Properties

Label 234.3.bb.f.37.1
Level $234$
Weight $3$
Character 234.37
Analytic conductor $6.376$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [234,3,Mod(19,234)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(234, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([0, 5])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("234.19"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 234 = 2 \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 234.bb (of order \(12\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,4,0,0,-6,0,-2,16,0,-18] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(10)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.37603818603\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{12})\)
Coefficient field: 8.0.612074651904.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 74x^{6} + 2067x^{4} - 25778x^{2} + 121801 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 26)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 37.1
Root \(3.90972 - 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 234.37
Dual form 234.3.bb.f.19.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.366025 + 1.36603i) q^{2} +(-1.73205 - 1.00000i) q^{4} +(-4.79174 - 4.79174i) q^{5} +(1.13983 + 4.25390i) q^{7} +(2.00000 - 2.00000i) q^{8} +(8.29953 - 4.79174i) q^{10} +(13.8758 + 3.71800i) q^{11} +(1.84809 + 12.8680i) q^{13} -6.22814 q^{14} +(2.00000 + 3.46410i) q^{16} +(20.9957 + 12.1219i) q^{17} +(25.4592 - 6.82178i) q^{19} +(3.50779 + 13.0913i) q^{20} +(-10.1578 + 17.5938i) q^{22} +(5.44507 - 3.14371i) q^{23} +20.9215i q^{25} +(-18.2544 - 2.18546i) q^{26} +(2.27966 - 8.50779i) q^{28} +(-11.1112 - 19.2451i) q^{29} +(-8.59518 - 8.59518i) q^{31} +(-5.46410 + 1.46410i) q^{32} +(-24.2437 + 24.2437i) q^{34} +(14.9218 - 25.8453i) q^{35} +(-6.13936 - 1.64504i) q^{37} +37.2749i q^{38} -19.1669 q^{40} +(-18.8845 + 70.4778i) q^{41} +(26.9695 + 15.5708i) q^{43} +(-20.3155 - 20.3155i) q^{44} +(2.30136 + 8.58878i) q^{46} +(-7.65637 + 7.65637i) q^{47} +(25.6388 - 14.8026i) q^{49} +(-28.5793 - 7.65779i) q^{50} +(9.66698 - 24.1361i) q^{52} +33.7616 q^{53} +(-48.6733 - 84.3047i) q^{55} +(10.7875 + 6.22814i) q^{56} +(30.3563 - 8.13394i) q^{58} +(-9.77592 - 36.4842i) q^{59} +(11.5359 - 19.9807i) q^{61} +(14.8873 - 8.59518i) q^{62} -8.00000i q^{64} +(52.8043 - 70.5155i) q^{65} +(-27.8544 + 103.954i) q^{67} +(-24.2437 - 41.9914i) q^{68} +(29.8436 + 29.8436i) q^{70} +(-2.20861 + 0.591796i) q^{71} +(38.1773 - 38.1773i) q^{73} +(4.49432 - 7.78440i) q^{74} +(-50.9185 - 13.6436i) q^{76} +63.2639i q^{77} -19.1299 q^{79} +(7.01559 - 26.1825i) q^{80} +(-89.3622 - 51.5933i) q^{82} +(-34.7720 - 34.7720i) q^{83} +(-42.5210 - 158.691i) q^{85} +(-31.1417 + 31.1417i) q^{86} +(35.1875 - 20.3155i) q^{88} +(-3.47190 - 0.930292i) q^{89} +(-52.6325 + 22.5289i) q^{91} -12.5748 q^{92} +(-7.65637 - 13.2612i) q^{94} +(-154.682 - 89.3058i) q^{95} +(-24.3107 + 6.51404i) q^{97} +(10.8362 + 40.4414i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 4 q^{2} - 6 q^{5} - 2 q^{7} + 16 q^{8} - 18 q^{10} + 18 q^{11} + 36 q^{13} - 20 q^{14} + 16 q^{16} + 42 q^{17} + 46 q^{19} - 24 q^{20} - 42 q^{22} + 36 q^{23} - 40 q^{26} - 4 q^{28} + 6 q^{29} + 32 q^{31}+ \cdots + 250 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/234\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(209\)
\(\chi(n)\) \(e\left(\frac{7}{12}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.366025 + 1.36603i −0.183013 + 0.683013i
\(3\) 0 0
\(4\) −1.73205 1.00000i −0.433013 0.250000i
\(5\) −4.79174 4.79174i −0.958347 0.958347i 0.0408192 0.999167i \(-0.487003\pi\)
−0.999167 + 0.0408192i \(0.987003\pi\)
\(6\) 0 0
\(7\) 1.13983 + 4.25390i 0.162833 + 0.607700i 0.998307 + 0.0581698i \(0.0185265\pi\)
−0.835474 + 0.549530i \(0.814807\pi\)
\(8\) 2.00000 2.00000i 0.250000 0.250000i
\(9\) 0 0
\(10\) 8.29953 4.79174i 0.829953 0.479174i
\(11\) 13.8758 + 3.71800i 1.26143 + 0.338000i 0.826743 0.562580i \(-0.190191\pi\)
0.434690 + 0.900580i \(0.356858\pi\)
\(12\) 0 0
\(13\) 1.84809 + 12.8680i 0.142161 + 0.989844i
\(14\) −6.22814 −0.444867
\(15\) 0 0
\(16\) 2.00000 + 3.46410i 0.125000 + 0.216506i
\(17\) 20.9957 + 12.1219i 1.23504 + 0.713051i 0.968076 0.250656i \(-0.0806462\pi\)
0.266964 + 0.963707i \(0.413980\pi\)
\(18\) 0 0
\(19\) 25.4592 6.82178i 1.33996 0.359041i 0.483540 0.875322i \(-0.339351\pi\)
0.856419 + 0.516281i \(0.172684\pi\)
\(20\) 3.50779 + 13.0913i 0.175390 + 0.654563i
\(21\) 0 0
\(22\) −10.1578 + 17.5938i −0.461716 + 0.799716i
\(23\) 5.44507 3.14371i 0.236742 0.136683i −0.376936 0.926239i \(-0.623022\pi\)
0.613678 + 0.789556i \(0.289689\pi\)
\(24\) 0 0
\(25\) 20.9215i 0.836859i
\(26\) −18.2544 2.18546i −0.702093 0.0840562i
\(27\) 0 0
\(28\) 2.27966 8.50779i 0.0814163 0.303850i
\(29\) −11.1112 19.2451i −0.383144 0.663625i 0.608366 0.793657i \(-0.291825\pi\)
−0.991510 + 0.130032i \(0.958492\pi\)
\(30\) 0 0
\(31\) −8.59518 8.59518i −0.277264 0.277264i 0.554752 0.832016i \(-0.312813\pi\)
−0.832016 + 0.554752i \(0.812813\pi\)
\(32\) −5.46410 + 1.46410i −0.170753 + 0.0457532i
\(33\) 0 0
\(34\) −24.2437 + 24.2437i −0.713051 + 0.713051i
\(35\) 14.9218 25.8453i 0.426337 0.738438i
\(36\) 0 0
\(37\) −6.13936 1.64504i −0.165929 0.0444605i 0.174898 0.984587i \(-0.444040\pi\)
−0.340827 + 0.940126i \(0.610707\pi\)
\(38\) 37.2749i 0.980919i
\(39\) 0 0
\(40\) −19.1669 −0.479174
\(41\) −18.8845 + 70.4778i −0.460596 + 1.71897i 0.210495 + 0.977595i \(0.432492\pi\)
−0.671091 + 0.741375i \(0.734174\pi\)
\(42\) 0 0
\(43\) 26.9695 + 15.5708i 0.627197 + 0.362113i 0.779666 0.626196i \(-0.215389\pi\)
−0.152468 + 0.988308i \(0.548722\pi\)
\(44\) −20.3155 20.3155i −0.461716 0.461716i
\(45\) 0 0
\(46\) 2.30136 + 8.58878i 0.0500295 + 0.186713i
\(47\) −7.65637 + 7.65637i −0.162902 + 0.162902i −0.783851 0.620949i \(-0.786747\pi\)
0.620949 + 0.783851i \(0.286747\pi\)
\(48\) 0 0
\(49\) 25.6388 14.8026i 0.523241 0.302093i
\(50\) −28.5793 7.65779i −0.571585 0.153156i
\(51\) 0 0
\(52\) 9.66698 24.1361i 0.185903 0.464155i
\(53\) 33.7616 0.637010 0.318505 0.947921i \(-0.396819\pi\)
0.318505 + 0.947921i \(0.396819\pi\)
\(54\) 0 0
\(55\) −48.6733 84.3047i −0.884969 1.53281i
\(56\) 10.7875 + 6.22814i 0.192633 + 0.111217i
\(57\) 0 0
\(58\) 30.3563 8.13394i 0.523384 0.140240i
\(59\) −9.77592 36.4842i −0.165694 0.618377i −0.997951 0.0639871i \(-0.979618\pi\)
0.832257 0.554390i \(-0.187048\pi\)
\(60\) 0 0
\(61\) 11.5359 19.9807i 0.189113 0.327553i −0.755842 0.654754i \(-0.772772\pi\)
0.944955 + 0.327201i \(0.106106\pi\)
\(62\) 14.8873 8.59518i 0.240118 0.138632i
\(63\) 0 0
\(64\) 8.00000i 0.125000i
\(65\) 52.8043 70.5155i 0.812374 1.08485i
\(66\) 0 0
\(67\) −27.8544 + 103.954i −0.415737 + 1.55155i 0.367618 + 0.929977i \(0.380173\pi\)
−0.783355 + 0.621575i \(0.786493\pi\)
\(68\) −24.2437 41.9914i −0.356525 0.617520i
\(69\) 0 0
\(70\) 29.8436 + 29.8436i 0.426337 + 0.426337i
\(71\) −2.20861 + 0.591796i −0.0311072 + 0.00833516i −0.274339 0.961633i \(-0.588459\pi\)
0.243232 + 0.969968i \(0.421792\pi\)
\(72\) 0 0
\(73\) 38.1773 38.1773i 0.522977 0.522977i −0.395492 0.918469i \(-0.629426\pi\)
0.918469 + 0.395492i \(0.129426\pi\)
\(74\) 4.49432 7.78440i 0.0607341 0.105195i
\(75\) 0 0
\(76\) −50.9185 13.6436i −0.669980 0.179521i
\(77\) 63.2639i 0.821610i
\(78\) 0 0
\(79\) −19.1299 −0.242150 −0.121075 0.992643i \(-0.538634\pi\)
−0.121075 + 0.992643i \(0.538634\pi\)
\(80\) 7.01559 26.1825i 0.0876949 0.327282i
\(81\) 0 0
\(82\) −89.3622 51.5933i −1.08978 0.629187i
\(83\) −34.7720 34.7720i −0.418940 0.418940i 0.465898 0.884838i \(-0.345731\pi\)
−0.884838 + 0.465898i \(0.845731\pi\)
\(84\) 0 0
\(85\) −42.5210 158.691i −0.500247 1.86695i
\(86\) −31.1417 + 31.1417i −0.362113 + 0.362113i
\(87\) 0 0
\(88\) 35.1875 20.3155i 0.399858 0.230858i
\(89\) −3.47190 0.930292i −0.0390101 0.0104527i 0.239261 0.970955i \(-0.423095\pi\)
−0.278271 + 0.960503i \(0.589761\pi\)
\(90\) 0 0
\(91\) −52.6325 + 22.5289i −0.578379 + 0.247570i
\(92\) −12.5748 −0.136683
\(93\) 0 0
\(94\) −7.65637 13.2612i −0.0814508 0.141077i
\(95\) −154.682 89.3058i −1.62823 0.940061i
\(96\) 0 0
\(97\) −24.3107 + 6.51404i −0.250626 + 0.0671551i −0.381945 0.924185i \(-0.624746\pi\)
0.131319 + 0.991340i \(0.458079\pi\)
\(98\) 10.8362 + 40.4414i 0.110574 + 0.412667i
\(99\) 0 0
\(100\) 20.9215 36.2371i 0.209215 0.362371i
\(101\) 131.473 75.9060i 1.30171 0.751545i 0.321016 0.947074i \(-0.395976\pi\)
0.980698 + 0.195529i \(0.0626425\pi\)
\(102\) 0 0
\(103\) 17.3672i 0.168614i −0.996440 0.0843069i \(-0.973132\pi\)
0.996440 0.0843069i \(-0.0268676\pi\)
\(104\) 29.4321 + 22.0397i 0.283001 + 0.211921i
\(105\) 0 0
\(106\) −12.3576 + 46.1191i −0.116581 + 0.435086i
\(107\) 26.5964 + 46.0662i 0.248564 + 0.430526i 0.963128 0.269045i \(-0.0867080\pi\)
−0.714564 + 0.699571i \(0.753375\pi\)
\(108\) 0 0
\(109\) 53.3779 + 53.3779i 0.489705 + 0.489705i 0.908213 0.418508i \(-0.137447\pi\)
−0.418508 + 0.908213i \(0.637447\pi\)
\(110\) 132.978 35.6313i 1.20889 0.323921i
\(111\) 0 0
\(112\) −12.4563 + 12.4563i −0.111217 + 0.111217i
\(113\) 18.1133 31.3732i 0.160295 0.277639i −0.774680 0.632354i \(-0.782089\pi\)
0.934974 + 0.354715i \(0.115422\pi\)
\(114\) 0 0
\(115\) −41.1552 11.0275i −0.357871 0.0958912i
\(116\) 44.4447i 0.383144i
\(117\) 0 0
\(118\) 53.4166 0.452683
\(119\) −27.6337 + 103.130i −0.232216 + 0.866641i
\(120\) 0 0
\(121\) 73.9242 + 42.6801i 0.610943 + 0.352728i
\(122\) 23.0717 + 23.0717i 0.189113 + 0.189113i
\(123\) 0 0
\(124\) 6.29211 + 23.4825i 0.0507428 + 0.189375i
\(125\) −19.5432 + 19.5432i −0.156346 + 0.156346i
\(126\) 0 0
\(127\) −115.255 + 66.5425i −0.907520 + 0.523957i −0.879632 0.475654i \(-0.842211\pi\)
−0.0278874 + 0.999611i \(0.508878\pi\)
\(128\) 10.9282 + 2.92820i 0.0853766 + 0.0228766i
\(129\) 0 0
\(130\) 76.9982 + 97.9425i 0.592294 + 0.753404i
\(131\) −38.2739 −0.292167 −0.146083 0.989272i \(-0.546667\pi\)
−0.146083 + 0.989272i \(0.546667\pi\)
\(132\) 0 0
\(133\) 58.0383 + 100.525i 0.436378 + 0.755829i
\(134\) −131.808 76.0996i −0.983644 0.567907i
\(135\) 0 0
\(136\) 66.2351 17.7476i 0.487023 0.130497i
\(137\) −2.07966 7.76140i −0.0151800 0.0566525i 0.957920 0.287034i \(-0.0926693\pi\)
−0.973100 + 0.230381i \(0.926003\pi\)
\(138\) 0 0
\(139\) 121.981 211.277i 0.877558 1.51998i 0.0235463 0.999723i \(-0.492504\pi\)
0.854012 0.520253i \(-0.174162\pi\)
\(140\) −51.6906 + 29.8436i −0.369219 + 0.213169i
\(141\) 0 0
\(142\) 3.23364i 0.0227721i
\(143\) −22.1994 + 185.424i −0.155241 + 1.29667i
\(144\) 0 0
\(145\) −38.9757 + 145.459i −0.268798 + 1.00317i
\(146\) 38.1773 + 66.1251i 0.261488 + 0.452911i
\(147\) 0 0
\(148\) 8.98865 + 8.98865i 0.0607341 + 0.0607341i
\(149\) −182.687 + 48.9509i −1.22609 + 0.328529i −0.813055 0.582187i \(-0.802197\pi\)
−0.413033 + 0.910716i \(0.635531\pi\)
\(150\) 0 0
\(151\) −70.5995 + 70.5995i −0.467546 + 0.467546i −0.901119 0.433573i \(-0.857253\pi\)
0.433573 + 0.901119i \(0.357253\pi\)
\(152\) 37.2749 64.5620i 0.245230 0.424750i
\(153\) 0 0
\(154\) −86.4202 23.1562i −0.561170 0.150365i
\(155\) 82.3717i 0.531430i
\(156\) 0 0
\(157\) 176.794 1.12608 0.563038 0.826431i \(-0.309632\pi\)
0.563038 + 0.826431i \(0.309632\pi\)
\(158\) 7.00202 26.1319i 0.0443166 0.165392i
\(159\) 0 0
\(160\) 33.1981 + 19.1669i 0.207488 + 0.119793i
\(161\) 19.5795 + 19.5795i 0.121612 + 0.121612i
\(162\) 0 0
\(163\) 31.3812 + 117.116i 0.192523 + 0.718504i 0.992894 + 0.119000i \(0.0379688\pi\)
−0.800372 + 0.599504i \(0.795365\pi\)
\(164\) 103.187 103.187i 0.629187 0.629187i
\(165\) 0 0
\(166\) 60.2269 34.7720i 0.362813 0.209470i
\(167\) −286.599 76.7939i −1.71616 0.459844i −0.739238 0.673444i \(-0.764814\pi\)
−0.976921 + 0.213601i \(0.931481\pi\)
\(168\) 0 0
\(169\) −162.169 + 47.5624i −0.959581 + 0.281434i
\(170\) 232.339 1.36670
\(171\) 0 0
\(172\) −31.1417 53.9390i −0.181056 0.313599i
\(173\) 241.179 + 139.245i 1.39410 + 0.804884i 0.993766 0.111485i \(-0.0355608\pi\)
0.400334 + 0.916369i \(0.368894\pi\)
\(174\) 0 0
\(175\) −88.9978 + 23.8469i −0.508559 + 0.136268i
\(176\) 14.8720 + 55.5030i 0.0845000 + 0.315358i
\(177\) 0 0
\(178\) 2.54160 4.40219i 0.0142787 0.0247314i
\(179\) −68.2036 + 39.3774i −0.381026 + 0.219985i −0.678264 0.734818i \(-0.737268\pi\)
0.297239 + 0.954803i \(0.403934\pi\)
\(180\) 0 0
\(181\) 200.758i 1.10916i 0.832130 + 0.554581i \(0.187121\pi\)
−0.832130 + 0.554581i \(0.812879\pi\)
\(182\) −11.5102 80.1435i −0.0632427 0.440349i
\(183\) 0 0
\(184\) 4.60271 17.1776i 0.0250147 0.0933563i
\(185\) 21.5356 + 37.3008i 0.116409 + 0.201626i
\(186\) 0 0
\(187\) 246.262 + 246.262i 1.31691 + 1.31691i
\(188\) 20.9176 5.60485i 0.111264 0.0298131i
\(189\) 0 0
\(190\) 178.612 178.612i 0.940061 0.940061i
\(191\) 20.2650 35.1001i 0.106100 0.183770i −0.808087 0.589063i \(-0.799497\pi\)
0.914187 + 0.405293i \(0.132830\pi\)
\(192\) 0 0
\(193\) −140.149 37.5529i −0.726163 0.194575i −0.123243 0.992377i \(-0.539329\pi\)
−0.602920 + 0.797802i \(0.705996\pi\)
\(194\) 35.5934i 0.183471i
\(195\) 0 0
\(196\) −59.2103 −0.302093
\(197\) 40.0731 149.555i 0.203417 0.759161i −0.786510 0.617578i \(-0.788114\pi\)
0.989926 0.141583i \(-0.0452193\pi\)
\(198\) 0 0
\(199\) −225.470 130.175i −1.13302 0.654147i −0.188324 0.982107i \(-0.560305\pi\)
−0.944691 + 0.327960i \(0.893639\pi\)
\(200\) 41.8430 + 41.8430i 0.209215 + 0.209215i
\(201\) 0 0
\(202\) 55.5671 + 207.379i 0.275084 + 1.02663i
\(203\) 69.2019 69.2019i 0.340896 0.340896i
\(204\) 0 0
\(205\) 428.200 247.221i 2.08878 1.20596i
\(206\) 23.7241 + 6.35684i 0.115165 + 0.0308585i
\(207\) 0 0
\(208\) −40.8798 + 32.1379i −0.196537 + 0.154509i
\(209\) 378.630 1.81162
\(210\) 0 0
\(211\) −208.203 360.618i −0.986744 1.70909i −0.633913 0.773404i \(-0.718552\pi\)
−0.352831 0.935687i \(-0.614781\pi\)
\(212\) −58.4767 33.7616i −0.275834 0.159253i
\(213\) 0 0
\(214\) −72.6626 + 19.4699i −0.339545 + 0.0909808i
\(215\) −54.6193 203.842i −0.254043 0.948103i
\(216\) 0 0
\(217\) 26.7660 46.3600i 0.123346 0.213641i
\(218\) −92.4532 + 53.3779i −0.424097 + 0.244853i
\(219\) 0 0
\(220\) 194.693i 0.884969i
\(221\) −117.182 + 292.574i −0.530234 + 1.32386i
\(222\) 0 0
\(223\) 52.8772 197.340i 0.237118 0.884935i −0.740065 0.672535i \(-0.765205\pi\)
0.977183 0.212400i \(-0.0681279\pi\)
\(224\) −12.4563 21.5749i −0.0556084 0.0963165i
\(225\) 0 0
\(226\) 36.2266 + 36.2266i 0.160295 + 0.160295i
\(227\) 107.452 28.7917i 0.473358 0.126836i −0.0142503 0.999898i \(-0.504536\pi\)
0.487608 + 0.873063i \(0.337870\pi\)
\(228\) 0 0
\(229\) −212.309 + 212.309i −0.927114 + 0.927114i −0.997519 0.0704045i \(-0.977571\pi\)
0.0704045 + 0.997519i \(0.477571\pi\)
\(230\) 30.1277 52.1826i 0.130990 0.226881i
\(231\) 0 0
\(232\) −60.7126 16.2679i −0.261692 0.0701202i
\(233\) 46.5826i 0.199925i −0.994991 0.0999627i \(-0.968128\pi\)
0.994991 0.0999627i \(-0.0318723\pi\)
\(234\) 0 0
\(235\) 73.3746 0.312233
\(236\) −19.5518 + 72.9685i −0.0828468 + 0.309188i
\(237\) 0 0
\(238\) −130.764 75.4966i −0.549429 0.317213i
\(239\) −138.309 138.309i −0.578698 0.578698i 0.355847 0.934544i \(-0.384192\pi\)
−0.934544 + 0.355847i \(0.884192\pi\)
\(240\) 0 0
\(241\) −58.1972 217.195i −0.241482 0.901223i −0.975119 0.221682i \(-0.928845\pi\)
0.733637 0.679541i \(-0.237821\pi\)
\(242\) −85.3603 + 85.3603i −0.352728 + 0.352728i
\(243\) 0 0
\(244\) −39.9614 + 23.0717i −0.163776 + 0.0945563i
\(245\) −193.784 51.9244i −0.790957 0.211936i
\(246\) 0 0
\(247\) 134.833 + 315.001i 0.545884 + 1.27531i
\(248\) −34.3807 −0.138632
\(249\) 0 0
\(250\) −19.5432 33.8498i −0.0781728 0.135399i
\(251\) −3.02255 1.74507i −0.0120420 0.00695247i 0.493967 0.869481i \(-0.335546\pi\)
−0.506009 + 0.862528i \(0.668880\pi\)
\(252\) 0 0
\(253\) 87.2427 23.3766i 0.344833 0.0923977i
\(254\) −48.7125 181.798i −0.191781 0.715738i
\(255\) 0 0
\(256\) −8.00000 + 13.8564i −0.0312500 + 0.0541266i
\(257\) 160.572 92.7065i 0.624795 0.360726i −0.153938 0.988080i \(-0.549196\pi\)
0.778734 + 0.627355i \(0.215862\pi\)
\(258\) 0 0
\(259\) 27.9913i 0.108074i
\(260\) −161.975 + 69.3320i −0.622982 + 0.266662i
\(261\) 0 0
\(262\) 14.0092 52.2831i 0.0534703 0.199554i
\(263\) −93.6758 162.251i −0.356182 0.616925i 0.631138 0.775671i \(-0.282588\pi\)
−0.987319 + 0.158746i \(0.949255\pi\)
\(264\) 0 0
\(265\) −161.776 161.776i −0.610477 0.610477i
\(266\) −158.564 + 42.4870i −0.596104 + 0.159726i
\(267\) 0 0
\(268\) 152.199 152.199i 0.567907 0.567907i
\(269\) 172.006 297.923i 0.639427 1.10752i −0.346132 0.938186i \(-0.612505\pi\)
0.985559 0.169334i \(-0.0541617\pi\)
\(270\) 0 0
\(271\) 23.4296 + 6.27795i 0.0864562 + 0.0231659i 0.301788 0.953375i \(-0.402417\pi\)
−0.215332 + 0.976541i \(0.569083\pi\)
\(272\) 96.9749i 0.356525i
\(273\) 0 0
\(274\) 11.3635 0.0414725
\(275\) −77.7860 + 290.301i −0.282858 + 1.05564i
\(276\) 0 0
\(277\) −428.588 247.446i −1.54725 0.893306i −0.998350 0.0574180i \(-0.981713\pi\)
−0.548901 0.835888i \(-0.684953\pi\)
\(278\) 243.961 + 243.961i 0.877558 + 0.877558i
\(279\) 0 0
\(280\) −21.8470 81.5342i −0.0780251 0.291194i
\(281\) −145.653 + 145.653i −0.518337 + 0.518337i −0.917068 0.398731i \(-0.869451\pi\)
0.398731 + 0.917068i \(0.369451\pi\)
\(282\) 0 0
\(283\) 372.577 215.107i 1.31653 0.760096i 0.333357 0.942801i \(-0.391818\pi\)
0.983168 + 0.182704i \(0.0584851\pi\)
\(284\) 4.41723 + 1.18359i 0.0155536 + 0.00416758i
\(285\) 0 0
\(286\) −245.168 98.1949i −0.857232 0.343339i
\(287\) −321.330 −1.11962
\(288\) 0 0
\(289\) 149.379 + 258.732i 0.516883 + 0.895267i
\(290\) −184.435 106.484i −0.635983 0.367185i
\(291\) 0 0
\(292\) −104.302 + 27.9477i −0.357200 + 0.0957114i
\(293\) −24.5565 91.6460i −0.0838105 0.312785i 0.911276 0.411797i \(-0.135099\pi\)
−0.995086 + 0.0990115i \(0.968432\pi\)
\(294\) 0 0
\(295\) −127.979 + 221.667i −0.433828 + 0.751412i
\(296\) −15.5688 + 8.98865i −0.0525973 + 0.0303671i
\(297\) 0 0
\(298\) 267.473i 0.897559i
\(299\) 50.5161 + 64.2571i 0.168950 + 0.214907i
\(300\) 0 0
\(301\) −35.4962 + 132.474i −0.117927 + 0.440111i
\(302\) −70.5995 122.282i −0.233773 0.404907i
\(303\) 0 0
\(304\) 74.5498 + 74.5498i 0.245230 + 0.245230i
\(305\) −151.019 + 40.4655i −0.495145 + 0.132674i
\(306\) 0 0
\(307\) 210.306 210.306i 0.685035 0.685035i −0.276095 0.961130i \(-0.589041\pi\)
0.961130 + 0.276095i \(0.0890406\pi\)
\(308\) 63.2639 109.576i 0.205402 0.355767i
\(309\) 0 0
\(310\) −112.522 30.1501i −0.362974 0.0972585i
\(311\) 246.623i 0.793001i −0.918035 0.396500i \(-0.870225\pi\)
0.918035 0.396500i \(-0.129775\pi\)
\(312\) 0 0
\(313\) −118.526 −0.378679 −0.189339 0.981912i \(-0.560635\pi\)
−0.189339 + 0.981912i \(0.560635\pi\)
\(314\) −64.7111 + 241.505i −0.206086 + 0.769125i
\(315\) 0 0
\(316\) 33.1339 + 19.1299i 0.104854 + 0.0605376i
\(317\) 284.814 + 284.814i 0.898466 + 0.898466i 0.995300 0.0968348i \(-0.0308718\pi\)
−0.0968348 + 0.995300i \(0.530872\pi\)
\(318\) 0 0
\(319\) −82.6227 308.352i −0.259005 0.966621i
\(320\) −38.3339 + 38.3339i −0.119793 + 0.119793i
\(321\) 0 0
\(322\) −33.9126 + 19.5795i −0.105319 + 0.0608058i
\(323\) 617.227 + 165.385i 1.91092 + 0.512029i
\(324\) 0 0
\(325\) −269.217 + 38.6648i −0.828360 + 0.118969i
\(326\) −171.470 −0.525981
\(327\) 0 0
\(328\) 103.187 + 178.724i 0.314593 + 0.544892i
\(329\) −41.2964 23.8425i −0.125521 0.0724695i
\(330\) 0 0
\(331\) −433.118 + 116.054i −1.30851 + 0.350615i −0.844663 0.535299i \(-0.820199\pi\)
−0.463850 + 0.885914i \(0.653532\pi\)
\(332\) 25.4549 + 94.9990i 0.0766714 + 0.286141i
\(333\) 0 0
\(334\) 209.805 363.392i 0.628158 1.08800i
\(335\) 631.591 364.649i 1.88535 1.08850i
\(336\) 0 0
\(337\) 474.455i 1.40788i 0.710260 + 0.703939i \(0.248577\pi\)
−0.710260 + 0.703939i \(0.751423\pi\)
\(338\) −5.61338 238.936i −0.0166076 0.706912i
\(339\) 0 0
\(340\) −85.0420 + 317.381i −0.250124 + 0.933474i
\(341\) −87.3078 151.222i −0.256035 0.443465i
\(342\) 0 0
\(343\) 244.782 + 244.782i 0.713650 + 0.713650i
\(344\) 85.0807 22.7973i 0.247328 0.0662712i
\(345\) 0 0
\(346\) −278.490 + 278.490i −0.804884 + 0.804884i
\(347\) −266.818 + 462.142i −0.768927 + 1.33182i 0.169218 + 0.985579i \(0.445876\pi\)
−0.938145 + 0.346242i \(0.887457\pi\)
\(348\) 0 0
\(349\) 260.973 + 69.9275i 0.747774 + 0.200365i 0.612531 0.790447i \(-0.290152\pi\)
0.135244 + 0.990812i \(0.456818\pi\)
\(350\) 130.302i 0.372291i
\(351\) 0 0
\(352\) −81.2621 −0.230858
\(353\) 91.3587 340.955i 0.258806 0.965879i −0.707127 0.707087i \(-0.750009\pi\)
0.965933 0.258792i \(-0.0833243\pi\)
\(354\) 0 0
\(355\) 13.4188 + 7.74736i 0.0377995 + 0.0218236i
\(356\) 5.08321 + 5.08321i 0.0142787 + 0.0142787i
\(357\) 0 0
\(358\) −28.8262 107.581i −0.0805202 0.300505i
\(359\) −116.092 + 116.092i −0.323375 + 0.323375i −0.850060 0.526685i \(-0.823435\pi\)
0.526685 + 0.850060i \(0.323435\pi\)
\(360\) 0 0
\(361\) 289.001 166.855i 0.800556 0.462201i
\(362\) −274.241 73.4826i −0.757572 0.202991i
\(363\) 0 0
\(364\) 113.691 + 13.6114i 0.312338 + 0.0373938i
\(365\) −365.871 −1.00239
\(366\) 0 0
\(367\) −343.162 594.375i −0.935047 1.61955i −0.774550 0.632513i \(-0.782024\pi\)
−0.160497 0.987036i \(-0.551310\pi\)
\(368\) 21.7803 + 12.5748i 0.0591855 + 0.0341708i
\(369\) 0 0
\(370\) −58.8364 + 15.7652i −0.159017 + 0.0426086i
\(371\) 38.4824 + 143.618i 0.103726 + 0.387111i
\(372\) 0 0
\(373\) 308.636 534.572i 0.827441 1.43317i −0.0725981 0.997361i \(-0.523129\pi\)
0.900039 0.435809i \(-0.143538\pi\)
\(374\) −426.538 + 246.262i −1.14048 + 0.658455i
\(375\) 0 0
\(376\) 30.6255i 0.0814508i
\(377\) 227.111 178.545i 0.602417 0.473594i
\(378\) 0 0
\(379\) −138.900 + 518.382i −0.366491 + 1.36776i 0.498898 + 0.866661i \(0.333738\pi\)
−0.865389 + 0.501101i \(0.832928\pi\)
\(380\) 178.612 + 309.364i 0.470030 + 0.814116i
\(381\) 0 0
\(382\) 40.5301 + 40.5301i 0.106100 + 0.106100i
\(383\) 253.061 67.8074i 0.660732 0.177043i 0.0871559 0.996195i \(-0.472222\pi\)
0.573577 + 0.819152i \(0.305556\pi\)
\(384\) 0 0
\(385\) 303.144 303.144i 0.787387 0.787387i
\(386\) 102.596 177.702i 0.265794 0.460369i
\(387\) 0 0
\(388\) 48.6215 + 13.0281i 0.125313 + 0.0335775i
\(389\) 184.591i 0.474527i 0.971445 + 0.237264i \(0.0762505\pi\)
−0.971445 + 0.237264i \(0.923749\pi\)
\(390\) 0 0
\(391\) 152.431 0.389848
\(392\) 21.6725 80.8828i 0.0552869 0.206334i
\(393\) 0 0
\(394\) 189.628 + 109.482i 0.481289 + 0.277872i
\(395\) 91.6653 + 91.6653i 0.232064 + 0.232064i
\(396\) 0 0
\(397\) 65.7046 + 245.213i 0.165503 + 0.617664i 0.997976 + 0.0635986i \(0.0202578\pi\)
−0.832473 + 0.554066i \(0.813076\pi\)
\(398\) 260.350 260.350i 0.654147 0.654147i
\(399\) 0 0
\(400\) −72.4741 + 41.8430i −0.181185 + 0.104607i
\(401\) 261.805 + 70.1504i 0.652880 + 0.174939i 0.570031 0.821623i \(-0.306931\pi\)
0.0828492 + 0.996562i \(0.473598\pi\)
\(402\) 0 0
\(403\) 94.7178 126.487i 0.235032 0.313864i
\(404\) −303.624 −0.751545
\(405\) 0 0
\(406\) 69.2019 + 119.861i 0.170448 + 0.295225i
\(407\) −79.0721 45.6523i −0.194280 0.112168i
\(408\) 0 0
\(409\) 152.496 40.8612i 0.372851 0.0999051i −0.0675274 0.997717i \(-0.521511\pi\)
0.440378 + 0.897812i \(0.354844\pi\)
\(410\) 180.979 + 675.422i 0.441411 + 1.64737i
\(411\) 0 0
\(412\) −17.3672 + 30.0809i −0.0421534 + 0.0730119i
\(413\) 144.057 83.1715i 0.348807 0.201384i
\(414\) 0 0
\(415\) 333.237i 0.802980i
\(416\) −28.9382 67.6061i −0.0695629 0.162515i
\(417\) 0 0
\(418\) −138.588 + 517.218i −0.331550 + 1.23736i
\(419\) −326.238 565.061i −0.778611 1.34859i −0.932743 0.360543i \(-0.882591\pi\)
0.154132 0.988050i \(-0.450742\pi\)
\(420\) 0 0
\(421\) 294.576 + 294.576i 0.699704 + 0.699704i 0.964347 0.264642i \(-0.0852538\pi\)
−0.264642 + 0.964347i \(0.585254\pi\)
\(422\) 568.821 152.415i 1.34792 0.361173i
\(423\) 0 0
\(424\) 67.5231 67.5231i 0.159253 0.159253i
\(425\) −253.607 + 439.261i −0.596723 + 1.03355i
\(426\) 0 0
\(427\) 98.1448 + 26.2978i 0.229847 + 0.0615874i
\(428\) 106.385i 0.248564i
\(429\) 0 0
\(430\) 298.445 0.694059
\(431\) −18.2792 + 68.2190i −0.0424112 + 0.158281i −0.983884 0.178808i \(-0.942776\pi\)
0.941473 + 0.337089i \(0.109442\pi\)
\(432\) 0 0
\(433\) 404.363 + 233.459i 0.933864 + 0.539167i 0.888032 0.459782i \(-0.152073\pi\)
0.0458326 + 0.998949i \(0.485406\pi\)
\(434\) 53.5320 + 53.5320i 0.123346 + 0.123346i
\(435\) 0 0
\(436\) −39.0753 145.831i −0.0896223 0.334475i
\(437\) 117.182 117.182i 0.268150 0.268150i
\(438\) 0 0
\(439\) 103.577 59.8002i 0.235938 0.136219i −0.377370 0.926063i \(-0.623172\pi\)
0.613309 + 0.789843i \(0.289838\pi\)
\(440\) −265.956 71.2627i −0.604445 0.161961i
\(441\) 0 0
\(442\) −356.772 267.163i −0.807177 0.604441i
\(443\) 56.7213 0.128039 0.0640195 0.997949i \(-0.479608\pi\)
0.0640195 + 0.997949i \(0.479608\pi\)
\(444\) 0 0
\(445\) 12.1787 + 21.0941i 0.0273679 + 0.0474025i
\(446\) 250.218 + 144.463i 0.561026 + 0.323909i
\(447\) 0 0
\(448\) 34.0312 9.11863i 0.0759625 0.0203541i
\(449\) −47.8299 178.504i −0.106525 0.397558i 0.891988 0.452058i \(-0.149310\pi\)
−0.998514 + 0.0545000i \(0.982643\pi\)
\(450\) 0 0
\(451\) −524.072 + 907.720i −1.16202 + 2.01268i
\(452\) −62.7464 + 36.2266i −0.138819 + 0.0801474i
\(453\) 0 0
\(454\) 157.321i 0.346522i
\(455\) 360.153 + 144.249i 0.791546 + 0.317030i
\(456\) 0 0
\(457\) 76.6418 286.031i 0.167706 0.625889i −0.829973 0.557803i \(-0.811644\pi\)
0.997680 0.0680852i \(-0.0216890\pi\)
\(458\) −212.309 367.730i −0.463557 0.802904i
\(459\) 0 0
\(460\) 60.2553 + 60.2553i 0.130990 + 0.130990i
\(461\) −596.206 + 159.753i −1.29329 + 0.346535i −0.838908 0.544273i \(-0.816806\pi\)
−0.454379 + 0.890808i \(0.650139\pi\)
\(462\) 0 0
\(463\) 198.699 198.699i 0.429156 0.429156i −0.459185 0.888341i \(-0.651858\pi\)
0.888341 + 0.459185i \(0.151858\pi\)
\(464\) 44.4447 76.9805i 0.0957860 0.165906i
\(465\) 0 0
\(466\) 63.6330 + 17.0504i 0.136552 + 0.0365889i
\(467\) 522.015i 1.11781i 0.829233 + 0.558903i \(0.188777\pi\)
−0.829233 + 0.558903i \(0.811223\pi\)
\(468\) 0 0
\(469\) −473.959 −1.01057
\(470\) −26.8570 + 100.232i −0.0571425 + 0.213259i
\(471\) 0 0
\(472\) −92.5203 53.4166i −0.196018 0.113171i
\(473\) 316.330 + 316.330i 0.668773 + 0.668773i
\(474\) 0 0
\(475\) 142.722 + 532.645i 0.300467 + 1.12136i
\(476\) 150.993 150.993i 0.317213 0.317213i
\(477\) 0 0
\(478\) 239.558 138.309i 0.501167 0.289349i
\(479\) −327.970 87.8794i −0.684698 0.183464i −0.100331 0.994954i \(-0.531990\pi\)
−0.584367 + 0.811490i \(0.698657\pi\)
\(480\) 0 0
\(481\) 9.82218 82.0413i 0.0204203 0.170564i
\(482\) 317.995 0.659741
\(483\) 0 0
\(484\) −85.3603 147.848i −0.176364 0.305472i
\(485\) 147.704 + 85.2771i 0.304545 + 0.175829i
\(486\) 0 0
\(487\) 208.431 55.8489i 0.427990 0.114679i −0.0383927 0.999263i \(-0.512224\pi\)
0.466382 + 0.884583i \(0.345557\pi\)
\(488\) −16.8897 63.0332i −0.0346100 0.129166i
\(489\) 0 0
\(490\) 141.860 245.709i 0.289510 0.501447i
\(491\) 480.847 277.617i 0.979322 0.565412i 0.0772564 0.997011i \(-0.475384\pi\)
0.902065 + 0.431600i \(0.142051\pi\)
\(492\) 0 0
\(493\) 538.753i 1.09280i
\(494\) −479.652 + 68.8874i −0.970956 + 0.139448i
\(495\) 0 0
\(496\) 12.5842 46.9649i 0.0253714 0.0946874i
\(497\) −5.03488 8.72067i −0.0101305 0.0175466i
\(498\) 0 0
\(499\) −401.619 401.619i −0.804847 0.804847i 0.179002 0.983849i \(-0.442713\pi\)
−0.983849 + 0.179002i \(0.942713\pi\)
\(500\) 53.3930 14.3066i 0.106786 0.0286132i
\(501\) 0 0
\(502\) 3.49014 3.49014i 0.00695247 0.00695247i
\(503\) −196.833 + 340.925i −0.391319 + 0.677784i −0.992624 0.121236i \(-0.961314\pi\)
0.601305 + 0.799020i \(0.294648\pi\)
\(504\) 0 0
\(505\) −993.706 266.263i −1.96773 0.527253i
\(506\) 127.732i 0.252435i
\(507\) 0 0
\(508\) 266.170 0.523957
\(509\) −113.097 + 422.083i −0.222194 + 0.829239i 0.761315 + 0.648382i \(0.224554\pi\)
−0.983509 + 0.180858i \(0.942113\pi\)
\(510\) 0 0
\(511\) 205.918 + 118.887i 0.402971 + 0.232655i
\(512\) −16.0000 16.0000i −0.0312500 0.0312500i
\(513\) 0 0
\(514\) 67.8659 + 253.279i 0.132035 + 0.492761i
\(515\) −83.2191 + 83.2191i −0.161591 + 0.161591i
\(516\) 0 0
\(517\) −134.704 + 77.7716i −0.260550 + 0.150429i
\(518\) 38.2368 + 10.2455i 0.0738162 + 0.0197790i
\(519\) 0 0
\(520\) −35.4223 246.640i −0.0681198 0.474307i
\(521\) −947.876 −1.81934 −0.909669 0.415333i \(-0.863665\pi\)
−0.909669 + 0.415333i \(0.863665\pi\)
\(522\) 0 0
\(523\) 68.3466 + 118.380i 0.130682 + 0.226348i 0.923940 0.382538i \(-0.124950\pi\)
−0.793258 + 0.608886i \(0.791617\pi\)
\(524\) 66.2923 + 38.2739i 0.126512 + 0.0730417i
\(525\) 0 0
\(526\) 255.927 68.5754i 0.486553 0.130372i
\(527\) −76.2721 284.651i −0.144729 0.540135i
\(528\) 0 0
\(529\) −244.734 + 423.892i −0.462635 + 0.801308i
\(530\) 280.205 161.776i 0.528689 0.305239i
\(531\) 0 0
\(532\) 232.153i 0.436378i
\(533\) −941.806 112.755i −1.76699 0.211548i
\(534\) 0 0
\(535\) 93.2946 348.180i 0.174382 0.650804i
\(536\) 152.199 + 263.617i 0.283954 + 0.491822i
\(537\) 0 0
\(538\) 344.012 + 344.012i 0.639427 + 0.639427i
\(539\) 410.794 110.072i 0.762141 0.204215i
\(540\) 0 0
\(541\) −394.763 + 394.763i −0.729691 + 0.729691i −0.970558 0.240867i \(-0.922568\pi\)
0.240867 + 0.970558i \(0.422568\pi\)
\(542\) −17.1517 + 29.7076i −0.0316452 + 0.0548110i
\(543\) 0 0
\(544\) −132.470 35.4953i −0.243511 0.0652487i
\(545\) 511.545i 0.938616i
\(546\) 0 0
\(547\) −716.303 −1.30951 −0.654756 0.755840i \(-0.727229\pi\)
−0.654756 + 0.755840i \(0.727229\pi\)
\(548\) −4.15932 + 15.5228i −0.00759000 + 0.0283263i
\(549\) 0 0
\(550\) −368.087 212.515i −0.669250 0.386392i
\(551\) −414.168 414.168i −0.751666 0.751666i
\(552\) 0 0
\(553\) −21.8048 81.3765i −0.0394300 0.147155i
\(554\) 494.891 494.891i 0.893306 0.893306i
\(555\) 0 0
\(556\) −422.553 + 243.961i −0.759988 + 0.438779i
\(557\) 58.2268 + 15.6018i 0.104536 + 0.0280104i 0.310708 0.950505i \(-0.399434\pi\)
−0.206172 + 0.978516i \(0.566101\pi\)
\(558\) 0 0
\(559\) −150.523 + 375.819i −0.269272 + 0.672306i
\(560\) 119.374 0.213169
\(561\) 0 0
\(562\) −145.653 252.278i −0.259168 0.448893i
\(563\) 233.194 + 134.635i 0.414199 + 0.239138i 0.692592 0.721329i \(-0.256469\pi\)
−0.278393 + 0.960467i \(0.589802\pi\)
\(564\) 0 0
\(565\) −237.126 + 63.5378i −0.419693 + 0.112456i
\(566\) 157.469 + 587.684i 0.278215 + 1.03831i
\(567\) 0 0
\(568\) −3.23364 + 5.60082i −0.00569302 + 0.00986060i
\(569\) −232.943 + 134.490i −0.409390 + 0.236361i −0.690528 0.723306i \(-0.742622\pi\)
0.281138 + 0.959667i \(0.409288\pi\)
\(570\) 0 0
\(571\) 328.719i 0.575689i 0.957677 + 0.287845i \(0.0929387\pi\)
−0.957677 + 0.287845i \(0.907061\pi\)
\(572\) 223.875 298.964i 0.391389 0.522665i
\(573\) 0 0
\(574\) 117.615 438.945i 0.204904 0.764713i
\(575\) 65.7711 + 113.919i 0.114384 + 0.198120i
\(576\) 0 0
\(577\) −18.1490 18.1490i −0.0314540 0.0314540i 0.691205 0.722659i \(-0.257080\pi\)
−0.722659 + 0.691205i \(0.757080\pi\)
\(578\) −408.111 + 109.353i −0.706075 + 0.189192i
\(579\) 0 0
\(580\) 212.967 212.967i 0.367185 0.367185i
\(581\) 108.283 187.551i 0.186373 0.322807i
\(582\) 0 0
\(583\) 468.467 + 125.525i 0.803546 + 0.215309i
\(584\) 152.709i 0.261488i
\(585\) 0 0
\(586\) 134.179 0.228975
\(587\) 30.1430 112.495i 0.0513509 0.191644i −0.935486 0.353364i \(-0.885038\pi\)
0.986837 + 0.161720i \(0.0517042\pi\)
\(588\) 0 0
\(589\) −277.461 160.192i −0.471072 0.271973i
\(590\) −255.958 255.958i −0.433828 0.433828i
\(591\) 0 0
\(592\) −6.58015 24.5574i −0.0111151 0.0414822i
\(593\) −215.404 + 215.404i −0.363244 + 0.363244i −0.865006 0.501762i \(-0.832685\pi\)
0.501762 + 0.865006i \(0.332685\pi\)
\(594\) 0 0
\(595\) 626.587 361.760i 1.05309 0.608000i
\(596\) 365.374 + 97.9017i 0.613044 + 0.164265i
\(597\) 0 0
\(598\) −106.267 + 45.4866i −0.177704 + 0.0760646i
\(599\) 657.704 1.09800 0.549002 0.835821i \(-0.315008\pi\)
0.549002 + 0.835821i \(0.315008\pi\)
\(600\) 0 0
\(601\) −149.567 259.057i −0.248863 0.431044i 0.714347 0.699791i \(-0.246724\pi\)
−0.963211 + 0.268747i \(0.913390\pi\)
\(602\) −167.970 96.9774i −0.279019 0.161092i
\(603\) 0 0
\(604\) 192.881 51.6824i 0.319340 0.0855669i
\(605\) −149.713 558.737i −0.247460 0.923532i
\(606\) 0 0
\(607\) 355.980 616.576i 0.586459 1.01578i −0.408233 0.912878i \(-0.633855\pi\)
0.994692 0.102898i \(-0.0328116\pi\)
\(608\) −129.124 + 74.5498i −0.212375 + 0.122615i
\(609\) 0 0
\(610\) 221.107i 0.362471i
\(611\) −112.672 84.3723i −0.184405 0.138089i
\(612\) 0 0
\(613\) 189.142 705.887i 0.308551 1.15153i −0.621294 0.783578i \(-0.713393\pi\)
0.929845 0.367951i \(-0.119941\pi\)
\(614\) 210.306 + 364.260i 0.342517 + 0.593257i
\(615\) 0 0
\(616\) 126.528 + 126.528i 0.205402 + 0.205402i
\(617\) −338.746 + 90.7668i −0.549021 + 0.147110i −0.522658 0.852543i \(-0.675059\pi\)
−0.0263636 + 0.999652i \(0.508393\pi\)
\(618\) 0 0
\(619\) 283.795 283.795i 0.458474 0.458474i −0.439680 0.898154i \(-0.644908\pi\)
0.898154 + 0.439680i \(0.144908\pi\)
\(620\) 82.3717 142.672i 0.132858 0.230116i
\(621\) 0 0
\(622\) 336.894 + 90.2704i 0.541630 + 0.145129i
\(623\) 15.8295i 0.0254084i
\(624\) 0 0
\(625\) 710.329 1.13653
\(626\) 43.3837 161.910i 0.0693030 0.258642i
\(627\) 0 0
\(628\) −306.216 176.794i −0.487606 0.281519i
\(629\) −108.959 108.959i −0.173226 0.173226i
\(630\) 0 0
\(631\) −298.859 1115.36i −0.473627 1.76760i −0.626570 0.779365i \(-0.715542\pi\)
0.152944 0.988235i \(-0.451125\pi\)
\(632\) −38.2597 + 38.2597i −0.0605376 + 0.0605376i
\(633\) 0 0
\(634\) −493.312 + 284.814i −0.778094 + 0.449233i
\(635\) 871.126 + 233.417i 1.37185 + 0.367587i
\(636\) 0 0
\(637\) 237.862 + 302.563i 0.373410 + 0.474981i
\(638\) 451.459 0.707615
\(639\) 0 0
\(640\) −38.3339 66.3963i −0.0598967 0.103744i
\(641\) −225.174 130.005i −0.351286 0.202815i 0.313965 0.949434i \(-0.398342\pi\)
−0.665252 + 0.746619i \(0.731676\pi\)
\(642\) 0 0
\(643\) 11.9154 3.19272i 0.0185309 0.00496535i −0.249542 0.968364i \(-0.580280\pi\)
0.268073 + 0.963399i \(0.413613\pi\)
\(644\) −14.3332 53.4921i −0.0222565 0.0830622i
\(645\) 0 0
\(646\) −451.841 + 782.612i −0.699445 + 1.21147i
\(647\) −822.864 + 475.081i −1.27182 + 0.734283i −0.975329 0.220755i \(-0.929148\pi\)
−0.296486 + 0.955037i \(0.595815\pi\)
\(648\) 0 0
\(649\) 542.593i 0.836045i
\(650\) 45.7231 381.909i 0.0703432 0.587553i
\(651\) 0 0
\(652\) 62.7624 234.232i 0.0962613 0.359252i
\(653\) 282.884 + 489.970i 0.433207 + 0.750336i 0.997147 0.0754792i \(-0.0240486\pi\)
−0.563941 + 0.825815i \(0.690715\pi\)
\(654\) 0 0
\(655\) 183.398 + 183.398i 0.279997 + 0.279997i
\(656\) −281.911 + 75.5378i −0.429742 + 0.115149i
\(657\) 0 0
\(658\) 47.6849 47.6849i 0.0724695 0.0724695i
\(659\) 190.174 329.390i 0.288579 0.499833i −0.684892 0.728645i \(-0.740151\pi\)
0.973471 + 0.228811i \(0.0734839\pi\)
\(660\) 0 0
\(661\) −960.224 257.291i −1.45268 0.389245i −0.555728 0.831364i \(-0.687560\pi\)
−0.896956 + 0.442119i \(0.854227\pi\)
\(662\) 634.128i 0.957898i
\(663\) 0 0
\(664\) −139.088 −0.209470
\(665\) 203.586 759.795i 0.306145 1.14255i
\(666\) 0 0
\(667\) −121.002 69.8606i −0.181413 0.104739i
\(668\) 419.609 + 419.609i 0.628158 + 0.628158i
\(669\) 0 0
\(670\) 266.942 + 996.240i 0.398420 + 1.48693i
\(671\) 234.357 234.357i 0.349266 0.349266i
\(672\) 0 0
\(673\) −548.632 + 316.753i −0.815204 + 0.470658i −0.848760 0.528779i \(-0.822650\pi\)
0.0335560 + 0.999437i \(0.489317\pi\)
\(674\) −648.117 173.663i −0.961599 0.257660i
\(675\) 0 0
\(676\) 328.448 + 79.7887i 0.485869 + 0.118031i
\(677\) 221.745 0.327540 0.163770 0.986499i \(-0.447634\pi\)
0.163770 + 0.986499i \(0.447634\pi\)
\(678\) 0 0
\(679\) −55.4201 95.9905i −0.0816202 0.141370i
\(680\) −402.423 232.339i −0.591799 0.341675i
\(681\) 0 0
\(682\) 238.529 63.9137i 0.349750 0.0937152i
\(683\) −173.007 645.671i −0.253304 0.945345i −0.969026 0.246959i \(-0.920569\pi\)
0.715722 0.698386i \(-0.246098\pi\)
\(684\) 0 0
\(685\) −27.2254 + 47.1558i −0.0397451 + 0.0688405i
\(686\) −423.975 + 244.782i −0.618039 + 0.356825i
\(687\) 0 0
\(688\) 124.567i 0.181056i
\(689\) 62.3944 + 434.443i 0.0905580 + 0.630541i
\(690\) 0 0
\(691\) −146.869 + 548.121i −0.212545 + 0.793229i 0.774471 + 0.632609i \(0.218016\pi\)
−0.987016 + 0.160620i \(0.948651\pi\)
\(692\) −278.490 482.359i −0.402442 0.697050i
\(693\) 0 0
\(694\) −533.636 533.636i −0.768927 0.768927i
\(695\) −1596.88 + 427.883i −2.29767 + 0.615659i
\(696\) 0 0
\(697\) −1250.81 + 1250.81i −1.79457 + 1.79457i
\(698\) −191.046 + 330.901i −0.273704 + 0.474070i
\(699\) 0 0
\(700\) 177.996 + 47.6938i 0.254280 + 0.0681340i
\(701\) 597.453i 0.852287i −0.904656 0.426143i \(-0.859872\pi\)
0.904656 0.426143i \(-0.140128\pi\)
\(702\) 0 0
\(703\) −167.526 −0.238301
\(704\) 29.7440 111.006i 0.0422500 0.157679i
\(705\) 0 0
\(706\) 432.314 + 249.596i 0.612342 + 0.353536i
\(707\) 472.753 + 472.753i 0.668675 + 0.668675i
\(708\) 0 0
\(709\) −10.2632 38.3029i −0.0144757 0.0540239i 0.958310 0.285730i \(-0.0922360\pi\)
−0.972786 + 0.231706i \(0.925569\pi\)
\(710\) −15.4947 + 15.4947i −0.0218236 + 0.0218236i
\(711\) 0 0
\(712\) −8.80437 + 5.08321i −0.0123657 + 0.00713934i
\(713\) −73.8221 19.7806i −0.103537 0.0277427i
\(714\) 0 0
\(715\) 994.877 782.129i 1.39144 1.09389i
\(716\) 157.509 0.219985
\(717\) 0 0
\(718\) −116.092 201.077i −0.161688 0.280051i
\(719\) 864.778 + 499.280i 1.20275 + 0.694409i 0.961166 0.275971i \(-0.0889993\pi\)
0.241585 + 0.970380i \(0.422333\pi\)
\(720\) 0 0
\(721\) 73.8783 19.7956i 0.102466 0.0274558i
\(722\) 122.146 + 455.855i 0.169177 + 0.631379i
\(723\) 0 0
\(724\) 200.758 347.724i 0.277290 0.480281i
\(725\) 402.636 232.462i 0.555360 0.320638i
\(726\) 0 0
\(727\) 685.178i 0.942473i −0.882007 0.471237i \(-0.843808\pi\)
0.882007 0.471237i \(-0.156192\pi\)
\(728\) −60.2073 + 150.323i −0.0827023 + 0.206487i
\(729\) 0 0
\(730\) 133.918 499.789i 0.183450 0.684643i
\(731\) 377.495 + 653.841i 0.516409 + 0.894447i
\(732\) 0 0
\(733\) 176.253 + 176.253i 0.240454 + 0.240454i 0.817038 0.576584i \(-0.195615\pi\)
−0.576584 + 0.817038i \(0.695615\pi\)
\(734\) 937.537 251.212i 1.27730 0.342251i
\(735\) 0 0
\(736\) −25.1497 + 25.1497i −0.0341708 + 0.0341708i
\(737\) −773.001 + 1338.88i −1.04885 + 1.81666i
\(738\) 0 0
\(739\) 1337.69 + 358.434i 1.81014 + 0.485026i 0.995485 0.0949200i \(-0.0302595\pi\)
0.814655 + 0.579946i \(0.196926\pi\)
\(740\) 86.1425i 0.116409i
\(741\) 0 0
\(742\) −210.272 −0.283385
\(743\) 150.945 563.335i 0.203156 0.758190i −0.786847 0.617148i \(-0.788288\pi\)
0.990004 0.141042i \(-0.0450452\pi\)
\(744\) 0 0
\(745\) 1109.95 + 640.829i 1.48986 + 0.860173i
\(746\) 617.271 + 617.271i 0.827441 + 0.827441i
\(747\) 0 0
\(748\) −180.276 672.800i −0.241011 0.899466i
\(749\) −165.646 + 165.646i −0.221156 + 0.221156i
\(750\) 0 0
\(751\) −1012.32 + 584.461i −1.34796 + 0.778244i −0.987960 0.154709i \(-0.950556\pi\)
−0.359998 + 0.932953i \(0.617223\pi\)
\(752\) −41.8352 11.2097i −0.0556319 0.0149065i
\(753\) 0 0
\(754\) 160.769 + 375.591i 0.213221 + 0.498132i
\(755\) 676.588 0.896143
\(756\) 0 0
\(757\) 561.343 + 972.275i 0.741537 + 1.28438i 0.951796 + 0.306733i \(0.0992360\pi\)
−0.210259 + 0.977646i \(0.567431\pi\)
\(758\) −657.282 379.482i −0.867126 0.500636i
\(759\) 0 0
\(760\) −487.976 + 130.753i −0.642073 + 0.172043i
\(761\) −246.221 918.907i −0.323549 1.20750i −0.915763 0.401719i \(-0.868413\pi\)
0.592214 0.805781i \(-0.298254\pi\)
\(762\) 0 0
\(763\) −166.222 + 287.906i −0.217854 + 0.377334i
\(764\) −70.2001 + 40.5301i −0.0918850 + 0.0530498i
\(765\) 0 0
\(766\) 370.506i 0.483690i
\(767\) 451.411 193.222i 0.588541 0.251920i
\(768\) 0 0
\(769\) −53.4110 + 199.332i −0.0694551 + 0.259210i −0.991919 0.126874i \(-0.959506\pi\)
0.922464 + 0.386084i \(0.126172\pi\)
\(770\) 303.144 + 525.061i 0.393694 + 0.681898i
\(771\) 0 0
\(772\) 205.193 + 205.193i 0.265794 + 0.265794i
\(773\) 431.675 115.667i 0.558441 0.149634i 0.0314512 0.999505i \(-0.489987\pi\)
0.526990 + 0.849871i \(0.323320\pi\)
\(774\) 0 0
\(775\) 179.824 179.824i 0.232031 0.232031i
\(776\) −35.5934 + 61.6496i −0.0458678 + 0.0794453i
\(777\) 0 0
\(778\) −252.156 67.5651i −0.324108 0.0868445i
\(779\) 1923.14i 2.46872i
\(780\) 0 0
\(781\) −32.8465 −0.0420570
\(782\) −55.7934 + 208.224i −0.0713471 + 0.266271i
\(783\) 0 0
\(784\) 102.555 + 59.2103i 0.130810 + 0.0755233i
\(785\) −847.151 847.151i −1.07917 1.07917i
\(786\) 0 0
\(787\) 173.642 + 648.040i 0.220638 + 0.823431i 0.984105 + 0.177585i \(0.0568284\pi\)
−0.763468 + 0.645846i \(0.776505\pi\)
\(788\) −218.963 + 218.963i −0.277872 + 0.277872i
\(789\) 0 0
\(790\) −158.769 + 91.6653i −0.200973 + 0.116032i
\(791\) 154.104 + 41.2921i 0.194822 + 0.0522025i
\(792\) 0 0
\(793\) 278.430 + 111.517i 0.351110 + 0.140627i
\(794\) −359.016 −0.452162
\(795\) 0 0
\(796\) 260.350 + 450.940i 0.327073 + 0.566508i
\(797\) 207.230 + 119.644i 0.260013 + 0.150118i 0.624340 0.781152i \(-0.285368\pi\)
−0.364328 + 0.931271i \(0.618701\pi\)
\(798\) 0 0
\(799\) −253.560 + 67.9413i −0.317347 + 0.0850329i
\(800\) −30.6312 114.317i −0.0382890 0.142896i
\(801\) 0 0
\(802\) −191.654 + 331.955i −0.238971 + 0.413909i
\(803\) 671.683 387.796i 0.836466 0.482934i
\(804\) 0 0
\(805\) 187.639i 0.233092i
\(806\) 138.116 + 175.684i 0.171359 + 0.217971i
\(807\) 0 0
\(808\) 111.134 414.758i 0.137542 0.513315i
\(809\) 234.046 + 405.380i 0.289303 + 0.501088i 0.973644 0.228075i \(-0.0732431\pi\)
−0.684340 + 0.729163i \(0.739910\pi\)
\(810\) 0 0
\(811\) −680.928 680.928i −0.839615 0.839615i 0.149193 0.988808i \(-0.452332\pi\)
−0.988808 + 0.149193i \(0.952332\pi\)
\(812\) −189.063 + 50.6593i −0.232836 + 0.0623883i
\(813\) 0 0
\(814\) 91.3046 91.3046i 0.112168 0.112168i
\(815\) 410.819 711.560i 0.504073 0.873080i
\(816\) 0 0
\(817\) 792.843 + 212.442i 0.970433 + 0.260027i
\(818\) 223.270i 0.272946i
\(819\) 0 0
\(820\) −988.886 −1.20596
\(821\) 326.171 1217.29i 0.397285 1.48269i −0.420569 0.907260i \(-0.638170\pi\)
0.817854 0.575426i \(-0.195164\pi\)
\(822\) 0 0
\(823\) 499.204 + 288.216i 0.606566 + 0.350201i 0.771620 0.636083i \(-0.219447\pi\)
−0.165054 + 0.986285i \(0.552780\pi\)
\(824\) −34.7344 34.7344i −0.0421534 0.0421534i
\(825\) 0 0
\(826\) 60.8858 + 227.229i 0.0737116 + 0.275095i
\(827\) −434.651 + 434.651i −0.525575 + 0.525575i −0.919250 0.393675i \(-0.871204\pi\)
0.393675 + 0.919250i \(0.371204\pi\)
\(828\) 0 0
\(829\) −109.340 + 63.1272i −0.131893 + 0.0761486i −0.564495 0.825437i \(-0.690929\pi\)
0.432602 + 0.901585i \(0.357596\pi\)
\(830\) −455.210 121.973i −0.548446 0.146956i
\(831\) 0 0
\(832\) 102.944 14.7847i 0.123730 0.0177701i
\(833\) 717.739 0.861632
\(834\) 0 0
\(835\) 1005.33 + 1741.28i 1.20399 + 2.08537i
\(836\) −655.806 378.630i −0.784457 0.452906i
\(837\) 0 0
\(838\) 891.299 238.823i 1.06360 0.284991i
\(839\) 329.574 + 1229.99i 0.392817 + 1.46601i 0.825466 + 0.564451i \(0.190912\pi\)
−0.432649 + 0.901562i \(0.642421\pi\)
\(840\) 0 0
\(841\) 173.584 300.656i 0.206401 0.357498i
\(842\) −510.220 + 294.576i −0.605962 + 0.349852i
\(843\) 0 0
\(844\) 832.812i 0.986744i
\(845\) 1004.98 + 549.165i 1.18932 + 0.649900i
\(846\) 0 0
\(847\) −97.2960 + 363.114i −0.114871 + 0.428706i
\(848\) 67.5231 + 116.953i 0.0796263 + 0.137917i
\(849\) 0 0
\(850\) −507.215 507.215i −0.596723 0.596723i
\(851\) −38.6007 + 10.3430i −0.0453593 + 0.0121540i
\(852\) 0 0
\(853\) 162.871 162.871i 0.190939 0.190939i −0.605163 0.796102i \(-0.706892\pi\)
0.796102 + 0.605163i \(0.206892\pi\)
\(854\) −71.8470 + 124.443i −0.0841299 + 0.145717i
\(855\) 0 0
\(856\) 145.325 + 38.9398i 0.169772 + 0.0454904i
\(857\) 1077.67i 1.25750i 0.777609 + 0.628748i \(0.216432\pi\)
−0.777609 + 0.628748i \(0.783568\pi\)
\(858\) 0 0
\(859\) 654.044 0.761402 0.380701 0.924698i \(-0.375683\pi\)
0.380701 + 0.924698i \(0.375683\pi\)
\(860\) −109.239 + 407.684i −0.127022 + 0.474051i
\(861\) 0 0
\(862\) −86.4982 49.9398i −0.100346 0.0579348i
\(863\) −916.358 916.358i −1.06183 1.06183i −0.997958 0.0638705i \(-0.979656\pi\)
−0.0638705 0.997958i \(-0.520344\pi\)
\(864\) 0 0
\(865\) −488.443 1822.89i −0.564674 2.10739i
\(866\) −466.918 + 466.918i −0.539167 + 0.539167i
\(867\) 0 0
\(868\) −92.7201 + 53.5320i −0.106820 + 0.0616728i
\(869\) −265.441 71.1248i −0.305456 0.0818468i
\(870\) 0 0
\(871\) −1389.15 166.313i −1.59490 0.190945i
\(872\) 213.512 0.244853
\(873\) 0 0
\(874\) 117.182 + 202.964i 0.134075 + 0.232225i
\(875\) −105.411 60.8589i −0.120469 0.0695530i
\(876\) 0 0
\(877\) −886.252 + 237.471i −1.01055 + 0.270776i −0.725859 0.687843i \(-0.758558\pi\)
−0.284691 + 0.958619i \(0.591891\pi\)
\(878\) 43.7768 + 163.377i 0.0498597 + 0.186079i
\(879\) 0 0
\(880\) 194.693 337.219i 0.221242 0.383203i
\(881\) −837.311 + 483.422i −0.950410 + 0.548719i −0.893208 0.449643i \(-0.851551\pi\)
−0.0572017 + 0.998363i \(0.518218\pi\)
\(882\) 0 0
\(883\) 1129.48i 1.27914i −0.768731 0.639572i \(-0.779112\pi\)
0.768731 0.639572i \(-0.220888\pi\)
\(884\) 495.539 389.571i 0.560564 0.440692i
\(885\) 0 0
\(886\) −20.7614 + 77.4827i −0.0234328 + 0.0874523i
\(887\) −827.477 1433.23i −0.932894 1.61582i −0.778347 0.627834i \(-0.783942\pi\)
−0.154547 0.987985i \(-0.549392\pi\)
\(888\) 0 0
\(889\) −414.436 414.436i −0.466182 0.466182i
\(890\) −33.2728 + 8.91542i −0.0373852 + 0.0100173i
\(891\) 0 0
\(892\) −288.926 + 288.926i −0.323909 + 0.323909i
\(893\) −142.695 + 247.155i −0.159793 + 0.276770i
\(894\) 0 0
\(895\) 515.500 + 138.128i 0.575977 + 0.154333i
\(896\) 49.8251i 0.0556084i
\(897\) 0 0
\(898\) 261.348 0.291033
\(899\) −69.9127 + 260.918i −0.0777672 + 0.290231i
\(900\) 0 0
\(901\) 708.847 + 409.253i 0.786733 + 0.454221i
\(902\) −1048.14 1048.14i −1.16202 1.16202i
\(903\) 0 0
\(904\) −26.5197 98.9730i −0.0293360 0.109483i
\(905\) 961.981 961.981i 1.06296 1.06296i
\(906\) 0 0
\(907\) 386.408 223.093i 0.426029 0.245968i −0.271625 0.962403i \(-0.587561\pi\)
0.697653 + 0.716435i \(0.254228\pi\)
\(908\) −214.904 57.5835i −0.236679 0.0634179i
\(909\) 0 0
\(910\) −328.873 + 439.180i −0.361399 + 0.482615i
\(911\) −1639.85 −1.80005 −0.900025 0.435838i \(-0.856452\pi\)
−0.900025 + 0.435838i \(0.856452\pi\)
\(912\) 0 0
\(913\) −353.206 611.771i −0.386863 0.670067i
\(914\) 362.673 + 209.389i 0.396797 + 0.229091i
\(915\) 0 0
\(916\) 580.039 155.421i 0.633231 0.169674i
\(917\) −43.6256 162.813i −0.0475743 0.177550i
\(918\) 0 0
\(919\) −595.311 + 1031.11i −0.647782 + 1.12199i 0.335870 + 0.941908i \(0.390970\pi\)
−0.983652 + 0.180082i \(0.942364\pi\)
\(920\) −104.365 + 60.2553i −0.113441 + 0.0654949i
\(921\) 0 0
\(922\) 872.906i 0.946752i
\(923\) −11.6969 27.3267i −0.0126727 0.0296064i
\(924\) 0 0
\(925\) 34.4166 128.445i 0.0372071 0.138859i
\(926\) 198.699 + 344.157i 0.214578 + 0.371660i
\(927\) 0 0
\(928\) 88.8894 + 88.8894i 0.0957860 + 0.0957860i
\(929\) 770.131 206.356i 0.828990 0.222127i 0.180717 0.983535i \(-0.442158\pi\)
0.648273 + 0.761408i \(0.275492\pi\)
\(930\) 0 0
\(931\) 551.765 551.765i 0.592658 0.592658i
\(932\) −46.5826 + 80.6834i −0.0499813 + 0.0865702i
\(933\) 0 0
\(934\) −713.086 191.071i −0.763475 0.204573i
\(935\) 2360.05i 2.52411i
\(936\) 0 0
\(937\) 406.611 0.433950 0.216975 0.976177i \(-0.430381\pi\)
0.216975 + 0.976177i \(0.430381\pi\)
\(938\) 173.481 647.440i 0.184948 0.690234i
\(939\) 0 0
\(940\) −127.089 73.3746i −0.135201 0.0780581i
\(941\) 67.4219 + 67.4219i 0.0716492 + 0.0716492i 0.742023 0.670374i \(-0.233866\pi\)
−0.670374 + 0.742023i \(0.733866\pi\)
\(942\) 0 0
\(943\) 118.735 + 443.123i 0.125911 + 0.469908i
\(944\) 106.833 106.833i 0.113171 0.113171i
\(945\) 0 0
\(946\) −547.899 + 316.330i −0.579175 + 0.334387i
\(947\) 1589.57 + 425.925i 1.67853 + 0.449762i 0.967392 0.253285i \(-0.0815112\pi\)
0.711143 + 0.703047i \(0.248178\pi\)
\(948\) 0 0
\(949\) 561.820 + 420.709i 0.592012 + 0.443318i
\(950\) −779.846 −0.820891
\(951\) 0 0
\(952\) 150.993 + 261.528i 0.158606 + 0.274714i
\(953\) 807.423 + 466.166i 0.847243 + 0.489156i 0.859720 0.510766i \(-0.170638\pi\)
−0.0124765 + 0.999922i \(0.503971\pi\)
\(954\) 0 0
\(955\) −265.295 + 71.0856i −0.277796 + 0.0744351i
\(956\) 101.249 + 377.866i 0.105909 + 0.395258i
\(957\) 0 0
\(958\) 240.091 415.850i 0.250617 0.434081i
\(959\) 30.6457 17.6933i 0.0319559 0.0184498i
\(960\) 0 0
\(961\) 813.246i 0.846249i
\(962\) 108.475 + 43.4465i 0.112760 + 0.0451627i
\(963\) 0 0
\(964\) −116.394 + 434.389i −0.120741 + 0.450611i
\(965\) 491.615 + 851.503i 0.509446 + 0.882386i
\(966\) 0 0
\(967\) −540.669 540.669i −0.559120 0.559120i 0.369937 0.929057i \(-0.379379\pi\)
−0.929057 + 0.369937i \(0.879379\pi\)
\(968\) 233.209 62.4880i 0.240918 0.0645538i
\(969\) 0 0
\(970\) −170.554 + 170.554i −0.175829 + 0.175829i
\(971\) 848.378 1469.43i 0.873716 1.51332i 0.0155919 0.999878i \(-0.495037\pi\)
0.858124 0.513442i \(-0.171630\pi\)
\(972\) 0 0
\(973\) 1037.79 + 278.074i 1.06658 + 0.285790i
\(974\) 305.164i 0.313310i
\(975\) 0 0
\(976\) 92.2869 0.0945563
\(977\) −73.8571 + 275.638i −0.0755958 + 0.282127i −0.993368 0.114981i \(-0.963319\pi\)
0.917772 + 0.397108i \(0.129986\pi\)
\(978\) 0 0
\(979\) −44.7164 25.8170i −0.0456756 0.0263708i
\(980\) 283.720 + 283.720i 0.289510 + 0.289510i
\(981\) 0 0
\(982\) 203.230 + 758.464i 0.206955 + 0.772367i
\(983\) 41.0192 41.0192i 0.0417286 0.0417286i −0.685935 0.727663i \(-0.740606\pi\)
0.727663 + 0.685935i \(0.240606\pi\)
\(984\) 0 0
\(985\) −908.647 + 524.607i −0.922484 + 0.532596i
\(986\) 735.950 + 197.197i 0.746399 + 0.199997i
\(987\) 0 0
\(988\) 81.4629 680.432i 0.0824523 0.688696i
\(989\) 195.801 0.197979
\(990\) 0 0
\(991\) −188.074 325.754i −0.189782 0.328712i 0.755395 0.655269i \(-0.227445\pi\)
−0.945178 + 0.326557i \(0.894111\pi\)
\(992\) 59.5492 + 34.3807i 0.0600294 + 0.0346580i
\(993\) 0 0
\(994\) 13.7556 3.68579i 0.0138386 0.00370804i
\(995\) 456.628 + 1704.16i 0.458922 + 1.71272i
\(996\) 0 0
\(997\) 722.549 1251.49i 0.724724 1.25526i −0.234364 0.972149i \(-0.575301\pi\)
0.959088 0.283109i \(-0.0913659\pi\)
\(998\) 695.624 401.619i 0.697018 0.402424i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 234.3.bb.f.37.1 8
3.2 odd 2 26.3.f.b.11.1 8
12.11 even 2 208.3.bd.f.193.2 8
13.6 odd 12 inner 234.3.bb.f.19.1 8
39.2 even 12 338.3.d.g.239.3 8
39.5 even 4 338.3.f.h.249.1 8
39.8 even 4 338.3.f.j.249.1 8
39.11 even 12 338.3.d.f.239.3 8
39.17 odd 6 338.3.f.j.319.1 8
39.20 even 12 338.3.f.i.19.1 8
39.23 odd 6 338.3.d.f.99.3 8
39.29 odd 6 338.3.d.g.99.3 8
39.32 even 12 26.3.f.b.19.1 yes 8
39.35 odd 6 338.3.f.h.319.1 8
39.38 odd 2 338.3.f.i.89.1 8
156.71 odd 12 208.3.bd.f.97.2 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
26.3.f.b.11.1 8 3.2 odd 2
26.3.f.b.19.1 yes 8 39.32 even 12
208.3.bd.f.97.2 8 156.71 odd 12
208.3.bd.f.193.2 8 12.11 even 2
234.3.bb.f.19.1 8 13.6 odd 12 inner
234.3.bb.f.37.1 8 1.1 even 1 trivial
338.3.d.f.99.3 8 39.23 odd 6
338.3.d.f.239.3 8 39.11 even 12
338.3.d.g.99.3 8 39.29 odd 6
338.3.d.g.239.3 8 39.2 even 12
338.3.f.h.249.1 8 39.5 even 4
338.3.f.h.319.1 8 39.35 odd 6
338.3.f.i.19.1 8 39.20 even 12
338.3.f.i.89.1 8 39.38 odd 2
338.3.f.j.249.1 8 39.8 even 4
338.3.f.j.319.1 8 39.17 odd 6