3.i.a 2
3.b odd 2 1 26.3.d.a 2
12.b even 2 1 208.3.t.b 2
13.d odd 4 1 inner 234.3.i.a 2
15.d odd 2 1 650.3.k.b 2
15.e even 4 1 650.3.f.b 2
15.e even 4 1 650.3.f.e 2
39.d odd 2 1 338.3.d.a 2
39.f even 4 1 26.3.d.a 2
39.f even 4 1 338.3.d.a 2
39.h odd 6 2 338.3.f.g 4
39.i odd 6 2 338.3.f.b 4
39.k even 12 2 338.3.f.b 4
39.k even 12 2 338.3.f.g 4
156.l odd 4 1 208.3.t.b 2
195.j odd 4 1 650.3.f.e 2
195.n even 4 1 650.3.k.b 2
195.u odd 4 1 650.3.f.b 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
26.3.d.a 2 3.b odd 2 1
26.3.d.a 2 39.f even 4 1
208.3.t.b 2 12.b even 2 1
208.3.t.b 2 156.l odd 4 1
234.3.i.a 2 1.a even 1 1 trivial
234.3.i.a 2 13.d odd 4 1 inner
338.3.d.a 2 39.d odd 2 1
338.3.d.a 2 39.f even 4 1
338.3.f.b 4 39.i odd 6 2
338.3.f.b 4 39.k even 12 2
338.3.f.g 4 39.h odd 6 2
338.3.f.g 4 39.k even 12 2
650.3.f.b 2 15.e even 4 1
650.3.f.b 2 195.u odd 4 1
650.3.f.e 2 15.e even 4 1
650.3.f.e 2 195.j odd 4 1
650.3.k.b 2 15.d odd 2 1
650.3.k.b 2 195.n even 4 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{2} - 6T_{5} + 18 \) acting on \(S_{3}^{\mathrm{new}}(234, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} + 2T + 2 \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} - 6T + 18 \) Copy content Toggle raw display
$7$ \( T^{2} - 4T + 8 \) Copy content Toggle raw display
$11$ \( T^{2} + 12T + 72 \) Copy content Toggle raw display
$13$ \( T^{2} + 169 \) Copy content Toggle raw display
$17$ \( T^{2} + 36 \) Copy content Toggle raw display
$19$ \( T^{2} - 52T + 1352 \) Copy content Toggle raw display
$23$ \( T^{2} + 576 \) Copy content Toggle raw display
$29$ \( (T - 48)^{2} \) Copy content Toggle raw display
$31$ \( T^{2} + 28T + 392 \) Copy content Toggle raw display
$37$ \( T^{2} - 74T + 2738 \) Copy content Toggle raw display
$41$ \( T^{2} - 18T + 162 \) Copy content Toggle raw display
$43$ \( T^{2} + 1296 \) Copy content Toggle raw display
$47$ \( T^{2} + 84T + 3528 \) Copy content Toggle raw display
$53$ \( (T + 30)^{2} \) Copy content Toggle raw display
$59$ \( T^{2} - 108T + 5832 \) Copy content Toggle raw display
$61$ \( (T + 18)^{2} \) Copy content Toggle raw display
$67$ \( T^{2} + 44T + 968 \) Copy content Toggle raw display
$71$ \( T^{2} + 12T + 72 \) Copy content Toggle raw display
$73$ \( T^{2} - 34T + 578 \) Copy content Toggle raw display
$79$ \( (T + 108)^{2} \) Copy content Toggle raw display
$83$ \( T^{2} + 156T + 12168 \) Copy content Toggle raw display
$89$ \( T^{2} - 18T + 162 \) Copy content Toggle raw display
$97$ \( T^{2} + 94T + 4418 \) Copy content Toggle raw display
show more
show less