Defining parameters
Level: | \( N \) | \(=\) | \( 234 = 2 \cdot 3^{2} \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 234.i (of order \(4\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 13 \) |
Character field: | \(\Q(i)\) | ||
Newform subspaces: | \( 5 \) | ||
Sturm bound: | \(126\) | ||
Trace bound: | \(2\) | ||
Distinguishing \(T_p\): | \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{3}(234, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 184 | 26 | 158 |
Cusp forms | 152 | 26 | 126 |
Eisenstein series | 32 | 0 | 32 |
Trace form
Decomposition of \(S_{3}^{\mathrm{new}}(234, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
234.3.i.a | $2$ | $6.376$ | \(\Q(\sqrt{-1}) \) | None | \(-2\) | \(0\) | \(6\) | \(4\) | \(q+(-i-1)q^{2}+2 i q^{4}+(3 i+3)q^{5}+\cdots\) |
234.3.i.b | $4$ | $6.376$ | \(\Q(\zeta_{12})\) | None | \(-4\) | \(0\) | \(-12\) | \(-4\) | \(q+(-\beta_1-1)q^{2}+2\beta_1 q^{4}+(\beta_{2}-3\beta_1-3)q^{5}+\cdots\) |
234.3.i.c | $6$ | $6.376$ | 6.0.353139264.2 | None | \(-6\) | \(0\) | \(6\) | \(0\) | \(q+(-1-\beta _{1})q^{2}+2\beta _{1}q^{4}+(1+\beta _{1}+\cdots)q^{5}+\cdots\) |
234.3.i.d | $6$ | $6.376$ | 6.0.353139264.2 | None | \(6\) | \(0\) | \(-6\) | \(0\) | \(q+(1-\beta _{1})q^{2}-2\beta _{1}q^{4}+(-1+\beta _{1}+\cdots)q^{5}+\cdots\) |
234.3.i.e | $8$ | $6.376$ | 8.0.\(\cdots\).1 | None | \(8\) | \(0\) | \(0\) | \(4\) | \(q+(1+\beta _{3})q^{2}+2\beta _{3}q^{4}+\beta _{1}q^{5}+(1+\cdots)q^{7}+\cdots\) |
Decomposition of \(S_{3}^{\mathrm{old}}(234, [\chi])\) into lower level spaces
\( S_{3}^{\mathrm{old}}(234, [\chi]) \simeq \) \(S_{3}^{\mathrm{new}}(13, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(26, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(39, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(78, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(117, [\chi])\)\(^{\oplus 2}\)