Properties

Label 234.3.i
Level $234$
Weight $3$
Character orbit 234.i
Rep. character $\chi_{234}(73,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $26$
Newform subspaces $5$
Sturm bound $126$
Trace bound $2$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 234 = 2 \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 234.i (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 13 \)
Character field: \(\Q(i)\)
Newform subspaces: \( 5 \)
Sturm bound: \(126\)
Trace bound: \(2\)
Distinguishing \(T_p\): \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(234, [\chi])\).

Total New Old
Modular forms 184 26 158
Cusp forms 152 26 126
Eisenstein series 32 0 32

Trace form

\( 26 q + 2 q^{2} - 6 q^{5} + 4 q^{7} - 4 q^{8} - 36 q^{11} + 8 q^{14} - 104 q^{16} - 44 q^{19} + 12 q^{20} + 24 q^{22} - 26 q^{26} + 8 q^{28} + 192 q^{29} + 116 q^{31} - 8 q^{32} + 12 q^{34} + 72 q^{35} + 98 q^{37}+ \cdots + 590 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{3}^{\mathrm{new}}(234, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
234.3.i.a 234.i 13.d $2$ $6.376$ \(\Q(\sqrt{-1}) \) None 26.3.d.a \(-2\) \(0\) \(6\) \(4\) $\mathrm{SU}(2)[C_{4}]$ \(q+(-i-1)q^{2}+2 i q^{4}+(3 i+3)q^{5}+\cdots\)
234.3.i.b 234.i 13.d $4$ $6.376$ \(\Q(\zeta_{12})\) None 78.3.f.a \(-4\) \(0\) \(-12\) \(-4\) $\mathrm{SU}(2)[C_{4}]$ \(q+(-\beta_1-1)q^{2}+2\beta_1 q^{4}+(\beta_{2}-3\beta_1-3)q^{5}+\cdots\)
234.3.i.c 234.i 13.d $6$ $6.376$ 6.0.353139264.2 None 234.3.i.c \(-6\) \(0\) \(6\) \(0\) $\mathrm{SU}(2)[C_{4}]$ \(q+(-1-\beta _{1})q^{2}+2\beta _{1}q^{4}+(1+\beta _{1}+\cdots)q^{5}+\cdots\)
234.3.i.d 234.i 13.d $6$ $6.376$ 6.0.353139264.2 None 234.3.i.c \(6\) \(0\) \(-6\) \(0\) $\mathrm{SU}(2)[C_{4}]$ \(q+(1-\beta _{1})q^{2}-2\beta _{1}q^{4}+(-1+\beta _{1}+\cdots)q^{5}+\cdots\)
234.3.i.e 234.i 13.d $8$ $6.376$ 8.0.\(\cdots\).1 None 78.3.f.b \(8\) \(0\) \(0\) \(4\) $\mathrm{SU}(2)[C_{4}]$ \(q+(1+\beta _{3})q^{2}+2\beta _{3}q^{4}+\beta _{1}q^{5}+(1+\cdots)q^{7}+\cdots\)

Decomposition of \(S_{3}^{\mathrm{old}}(234, [\chi])\) into lower level spaces

\( S_{3}^{\mathrm{old}}(234, [\chi]) \simeq \) \(S_{3}^{\mathrm{new}}(13, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(26, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(39, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(78, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(117, [\chi])\)\(^{\oplus 2}\)