Properties

Label 234.3.bb.f.19.1
Level $234$
Weight $3$
Character 234.19
Analytic conductor $6.376$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [234,3,Mod(19,234)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(234, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([0, 5])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("234.19"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 234 = 2 \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 234.bb (of order \(12\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,4,0,0,-6,0,-2,16,0,-18] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(10)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.37603818603\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{12})\)
Coefficient field: 8.0.612074651904.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 74x^{6} + 2067x^{4} - 25778x^{2} + 121801 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 26)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 19.1
Root \(3.90972 + 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 234.19
Dual form 234.3.bb.f.37.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.366025 - 1.36603i) q^{2} +(-1.73205 + 1.00000i) q^{4} +(-4.79174 + 4.79174i) q^{5} +(1.13983 - 4.25390i) q^{7} +(2.00000 + 2.00000i) q^{8} +(8.29953 + 4.79174i) q^{10} +(13.8758 - 3.71800i) q^{11} +(1.84809 - 12.8680i) q^{13} -6.22814 q^{14} +(2.00000 - 3.46410i) q^{16} +(20.9957 - 12.1219i) q^{17} +(25.4592 + 6.82178i) q^{19} +(3.50779 - 13.0913i) q^{20} +(-10.1578 - 17.5938i) q^{22} +(5.44507 + 3.14371i) q^{23} -20.9215i q^{25} +(-18.2544 + 2.18546i) q^{26} +(2.27966 + 8.50779i) q^{28} +(-11.1112 + 19.2451i) q^{29} +(-8.59518 + 8.59518i) q^{31} +(-5.46410 - 1.46410i) q^{32} +(-24.2437 - 24.2437i) q^{34} +(14.9218 + 25.8453i) q^{35} +(-6.13936 + 1.64504i) q^{37} -37.2749i q^{38} -19.1669 q^{40} +(-18.8845 - 70.4778i) q^{41} +(26.9695 - 15.5708i) q^{43} +(-20.3155 + 20.3155i) q^{44} +(2.30136 - 8.58878i) q^{46} +(-7.65637 - 7.65637i) q^{47} +(25.6388 + 14.8026i) q^{49} +(-28.5793 + 7.65779i) q^{50} +(9.66698 + 24.1361i) q^{52} +33.7616 q^{53} +(-48.6733 + 84.3047i) q^{55} +(10.7875 - 6.22814i) q^{56} +(30.3563 + 8.13394i) q^{58} +(-9.77592 + 36.4842i) q^{59} +(11.5359 + 19.9807i) q^{61} +(14.8873 + 8.59518i) q^{62} +8.00000i q^{64} +(52.8043 + 70.5155i) q^{65} +(-27.8544 - 103.954i) q^{67} +(-24.2437 + 41.9914i) q^{68} +(29.8436 - 29.8436i) q^{70} +(-2.20861 - 0.591796i) q^{71} +(38.1773 + 38.1773i) q^{73} +(4.49432 + 7.78440i) q^{74} +(-50.9185 + 13.6436i) q^{76} -63.2639i q^{77} -19.1299 q^{79} +(7.01559 + 26.1825i) q^{80} +(-89.3622 + 51.5933i) q^{82} +(-34.7720 + 34.7720i) q^{83} +(-42.5210 + 158.691i) q^{85} +(-31.1417 - 31.1417i) q^{86} +(35.1875 + 20.3155i) q^{88} +(-3.47190 + 0.930292i) q^{89} +(-52.6325 - 22.5289i) q^{91} -12.5748 q^{92} +(-7.65637 + 13.2612i) q^{94} +(-154.682 + 89.3058i) q^{95} +(-24.3107 - 6.51404i) q^{97} +(10.8362 - 40.4414i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 4 q^{2} - 6 q^{5} - 2 q^{7} + 16 q^{8} - 18 q^{10} + 18 q^{11} + 36 q^{13} - 20 q^{14} + 16 q^{16} + 42 q^{17} + 46 q^{19} - 24 q^{20} - 42 q^{22} + 36 q^{23} - 40 q^{26} - 4 q^{28} + 6 q^{29} + 32 q^{31}+ \cdots + 250 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/234\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(209\)
\(\chi(n)\) \(e\left(\frac{5}{12}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.366025 1.36603i −0.183013 0.683013i
\(3\) 0 0
\(4\) −1.73205 + 1.00000i −0.433013 + 0.250000i
\(5\) −4.79174 + 4.79174i −0.958347 + 0.958347i −0.999167 0.0408192i \(-0.987003\pi\)
0.0408192 + 0.999167i \(0.487003\pi\)
\(6\) 0 0
\(7\) 1.13983 4.25390i 0.162833 0.607700i −0.835474 0.549530i \(-0.814807\pi\)
0.998307 0.0581698i \(-0.0185265\pi\)
\(8\) 2.00000 + 2.00000i 0.250000 + 0.250000i
\(9\) 0 0
\(10\) 8.29953 + 4.79174i 0.829953 + 0.479174i
\(11\) 13.8758 3.71800i 1.26143 0.338000i 0.434690 0.900580i \(-0.356858\pi\)
0.826743 + 0.562580i \(0.190191\pi\)
\(12\) 0 0
\(13\) 1.84809 12.8680i 0.142161 0.989844i
\(14\) −6.22814 −0.444867
\(15\) 0 0
\(16\) 2.00000 3.46410i 0.125000 0.216506i
\(17\) 20.9957 12.1219i 1.23504 0.713051i 0.266964 0.963707i \(-0.413980\pi\)
0.968076 + 0.250656i \(0.0806462\pi\)
\(18\) 0 0
\(19\) 25.4592 + 6.82178i 1.33996 + 0.359041i 0.856419 0.516281i \(-0.172684\pi\)
0.483540 + 0.875322i \(0.339351\pi\)
\(20\) 3.50779 13.0913i 0.175390 0.654563i
\(21\) 0 0
\(22\) −10.1578 17.5938i −0.461716 0.799716i
\(23\) 5.44507 + 3.14371i 0.236742 + 0.136683i 0.613678 0.789556i \(-0.289689\pi\)
−0.376936 + 0.926239i \(0.623022\pi\)
\(24\) 0 0
\(25\) 20.9215i 0.836859i
\(26\) −18.2544 + 2.18546i −0.702093 + 0.0840562i
\(27\) 0 0
\(28\) 2.27966 + 8.50779i 0.0814163 + 0.303850i
\(29\) −11.1112 + 19.2451i −0.383144 + 0.663625i −0.991510 0.130032i \(-0.958492\pi\)
0.608366 + 0.793657i \(0.291825\pi\)
\(30\) 0 0
\(31\) −8.59518 + 8.59518i −0.277264 + 0.277264i −0.832016 0.554752i \(-0.812813\pi\)
0.554752 + 0.832016i \(0.312813\pi\)
\(32\) −5.46410 1.46410i −0.170753 0.0457532i
\(33\) 0 0
\(34\) −24.2437 24.2437i −0.713051 0.713051i
\(35\) 14.9218 + 25.8453i 0.426337 + 0.738438i
\(36\) 0 0
\(37\) −6.13936 + 1.64504i −0.165929 + 0.0444605i −0.340827 0.940126i \(-0.610707\pi\)
0.174898 + 0.984587i \(0.444040\pi\)
\(38\) 37.2749i 0.980919i
\(39\) 0 0
\(40\) −19.1669 −0.479174
\(41\) −18.8845 70.4778i −0.460596 1.71897i −0.671091 0.741375i \(-0.734174\pi\)
0.210495 0.977595i \(-0.432492\pi\)
\(42\) 0 0
\(43\) 26.9695 15.5708i 0.627197 0.362113i −0.152468 0.988308i \(-0.548722\pi\)
0.779666 + 0.626196i \(0.215389\pi\)
\(44\) −20.3155 + 20.3155i −0.461716 + 0.461716i
\(45\) 0 0
\(46\) 2.30136 8.58878i 0.0500295 0.186713i
\(47\) −7.65637 7.65637i −0.162902 0.162902i 0.620949 0.783851i \(-0.286747\pi\)
−0.783851 + 0.620949i \(0.786747\pi\)
\(48\) 0 0
\(49\) 25.6388 + 14.8026i 0.523241 + 0.302093i
\(50\) −28.5793 + 7.65779i −0.571585 + 0.153156i
\(51\) 0 0
\(52\) 9.66698 + 24.1361i 0.185903 + 0.464155i
\(53\) 33.7616 0.637010 0.318505 0.947921i \(-0.396819\pi\)
0.318505 + 0.947921i \(0.396819\pi\)
\(54\) 0 0
\(55\) −48.6733 + 84.3047i −0.884969 + 1.53281i
\(56\) 10.7875 6.22814i 0.192633 0.111217i
\(57\) 0 0
\(58\) 30.3563 + 8.13394i 0.523384 + 0.140240i
\(59\) −9.77592 + 36.4842i −0.165694 + 0.618377i 0.832257 + 0.554390i \(0.187048\pi\)
−0.997951 + 0.0639871i \(0.979618\pi\)
\(60\) 0 0
\(61\) 11.5359 + 19.9807i 0.189113 + 0.327553i 0.944955 0.327201i \(-0.106106\pi\)
−0.755842 + 0.654754i \(0.772772\pi\)
\(62\) 14.8873 + 8.59518i 0.240118 + 0.138632i
\(63\) 0 0
\(64\) 8.00000i 0.125000i
\(65\) 52.8043 + 70.5155i 0.812374 + 1.08485i
\(66\) 0 0
\(67\) −27.8544 103.954i −0.415737 1.55155i −0.783355 0.621575i \(-0.786493\pi\)
0.367618 0.929977i \(-0.380173\pi\)
\(68\) −24.2437 + 41.9914i −0.356525 + 0.617520i
\(69\) 0 0
\(70\) 29.8436 29.8436i 0.426337 0.426337i
\(71\) −2.20861 0.591796i −0.0311072 0.00833516i 0.243232 0.969968i \(-0.421792\pi\)
−0.274339 + 0.961633i \(0.588459\pi\)
\(72\) 0 0
\(73\) 38.1773 + 38.1773i 0.522977 + 0.522977i 0.918469 0.395492i \(-0.129426\pi\)
−0.395492 + 0.918469i \(0.629426\pi\)
\(74\) 4.49432 + 7.78440i 0.0607341 + 0.105195i
\(75\) 0 0
\(76\) −50.9185 + 13.6436i −0.669980 + 0.179521i
\(77\) 63.2639i 0.821610i
\(78\) 0 0
\(79\) −19.1299 −0.242150 −0.121075 0.992643i \(-0.538634\pi\)
−0.121075 + 0.992643i \(0.538634\pi\)
\(80\) 7.01559 + 26.1825i 0.0876949 + 0.327282i
\(81\) 0 0
\(82\) −89.3622 + 51.5933i −1.08978 + 0.629187i
\(83\) −34.7720 + 34.7720i −0.418940 + 0.418940i −0.884838 0.465898i \(-0.845731\pi\)
0.465898 + 0.884838i \(0.345731\pi\)
\(84\) 0 0
\(85\) −42.5210 + 158.691i −0.500247 + 1.86695i
\(86\) −31.1417 31.1417i −0.362113 0.362113i
\(87\) 0 0
\(88\) 35.1875 + 20.3155i 0.399858 + 0.230858i
\(89\) −3.47190 + 0.930292i −0.0390101 + 0.0104527i −0.278271 0.960503i \(-0.589761\pi\)
0.239261 + 0.970955i \(0.423095\pi\)
\(90\) 0 0
\(91\) −52.6325 22.5289i −0.578379 0.247570i
\(92\) −12.5748 −0.136683
\(93\) 0 0
\(94\) −7.65637 + 13.2612i −0.0814508 + 0.141077i
\(95\) −154.682 + 89.3058i −1.62823 + 0.940061i
\(96\) 0 0
\(97\) −24.3107 6.51404i −0.250626 0.0671551i 0.131319 0.991340i \(-0.458079\pi\)
−0.381945 + 0.924185i \(0.624746\pi\)
\(98\) 10.8362 40.4414i 0.110574 0.412667i
\(99\) 0 0
\(100\) 20.9215 + 36.2371i 0.209215 + 0.362371i
\(101\) 131.473 + 75.9060i 1.30171 + 0.751545i 0.980698 0.195529i \(-0.0626425\pi\)
0.321016 + 0.947074i \(0.395976\pi\)
\(102\) 0 0
\(103\) 17.3672i 0.168614i 0.996440 + 0.0843069i \(0.0268676\pi\)
−0.996440 + 0.0843069i \(0.973132\pi\)
\(104\) 29.4321 22.0397i 0.283001 0.211921i
\(105\) 0 0
\(106\) −12.3576 46.1191i −0.116581 0.435086i
\(107\) 26.5964 46.0662i 0.248564 0.430526i −0.714564 0.699571i \(-0.753375\pi\)
0.963128 + 0.269045i \(0.0867080\pi\)
\(108\) 0 0
\(109\) 53.3779 53.3779i 0.489705 0.489705i −0.418508 0.908213i \(-0.637447\pi\)
0.908213 + 0.418508i \(0.137447\pi\)
\(110\) 132.978 + 35.6313i 1.20889 + 0.323921i
\(111\) 0 0
\(112\) −12.4563 12.4563i −0.111217 0.111217i
\(113\) 18.1133 + 31.3732i 0.160295 + 0.277639i 0.934974 0.354715i \(-0.115422\pi\)
−0.774680 + 0.632354i \(0.782089\pi\)
\(114\) 0 0
\(115\) −41.1552 + 11.0275i −0.357871 + 0.0958912i
\(116\) 44.4447i 0.383144i
\(117\) 0 0
\(118\) 53.4166 0.452683
\(119\) −27.6337 103.130i −0.232216 0.866641i
\(120\) 0 0
\(121\) 73.9242 42.6801i 0.610943 0.352728i
\(122\) 23.0717 23.0717i 0.189113 0.189113i
\(123\) 0 0
\(124\) 6.29211 23.4825i 0.0507428 0.189375i
\(125\) −19.5432 19.5432i −0.156346 0.156346i
\(126\) 0 0
\(127\) −115.255 66.5425i −0.907520 0.523957i −0.0278874 0.999611i \(-0.508878\pi\)
−0.879632 + 0.475654i \(0.842211\pi\)
\(128\) 10.9282 2.92820i 0.0853766 0.0228766i
\(129\) 0 0
\(130\) 76.9982 97.9425i 0.592294 0.753404i
\(131\) −38.2739 −0.292167 −0.146083 0.989272i \(-0.546667\pi\)
−0.146083 + 0.989272i \(0.546667\pi\)
\(132\) 0 0
\(133\) 58.0383 100.525i 0.436378 0.755829i
\(134\) −131.808 + 76.0996i −0.983644 + 0.567907i
\(135\) 0 0
\(136\) 66.2351 + 17.7476i 0.487023 + 0.130497i
\(137\) −2.07966 + 7.76140i −0.0151800 + 0.0566525i −0.973100 0.230381i \(-0.926003\pi\)
0.957920 + 0.287034i \(0.0926693\pi\)
\(138\) 0 0
\(139\) 121.981 + 211.277i 0.877558 + 1.51998i 0.854012 + 0.520253i \(0.174162\pi\)
0.0235463 + 0.999723i \(0.492504\pi\)
\(140\) −51.6906 29.8436i −0.369219 0.213169i
\(141\) 0 0
\(142\) 3.23364i 0.0227721i
\(143\) −22.1994 185.424i −0.155241 1.29667i
\(144\) 0 0
\(145\) −38.9757 145.459i −0.268798 1.00317i
\(146\) 38.1773 66.1251i 0.261488 0.452911i
\(147\) 0 0
\(148\) 8.98865 8.98865i 0.0607341 0.0607341i
\(149\) −182.687 48.9509i −1.22609 0.328529i −0.413033 0.910716i \(-0.635531\pi\)
−0.813055 + 0.582187i \(0.802197\pi\)
\(150\) 0 0
\(151\) −70.5995 70.5995i −0.467546 0.467546i 0.433573 0.901119i \(-0.357253\pi\)
−0.901119 + 0.433573i \(0.857253\pi\)
\(152\) 37.2749 + 64.5620i 0.245230 + 0.424750i
\(153\) 0 0
\(154\) −86.4202 + 23.1562i −0.561170 + 0.150365i
\(155\) 82.3717i 0.531430i
\(156\) 0 0
\(157\) 176.794 1.12608 0.563038 0.826431i \(-0.309632\pi\)
0.563038 + 0.826431i \(0.309632\pi\)
\(158\) 7.00202 + 26.1319i 0.0443166 + 0.165392i
\(159\) 0 0
\(160\) 33.1981 19.1669i 0.207488 0.119793i
\(161\) 19.5795 19.5795i 0.121612 0.121612i
\(162\) 0 0
\(163\) 31.3812 117.116i 0.192523 0.718504i −0.800372 0.599504i \(-0.795365\pi\)
0.992894 0.119000i \(-0.0379688\pi\)
\(164\) 103.187 + 103.187i 0.629187 + 0.629187i
\(165\) 0 0
\(166\) 60.2269 + 34.7720i 0.362813 + 0.209470i
\(167\) −286.599 + 76.7939i −1.71616 + 0.459844i −0.976921 0.213601i \(-0.931481\pi\)
−0.739238 + 0.673444i \(0.764814\pi\)
\(168\) 0 0
\(169\) −162.169 47.5624i −0.959581 0.281434i
\(170\) 232.339 1.36670
\(171\) 0 0
\(172\) −31.1417 + 53.9390i −0.181056 + 0.313599i
\(173\) 241.179 139.245i 1.39410 0.804884i 0.400334 0.916369i \(-0.368894\pi\)
0.993766 + 0.111485i \(0.0355608\pi\)
\(174\) 0 0
\(175\) −88.9978 23.8469i −0.508559 0.136268i
\(176\) 14.8720 55.5030i 0.0845000 0.315358i
\(177\) 0 0
\(178\) 2.54160 + 4.40219i 0.0142787 + 0.0247314i
\(179\) −68.2036 39.3774i −0.381026 0.219985i 0.297239 0.954803i \(-0.403934\pi\)
−0.678264 + 0.734818i \(0.737268\pi\)
\(180\) 0 0
\(181\) 200.758i 1.10916i −0.832130 0.554581i \(-0.812879\pi\)
0.832130 0.554581i \(-0.187121\pi\)
\(182\) −11.5102 + 80.1435i −0.0632427 + 0.440349i
\(183\) 0 0
\(184\) 4.60271 + 17.1776i 0.0250147 + 0.0933563i
\(185\) 21.5356 37.3008i 0.116409 0.201626i
\(186\) 0 0
\(187\) 246.262 246.262i 1.31691 1.31691i
\(188\) 20.9176 + 5.60485i 0.111264 + 0.0298131i
\(189\) 0 0
\(190\) 178.612 + 178.612i 0.940061 + 0.940061i
\(191\) 20.2650 + 35.1001i 0.106100 + 0.183770i 0.914187 0.405293i \(-0.132830\pi\)
−0.808087 + 0.589063i \(0.799497\pi\)
\(192\) 0 0
\(193\) −140.149 + 37.5529i −0.726163 + 0.194575i −0.602920 0.797802i \(-0.705996\pi\)
−0.123243 + 0.992377i \(0.539329\pi\)
\(194\) 35.5934i 0.183471i
\(195\) 0 0
\(196\) −59.2103 −0.302093
\(197\) 40.0731 + 149.555i 0.203417 + 0.759161i 0.989926 + 0.141583i \(0.0452193\pi\)
−0.786510 + 0.617578i \(0.788114\pi\)
\(198\) 0 0
\(199\) −225.470 + 130.175i −1.13302 + 0.654147i −0.944691 0.327960i \(-0.893639\pi\)
−0.188324 + 0.982107i \(0.560305\pi\)
\(200\) 41.8430 41.8430i 0.209215 0.209215i
\(201\) 0 0
\(202\) 55.5671 207.379i 0.275084 1.02663i
\(203\) 69.2019 + 69.2019i 0.340896 + 0.340896i
\(204\) 0 0
\(205\) 428.200 + 247.221i 2.08878 + 1.20596i
\(206\) 23.7241 6.35684i 0.115165 0.0308585i
\(207\) 0 0
\(208\) −40.8798 32.1379i −0.196537 0.154509i
\(209\) 378.630 1.81162
\(210\) 0 0
\(211\) −208.203 + 360.618i −0.986744 + 1.70909i −0.352831 + 0.935687i \(0.614781\pi\)
−0.633913 + 0.773404i \(0.718552\pi\)
\(212\) −58.4767 + 33.7616i −0.275834 + 0.159253i
\(213\) 0 0
\(214\) −72.6626 19.4699i −0.339545 0.0909808i
\(215\) −54.6193 + 203.842i −0.254043 + 0.948103i
\(216\) 0 0
\(217\) 26.7660 + 46.3600i 0.123346 + 0.213641i
\(218\) −92.4532 53.3779i −0.424097 0.244853i
\(219\) 0 0
\(220\) 194.693i 0.884969i
\(221\) −117.182 292.574i −0.530234 1.32386i
\(222\) 0 0
\(223\) 52.8772 + 197.340i 0.237118 + 0.884935i 0.977183 + 0.212400i \(0.0681279\pi\)
−0.740065 + 0.672535i \(0.765205\pi\)
\(224\) −12.4563 + 21.5749i −0.0556084 + 0.0963165i
\(225\) 0 0
\(226\) 36.2266 36.2266i 0.160295 0.160295i
\(227\) 107.452 + 28.7917i 0.473358 + 0.126836i 0.487608 0.873063i \(-0.337870\pi\)
−0.0142503 + 0.999898i \(0.504536\pi\)
\(228\) 0 0
\(229\) −212.309 212.309i −0.927114 0.927114i 0.0704045 0.997519i \(-0.477571\pi\)
−0.997519 + 0.0704045i \(0.977571\pi\)
\(230\) 30.1277 + 52.1826i 0.130990 + 0.226881i
\(231\) 0 0
\(232\) −60.7126 + 16.2679i −0.261692 + 0.0701202i
\(233\) 46.5826i 0.199925i 0.994991 + 0.0999627i \(0.0318723\pi\)
−0.994991 + 0.0999627i \(0.968128\pi\)
\(234\) 0 0
\(235\) 73.3746 0.312233
\(236\) −19.5518 72.9685i −0.0828468 0.309188i
\(237\) 0 0
\(238\) −130.764 + 75.4966i −0.549429 + 0.317213i
\(239\) −138.309 + 138.309i −0.578698 + 0.578698i −0.934544 0.355847i \(-0.884192\pi\)
0.355847 + 0.934544i \(0.384192\pi\)
\(240\) 0 0
\(241\) −58.1972 + 217.195i −0.241482 + 0.901223i 0.733637 + 0.679541i \(0.237821\pi\)
−0.975119 + 0.221682i \(0.928845\pi\)
\(242\) −85.3603 85.3603i −0.352728 0.352728i
\(243\) 0 0
\(244\) −39.9614 23.0717i −0.163776 0.0945563i
\(245\) −193.784 + 51.9244i −0.790957 + 0.211936i
\(246\) 0 0
\(247\) 134.833 315.001i 0.545884 1.27531i
\(248\) −34.3807 −0.138632
\(249\) 0 0
\(250\) −19.5432 + 33.8498i −0.0781728 + 0.135399i
\(251\) −3.02255 + 1.74507i −0.0120420 + 0.00695247i −0.506009 0.862528i \(-0.668880\pi\)
0.493967 + 0.869481i \(0.335546\pi\)
\(252\) 0 0
\(253\) 87.2427 + 23.3766i 0.344833 + 0.0923977i
\(254\) −48.7125 + 181.798i −0.191781 + 0.715738i
\(255\) 0 0
\(256\) −8.00000 13.8564i −0.0312500 0.0541266i
\(257\) 160.572 + 92.7065i 0.624795 + 0.360726i 0.778734 0.627355i \(-0.215862\pi\)
−0.153938 + 0.988080i \(0.549196\pi\)
\(258\) 0 0
\(259\) 27.9913i 0.108074i
\(260\) −161.975 69.3320i −0.622982 0.266662i
\(261\) 0 0
\(262\) 14.0092 + 52.2831i 0.0534703 + 0.199554i
\(263\) −93.6758 + 162.251i −0.356182 + 0.616925i −0.987319 0.158746i \(-0.949255\pi\)
0.631138 + 0.775671i \(0.282588\pi\)
\(264\) 0 0
\(265\) −161.776 + 161.776i −0.610477 + 0.610477i
\(266\) −158.564 42.4870i −0.596104 0.159726i
\(267\) 0 0
\(268\) 152.199 + 152.199i 0.567907 + 0.567907i
\(269\) 172.006 + 297.923i 0.639427 + 1.10752i 0.985559 + 0.169334i \(0.0541617\pi\)
−0.346132 + 0.938186i \(0.612505\pi\)
\(270\) 0 0
\(271\) 23.4296 6.27795i 0.0864562 0.0231659i −0.215332 0.976541i \(-0.569083\pi\)
0.301788 + 0.953375i \(0.402417\pi\)
\(272\) 96.9749i 0.356525i
\(273\) 0 0
\(274\) 11.3635 0.0414725
\(275\) −77.7860 290.301i −0.282858 1.05564i
\(276\) 0 0
\(277\) −428.588 + 247.446i −1.54725 + 0.893306i −0.548901 + 0.835888i \(0.684953\pi\)
−0.998350 + 0.0574180i \(0.981713\pi\)
\(278\) 243.961 243.961i 0.877558 0.877558i
\(279\) 0 0
\(280\) −21.8470 + 81.5342i −0.0780251 + 0.291194i
\(281\) −145.653 145.653i −0.518337 0.518337i 0.398731 0.917068i \(-0.369451\pi\)
−0.917068 + 0.398731i \(0.869451\pi\)
\(282\) 0 0
\(283\) 372.577 + 215.107i 1.31653 + 0.760096i 0.983168 0.182704i \(-0.0584851\pi\)
0.333357 + 0.942801i \(0.391818\pi\)
\(284\) 4.41723 1.18359i 0.0155536 0.00416758i
\(285\) 0 0
\(286\) −245.168 + 98.1949i −0.857232 + 0.343339i
\(287\) −321.330 −1.11962
\(288\) 0 0
\(289\) 149.379 258.732i 0.516883 0.895267i
\(290\) −184.435 + 106.484i −0.635983 + 0.367185i
\(291\) 0 0
\(292\) −104.302 27.9477i −0.357200 0.0957114i
\(293\) −24.5565 + 91.6460i −0.0838105 + 0.312785i −0.995086 0.0990115i \(-0.968432\pi\)
0.911276 + 0.411797i \(0.135099\pi\)
\(294\) 0 0
\(295\) −127.979 221.667i −0.433828 0.751412i
\(296\) −15.5688 8.98865i −0.0525973 0.0303671i
\(297\) 0 0
\(298\) 267.473i 0.897559i
\(299\) 50.5161 64.2571i 0.168950 0.214907i
\(300\) 0 0
\(301\) −35.4962 132.474i −0.117927 0.440111i
\(302\) −70.5995 + 122.282i −0.233773 + 0.404907i
\(303\) 0 0
\(304\) 74.5498 74.5498i 0.245230 0.245230i
\(305\) −151.019 40.4655i −0.495145 0.132674i
\(306\) 0 0
\(307\) 210.306 + 210.306i 0.685035 + 0.685035i 0.961130 0.276095i \(-0.0890406\pi\)
−0.276095 + 0.961130i \(0.589041\pi\)
\(308\) 63.2639 + 109.576i 0.205402 + 0.355767i
\(309\) 0 0
\(310\) −112.522 + 30.1501i −0.362974 + 0.0972585i
\(311\) 246.623i 0.793001i 0.918035 + 0.396500i \(0.129775\pi\)
−0.918035 + 0.396500i \(0.870225\pi\)
\(312\) 0 0
\(313\) −118.526 −0.378679 −0.189339 0.981912i \(-0.560635\pi\)
−0.189339 + 0.981912i \(0.560635\pi\)
\(314\) −64.7111 241.505i −0.206086 0.769125i
\(315\) 0 0
\(316\) 33.1339 19.1299i 0.104854 0.0605376i
\(317\) 284.814 284.814i 0.898466 0.898466i −0.0968348 0.995300i \(-0.530872\pi\)
0.995300 + 0.0968348i \(0.0308718\pi\)
\(318\) 0 0
\(319\) −82.6227 + 308.352i −0.259005 + 0.966621i
\(320\) −38.3339 38.3339i −0.119793 0.119793i
\(321\) 0 0
\(322\) −33.9126 19.5795i −0.105319 0.0608058i
\(323\) 617.227 165.385i 1.91092 0.512029i
\(324\) 0 0
\(325\) −269.217 38.6648i −0.828360 0.118969i
\(326\) −171.470 −0.525981
\(327\) 0 0
\(328\) 103.187 178.724i 0.314593 0.544892i
\(329\) −41.2964 + 23.8425i −0.125521 + 0.0724695i
\(330\) 0 0
\(331\) −433.118 116.054i −1.30851 0.350615i −0.463850 0.885914i \(-0.653532\pi\)
−0.844663 + 0.535299i \(0.820199\pi\)
\(332\) 25.4549 94.9990i 0.0766714 0.286141i
\(333\) 0 0
\(334\) 209.805 + 363.392i 0.628158 + 1.08800i
\(335\) 631.591 + 364.649i 1.88535 + 1.08850i
\(336\) 0 0
\(337\) 474.455i 1.40788i −0.710260 0.703939i \(-0.751423\pi\)
0.710260 0.703939i \(-0.248577\pi\)
\(338\) −5.61338 + 238.936i −0.0166076 + 0.706912i
\(339\) 0 0
\(340\) −85.0420 317.381i −0.250124 0.933474i
\(341\) −87.3078 + 151.222i −0.256035 + 0.443465i
\(342\) 0 0
\(343\) 244.782 244.782i 0.713650 0.713650i
\(344\) 85.0807 + 22.7973i 0.247328 + 0.0662712i
\(345\) 0 0
\(346\) −278.490 278.490i −0.804884 0.804884i
\(347\) −266.818 462.142i −0.768927 1.33182i −0.938145 0.346242i \(-0.887457\pi\)
0.169218 0.985579i \(-0.445876\pi\)
\(348\) 0 0
\(349\) 260.973 69.9275i 0.747774 0.200365i 0.135244 0.990812i \(-0.456818\pi\)
0.612531 + 0.790447i \(0.290152\pi\)
\(350\) 130.302i 0.372291i
\(351\) 0 0
\(352\) −81.2621 −0.230858
\(353\) 91.3587 + 340.955i 0.258806 + 0.965879i 0.965933 + 0.258792i \(0.0833243\pi\)
−0.707127 + 0.707087i \(0.750009\pi\)
\(354\) 0 0
\(355\) 13.4188 7.74736i 0.0377995 0.0218236i
\(356\) 5.08321 5.08321i 0.0142787 0.0142787i
\(357\) 0 0
\(358\) −28.8262 + 107.581i −0.0805202 + 0.300505i
\(359\) −116.092 116.092i −0.323375 0.323375i 0.526685 0.850060i \(-0.323435\pi\)
−0.850060 + 0.526685i \(0.823435\pi\)
\(360\) 0 0
\(361\) 289.001 + 166.855i 0.800556 + 0.462201i
\(362\) −274.241 + 73.4826i −0.757572 + 0.202991i
\(363\) 0 0
\(364\) 113.691 13.6114i 0.312338 0.0373938i
\(365\) −365.871 −1.00239
\(366\) 0 0
\(367\) −343.162 + 594.375i −0.935047 + 1.61955i −0.160497 + 0.987036i \(0.551310\pi\)
−0.774550 + 0.632513i \(0.782024\pi\)
\(368\) 21.7803 12.5748i 0.0591855 0.0341708i
\(369\) 0 0
\(370\) −58.8364 15.7652i −0.159017 0.0426086i
\(371\) 38.4824 143.618i 0.103726 0.387111i
\(372\) 0 0
\(373\) 308.636 + 534.572i 0.827441 + 1.43317i 0.900039 + 0.435809i \(0.143538\pi\)
−0.0725981 + 0.997361i \(0.523129\pi\)
\(374\) −426.538 246.262i −1.14048 0.658455i
\(375\) 0 0
\(376\) 30.6255i 0.0814508i
\(377\) 227.111 + 178.545i 0.602417 + 0.473594i
\(378\) 0 0
\(379\) −138.900 518.382i −0.366491 1.36776i −0.865389 0.501101i \(-0.832928\pi\)
0.498898 0.866661i \(-0.333738\pi\)
\(380\) 178.612 309.364i 0.470030 0.814116i
\(381\) 0 0
\(382\) 40.5301 40.5301i 0.106100 0.106100i
\(383\) 253.061 + 67.8074i 0.660732 + 0.177043i 0.573577 0.819152i \(-0.305556\pi\)
0.0871559 + 0.996195i \(0.472222\pi\)
\(384\) 0 0
\(385\) 303.144 + 303.144i 0.787387 + 0.787387i
\(386\) 102.596 + 177.702i 0.265794 + 0.460369i
\(387\) 0 0
\(388\) 48.6215 13.0281i 0.125313 0.0335775i
\(389\) 184.591i 0.474527i −0.971445 0.237264i \(-0.923749\pi\)
0.971445 0.237264i \(-0.0762505\pi\)
\(390\) 0 0
\(391\) 152.431 0.389848
\(392\) 21.6725 + 80.8828i 0.0552869 + 0.206334i
\(393\) 0 0
\(394\) 189.628 109.482i 0.481289 0.277872i
\(395\) 91.6653 91.6653i 0.232064 0.232064i
\(396\) 0 0
\(397\) 65.7046 245.213i 0.165503 0.617664i −0.832473 0.554066i \(-0.813076\pi\)
0.997976 0.0635986i \(-0.0202578\pi\)
\(398\) 260.350 + 260.350i 0.654147 + 0.654147i
\(399\) 0 0
\(400\) −72.4741 41.8430i −0.181185 0.104607i
\(401\) 261.805 70.1504i 0.652880 0.174939i 0.0828492 0.996562i \(-0.473598\pi\)
0.570031 + 0.821623i \(0.306931\pi\)
\(402\) 0 0
\(403\) 94.7178 + 126.487i 0.235032 + 0.313864i
\(404\) −303.624 −0.751545
\(405\) 0 0
\(406\) 69.2019 119.861i 0.170448 0.295225i
\(407\) −79.0721 + 45.6523i −0.194280 + 0.112168i
\(408\) 0 0
\(409\) 152.496 + 40.8612i 0.372851 + 0.0999051i 0.440378 0.897812i \(-0.354844\pi\)
−0.0675274 + 0.997717i \(0.521511\pi\)
\(410\) 180.979 675.422i 0.441411 1.64737i
\(411\) 0 0
\(412\) −17.3672 30.0809i −0.0421534 0.0730119i
\(413\) 144.057 + 83.1715i 0.348807 + 0.201384i
\(414\) 0 0
\(415\) 333.237i 0.802980i
\(416\) −28.9382 + 67.6061i −0.0695629 + 0.162515i
\(417\) 0 0
\(418\) −138.588 517.218i −0.331550 1.23736i
\(419\) −326.238 + 565.061i −0.778611 + 1.34859i 0.154132 + 0.988050i \(0.450742\pi\)
−0.932743 + 0.360543i \(0.882591\pi\)
\(420\) 0 0
\(421\) 294.576 294.576i 0.699704 0.699704i −0.264642 0.964347i \(-0.585254\pi\)
0.964347 + 0.264642i \(0.0852538\pi\)
\(422\) 568.821 + 152.415i 1.34792 + 0.361173i
\(423\) 0 0
\(424\) 67.5231 + 67.5231i 0.159253 + 0.159253i
\(425\) −253.607 439.261i −0.596723 1.03355i
\(426\) 0 0
\(427\) 98.1448 26.2978i 0.229847 0.0615874i
\(428\) 106.385i 0.248564i
\(429\) 0 0
\(430\) 298.445 0.694059
\(431\) −18.2792 68.2190i −0.0424112 0.158281i 0.941473 0.337089i \(-0.109442\pi\)
−0.983884 + 0.178808i \(0.942776\pi\)
\(432\) 0 0
\(433\) 404.363 233.459i 0.933864 0.539167i 0.0458326 0.998949i \(-0.485406\pi\)
0.888032 + 0.459782i \(0.152073\pi\)
\(434\) 53.5320 53.5320i 0.123346 0.123346i
\(435\) 0 0
\(436\) −39.0753 + 145.831i −0.0896223 + 0.334475i
\(437\) 117.182 + 117.182i 0.268150 + 0.268150i
\(438\) 0 0
\(439\) 103.577 + 59.8002i 0.235938 + 0.136219i 0.613309 0.789843i \(-0.289838\pi\)
−0.377370 + 0.926063i \(0.623172\pi\)
\(440\) −265.956 + 71.2627i −0.604445 + 0.161961i
\(441\) 0 0
\(442\) −356.772 + 267.163i −0.807177 + 0.604441i
\(443\) 56.7213 0.128039 0.0640195 0.997949i \(-0.479608\pi\)
0.0640195 + 0.997949i \(0.479608\pi\)
\(444\) 0 0
\(445\) 12.1787 21.0941i 0.0273679 0.0474025i
\(446\) 250.218 144.463i 0.561026 0.323909i
\(447\) 0 0
\(448\) 34.0312 + 9.11863i 0.0759625 + 0.0203541i
\(449\) −47.8299 + 178.504i −0.106525 + 0.397558i −0.998514 0.0545000i \(-0.982643\pi\)
0.891988 + 0.452058i \(0.149310\pi\)
\(450\) 0 0
\(451\) −524.072 907.720i −1.16202 2.01268i
\(452\) −62.7464 36.2266i −0.138819 0.0801474i
\(453\) 0 0
\(454\) 157.321i 0.346522i
\(455\) 360.153 144.249i 0.791546 0.317030i
\(456\) 0 0
\(457\) 76.6418 + 286.031i 0.167706 + 0.625889i 0.997680 + 0.0680852i \(0.0216890\pi\)
−0.829973 + 0.557803i \(0.811644\pi\)
\(458\) −212.309 + 367.730i −0.463557 + 0.802904i
\(459\) 0 0
\(460\) 60.2553 60.2553i 0.130990 0.130990i
\(461\) −596.206 159.753i −1.29329 0.346535i −0.454379 0.890808i \(-0.650139\pi\)
−0.838908 + 0.544273i \(0.816806\pi\)
\(462\) 0 0
\(463\) 198.699 + 198.699i 0.429156 + 0.429156i 0.888341 0.459185i \(-0.151858\pi\)
−0.459185 + 0.888341i \(0.651858\pi\)
\(464\) 44.4447 + 76.9805i 0.0957860 + 0.165906i
\(465\) 0 0
\(466\) 63.6330 17.0504i 0.136552 0.0365889i
\(467\) 522.015i 1.11781i −0.829233 0.558903i \(-0.811223\pi\)
0.829233 0.558903i \(-0.188777\pi\)
\(468\) 0 0
\(469\) −473.959 −1.01057
\(470\) −26.8570 100.232i −0.0571425 0.213259i
\(471\) 0 0
\(472\) −92.5203 + 53.4166i −0.196018 + 0.113171i
\(473\) 316.330 316.330i 0.668773 0.668773i
\(474\) 0 0
\(475\) 142.722 532.645i 0.300467 1.12136i
\(476\) 150.993 + 150.993i 0.317213 + 0.317213i
\(477\) 0 0
\(478\) 239.558 + 138.309i 0.501167 + 0.289349i
\(479\) −327.970 + 87.8794i −0.684698 + 0.183464i −0.584367 0.811490i \(-0.698657\pi\)
−0.100331 + 0.994954i \(0.531990\pi\)
\(480\) 0 0
\(481\) 9.82218 + 82.0413i 0.0204203 + 0.170564i
\(482\) 317.995 0.659741
\(483\) 0 0
\(484\) −85.3603 + 147.848i −0.176364 + 0.305472i
\(485\) 147.704 85.2771i 0.304545 0.175829i
\(486\) 0 0
\(487\) 208.431 + 55.8489i 0.427990 + 0.114679i 0.466382 0.884583i \(-0.345557\pi\)
−0.0383927 + 0.999263i \(0.512224\pi\)
\(488\) −16.8897 + 63.0332i −0.0346100 + 0.129166i
\(489\) 0 0
\(490\) 141.860 + 245.709i 0.289510 + 0.501447i
\(491\) 480.847 + 277.617i 0.979322 + 0.565412i 0.902065 0.431600i \(-0.142051\pi\)
0.0772564 + 0.997011i \(0.475384\pi\)
\(492\) 0 0
\(493\) 538.753i 1.09280i
\(494\) −479.652 68.8874i −0.970956 0.139448i
\(495\) 0 0
\(496\) 12.5842 + 46.9649i 0.0253714 + 0.0946874i
\(497\) −5.03488 + 8.72067i −0.0101305 + 0.0175466i
\(498\) 0 0
\(499\) −401.619 + 401.619i −0.804847 + 0.804847i −0.983849 0.179002i \(-0.942713\pi\)
0.179002 + 0.983849i \(0.442713\pi\)
\(500\) 53.3930 + 14.3066i 0.106786 + 0.0286132i
\(501\) 0 0
\(502\) 3.49014 + 3.49014i 0.00695247 + 0.00695247i
\(503\) −196.833 340.925i −0.391319 0.677784i 0.601305 0.799020i \(-0.294648\pi\)
−0.992624 + 0.121236i \(0.961314\pi\)
\(504\) 0 0
\(505\) −993.706 + 266.263i −1.96773 + 0.527253i
\(506\) 127.732i 0.252435i
\(507\) 0 0
\(508\) 266.170 0.523957
\(509\) −113.097 422.083i −0.222194 0.829239i −0.983509 0.180858i \(-0.942113\pi\)
0.761315 0.648382i \(-0.224554\pi\)
\(510\) 0 0
\(511\) 205.918 118.887i 0.402971 0.232655i
\(512\) −16.0000 + 16.0000i −0.0312500 + 0.0312500i
\(513\) 0 0
\(514\) 67.8659 253.279i 0.132035 0.492761i
\(515\) −83.2191 83.2191i −0.161591 0.161591i
\(516\) 0 0
\(517\) −134.704 77.7716i −0.260550 0.150429i
\(518\) 38.2368 10.2455i 0.0738162 0.0197790i
\(519\) 0 0
\(520\) −35.4223 + 246.640i −0.0681198 + 0.474307i
\(521\) −947.876 −1.81934 −0.909669 0.415333i \(-0.863665\pi\)
−0.909669 + 0.415333i \(0.863665\pi\)
\(522\) 0 0
\(523\) 68.3466 118.380i 0.130682 0.226348i −0.793258 0.608886i \(-0.791617\pi\)
0.923940 + 0.382538i \(0.124950\pi\)
\(524\) 66.2923 38.2739i 0.126512 0.0730417i
\(525\) 0 0
\(526\) 255.927 + 68.5754i 0.486553 + 0.130372i
\(527\) −76.2721 + 284.651i −0.144729 + 0.540135i
\(528\) 0 0
\(529\) −244.734 423.892i −0.462635 0.801308i
\(530\) 280.205 + 161.776i 0.528689 + 0.305239i
\(531\) 0 0
\(532\) 232.153i 0.436378i
\(533\) −941.806 + 112.755i −1.76699 + 0.211548i
\(534\) 0 0
\(535\) 93.2946 + 348.180i 0.174382 + 0.650804i
\(536\) 152.199 263.617i 0.283954 0.491822i
\(537\) 0 0
\(538\) 344.012 344.012i 0.639427 0.639427i
\(539\) 410.794 + 110.072i 0.762141 + 0.204215i
\(540\) 0 0
\(541\) −394.763 394.763i −0.729691 0.729691i 0.240867 0.970558i \(-0.422568\pi\)
−0.970558 + 0.240867i \(0.922568\pi\)
\(542\) −17.1517 29.7076i −0.0316452 0.0548110i
\(543\) 0 0
\(544\) −132.470 + 35.4953i −0.243511 + 0.0652487i
\(545\) 511.545i 0.938616i
\(546\) 0 0
\(547\) −716.303 −1.30951 −0.654756 0.755840i \(-0.727229\pi\)
−0.654756 + 0.755840i \(0.727229\pi\)
\(548\) −4.15932 15.5228i −0.00759000 0.0283263i
\(549\) 0 0
\(550\) −368.087 + 212.515i −0.669250 + 0.386392i
\(551\) −414.168 + 414.168i −0.751666 + 0.751666i
\(552\) 0 0
\(553\) −21.8048 + 81.3765i −0.0394300 + 0.147155i
\(554\) 494.891 + 494.891i 0.893306 + 0.893306i
\(555\) 0 0
\(556\) −422.553 243.961i −0.759988 0.438779i
\(557\) 58.2268 15.6018i 0.104536 0.0280104i −0.206172 0.978516i \(-0.566101\pi\)
0.310708 + 0.950505i \(0.399434\pi\)
\(558\) 0 0
\(559\) −150.523 375.819i −0.269272 0.672306i
\(560\) 119.374 0.213169
\(561\) 0 0
\(562\) −145.653 + 252.278i −0.259168 + 0.448893i
\(563\) 233.194 134.635i 0.414199 0.239138i −0.278393 0.960467i \(-0.589802\pi\)
0.692592 + 0.721329i \(0.256469\pi\)
\(564\) 0 0
\(565\) −237.126 63.5378i −0.419693 0.112456i
\(566\) 157.469 587.684i 0.278215 1.03831i
\(567\) 0 0
\(568\) −3.23364 5.60082i −0.00569302 0.00986060i
\(569\) −232.943 134.490i −0.409390 0.236361i 0.281138 0.959667i \(-0.409288\pi\)
−0.690528 + 0.723306i \(0.742622\pi\)
\(570\) 0 0
\(571\) 328.719i 0.575689i −0.957677 0.287845i \(-0.907061\pi\)
0.957677 0.287845i \(-0.0929387\pi\)
\(572\) 223.875 + 298.964i 0.391389 + 0.522665i
\(573\) 0 0
\(574\) 117.615 + 438.945i 0.204904 + 0.764713i
\(575\) 65.7711 113.919i 0.114384 0.198120i
\(576\) 0 0
\(577\) −18.1490 + 18.1490i −0.0314540 + 0.0314540i −0.722659 0.691205i \(-0.757080\pi\)
0.691205 + 0.722659i \(0.257080\pi\)
\(578\) −408.111 109.353i −0.706075 0.189192i
\(579\) 0 0
\(580\) 212.967 + 212.967i 0.367185 + 0.367185i
\(581\) 108.283 + 187.551i 0.186373 + 0.322807i
\(582\) 0 0
\(583\) 468.467 125.525i 0.803546 0.215309i
\(584\) 152.709i 0.261488i
\(585\) 0 0
\(586\) 134.179 0.228975
\(587\) 30.1430 + 112.495i 0.0513509 + 0.191644i 0.986837 0.161720i \(-0.0517042\pi\)
−0.935486 + 0.353364i \(0.885038\pi\)
\(588\) 0 0
\(589\) −277.461 + 160.192i −0.471072 + 0.271973i
\(590\) −255.958 + 255.958i −0.433828 + 0.433828i
\(591\) 0 0
\(592\) −6.58015 + 24.5574i −0.0111151 + 0.0414822i
\(593\) −215.404 215.404i −0.363244 0.363244i 0.501762 0.865006i \(-0.332685\pi\)
−0.865006 + 0.501762i \(0.832685\pi\)
\(594\) 0 0
\(595\) 626.587 + 361.760i 1.05309 + 0.608000i
\(596\) 365.374 97.9017i 0.613044 0.164265i
\(597\) 0 0
\(598\) −106.267 45.4866i −0.177704 0.0760646i
\(599\) 657.704 1.09800 0.549002 0.835821i \(-0.315008\pi\)
0.549002 + 0.835821i \(0.315008\pi\)
\(600\) 0 0
\(601\) −149.567 + 259.057i −0.248863 + 0.431044i −0.963211 0.268747i \(-0.913390\pi\)
0.714347 + 0.699791i \(0.246724\pi\)
\(602\) −167.970 + 96.9774i −0.279019 + 0.161092i
\(603\) 0 0
\(604\) 192.881 + 51.6824i 0.319340 + 0.0855669i
\(605\) −149.713 + 558.737i −0.247460 + 0.923532i
\(606\) 0 0
\(607\) 355.980 + 616.576i 0.586459 + 1.01578i 0.994692 + 0.102898i \(0.0328116\pi\)
−0.408233 + 0.912878i \(0.633855\pi\)
\(608\) −129.124 74.5498i −0.212375 0.122615i
\(609\) 0 0
\(610\) 221.107i 0.362471i
\(611\) −112.672 + 84.3723i −0.184405 + 0.138089i
\(612\) 0 0
\(613\) 189.142 + 705.887i 0.308551 + 1.15153i 0.929845 + 0.367951i \(0.119941\pi\)
−0.621294 + 0.783578i \(0.713393\pi\)
\(614\) 210.306 364.260i 0.342517 0.593257i
\(615\) 0 0
\(616\) 126.528 126.528i 0.205402 0.205402i
\(617\) −338.746 90.7668i −0.549021 0.147110i −0.0263636 0.999652i \(-0.508393\pi\)
−0.522658 + 0.852543i \(0.675059\pi\)
\(618\) 0 0
\(619\) 283.795 + 283.795i 0.458474 + 0.458474i 0.898154 0.439680i \(-0.144908\pi\)
−0.439680 + 0.898154i \(0.644908\pi\)
\(620\) 82.3717 + 142.672i 0.132858 + 0.230116i
\(621\) 0 0
\(622\) 336.894 90.2704i 0.541630 0.145129i
\(623\) 15.8295i 0.0254084i
\(624\) 0 0
\(625\) 710.329 1.13653
\(626\) 43.3837 + 161.910i 0.0693030 + 0.258642i
\(627\) 0 0
\(628\) −306.216 + 176.794i −0.487606 + 0.281519i
\(629\) −108.959 + 108.959i −0.173226 + 0.173226i
\(630\) 0 0
\(631\) −298.859 + 1115.36i −0.473627 + 1.76760i 0.152944 + 0.988235i \(0.451125\pi\)
−0.626570 + 0.779365i \(0.715542\pi\)
\(632\) −38.2597 38.2597i −0.0605376 0.0605376i
\(633\) 0 0
\(634\) −493.312 284.814i −0.778094 0.449233i
\(635\) 871.126 233.417i 1.37185 0.367587i
\(636\) 0 0
\(637\) 237.862 302.563i 0.373410 0.474981i
\(638\) 451.459 0.707615
\(639\) 0 0
\(640\) −38.3339 + 66.3963i −0.0598967 + 0.103744i
\(641\) −225.174 + 130.005i −0.351286 + 0.202815i −0.665252 0.746619i \(-0.731676\pi\)
0.313965 + 0.949434i \(0.398342\pi\)
\(642\) 0 0
\(643\) 11.9154 + 3.19272i 0.0185309 + 0.00496535i 0.268073 0.963399i \(-0.413613\pi\)
−0.249542 + 0.968364i \(0.580280\pi\)
\(644\) −14.3332 + 53.4921i −0.0222565 + 0.0830622i
\(645\) 0 0
\(646\) −451.841 782.612i −0.699445 1.21147i
\(647\) −822.864 475.081i −1.27182 0.734283i −0.296486 0.955037i \(-0.595815\pi\)
−0.975329 + 0.220755i \(0.929148\pi\)
\(648\) 0 0
\(649\) 542.593i 0.836045i
\(650\) 45.7231 + 381.909i 0.0703432 + 0.587553i
\(651\) 0 0
\(652\) 62.7624 + 234.232i 0.0962613 + 0.359252i
\(653\) 282.884 489.970i 0.433207 0.750336i −0.563941 0.825815i \(-0.690715\pi\)
0.997147 + 0.0754792i \(0.0240486\pi\)
\(654\) 0 0
\(655\) 183.398 183.398i 0.279997 0.279997i
\(656\) −281.911 75.5378i −0.429742 0.115149i
\(657\) 0 0
\(658\) 47.6849 + 47.6849i 0.0724695 + 0.0724695i
\(659\) 190.174 + 329.390i 0.288579 + 0.499833i 0.973471 0.228811i \(-0.0734839\pi\)
−0.684892 + 0.728645i \(0.740151\pi\)
\(660\) 0 0
\(661\) −960.224 + 257.291i −1.45268 + 0.389245i −0.896956 0.442119i \(-0.854227\pi\)
−0.555728 + 0.831364i \(0.687560\pi\)
\(662\) 634.128i 0.957898i
\(663\) 0 0
\(664\) −139.088 −0.209470
\(665\) 203.586 + 759.795i 0.306145 + 1.14255i
\(666\) 0 0
\(667\) −121.002 + 69.8606i −0.181413 + 0.104739i
\(668\) 419.609 419.609i 0.628158 0.628158i
\(669\) 0 0
\(670\) 266.942 996.240i 0.398420 1.48693i
\(671\) 234.357 + 234.357i 0.349266 + 0.349266i
\(672\) 0 0
\(673\) −548.632 316.753i −0.815204 0.470658i 0.0335560 0.999437i \(-0.489317\pi\)
−0.848760 + 0.528779i \(0.822650\pi\)
\(674\) −648.117 + 173.663i −0.961599 + 0.257660i
\(675\) 0 0
\(676\) 328.448 79.7887i 0.485869 0.118031i
\(677\) 221.745 0.327540 0.163770 0.986499i \(-0.447634\pi\)
0.163770 + 0.986499i \(0.447634\pi\)
\(678\) 0 0
\(679\) −55.4201 + 95.9905i −0.0816202 + 0.141370i
\(680\) −402.423 + 232.339i −0.591799 + 0.341675i
\(681\) 0 0
\(682\) 238.529 + 63.9137i 0.349750 + 0.0937152i
\(683\) −173.007 + 645.671i −0.253304 + 0.945345i 0.715722 + 0.698386i \(0.246098\pi\)
−0.969026 + 0.246959i \(0.920569\pi\)
\(684\) 0 0
\(685\) −27.2254 47.1558i −0.0397451 0.0688405i
\(686\) −423.975 244.782i −0.618039 0.356825i
\(687\) 0 0
\(688\) 124.567i 0.181056i
\(689\) 62.3944 434.443i 0.0905580 0.630541i
\(690\) 0 0
\(691\) −146.869 548.121i −0.212545 0.793229i −0.987016 0.160620i \(-0.948651\pi\)
0.774471 0.632609i \(-0.218016\pi\)
\(692\) −278.490 + 482.359i −0.402442 + 0.697050i
\(693\) 0 0
\(694\) −533.636 + 533.636i −0.768927 + 0.768927i
\(695\) −1596.88 427.883i −2.29767 0.615659i
\(696\) 0 0
\(697\) −1250.81 1250.81i −1.79457 1.79457i
\(698\) −191.046 330.901i −0.273704 0.474070i
\(699\) 0 0
\(700\) 177.996 47.6938i 0.254280 0.0681340i
\(701\) 597.453i 0.852287i 0.904656 + 0.426143i \(0.140128\pi\)
−0.904656 + 0.426143i \(0.859872\pi\)
\(702\) 0 0
\(703\) −167.526 −0.238301
\(704\) 29.7440 + 111.006i 0.0422500 + 0.157679i
\(705\) 0 0
\(706\) 432.314 249.596i 0.612342 0.353536i
\(707\) 472.753 472.753i 0.668675 0.668675i
\(708\) 0 0
\(709\) −10.2632 + 38.3029i −0.0144757 + 0.0540239i −0.972786 0.231706i \(-0.925569\pi\)
0.958310 + 0.285730i \(0.0922360\pi\)
\(710\) −15.4947 15.4947i −0.0218236 0.0218236i
\(711\) 0 0
\(712\) −8.80437 5.08321i −0.0123657 0.00713934i
\(713\) −73.8221 + 19.7806i −0.103537 + 0.0277427i
\(714\) 0 0
\(715\) 994.877 + 782.129i 1.39144 + 1.09389i
\(716\) 157.509 0.219985
\(717\) 0 0
\(718\) −116.092 + 201.077i −0.161688 + 0.280051i
\(719\) 864.778 499.280i 1.20275 0.694409i 0.241585 0.970380i \(-0.422333\pi\)
0.961166 + 0.275971i \(0.0889993\pi\)
\(720\) 0 0
\(721\) 73.8783 + 19.7956i 0.102466 + 0.0274558i
\(722\) 122.146 455.855i 0.169177 0.631379i
\(723\) 0 0
\(724\) 200.758 + 347.724i 0.277290 + 0.480281i
\(725\) 402.636 + 232.462i 0.555360 + 0.320638i
\(726\) 0 0
\(727\) 685.178i 0.942473i 0.882007 + 0.471237i \(0.156192\pi\)
−0.882007 + 0.471237i \(0.843808\pi\)
\(728\) −60.2073 150.323i −0.0827023 0.206487i
\(729\) 0 0
\(730\) 133.918 + 499.789i 0.183450 + 0.684643i
\(731\) 377.495 653.841i 0.516409 0.894447i
\(732\) 0 0
\(733\) 176.253 176.253i 0.240454 0.240454i −0.576584 0.817038i \(-0.695615\pi\)
0.817038 + 0.576584i \(0.195615\pi\)
\(734\) 937.537 + 251.212i 1.27730 + 0.342251i
\(735\) 0 0
\(736\) −25.1497 25.1497i −0.0341708 0.0341708i
\(737\) −773.001 1338.88i −1.04885 1.81666i
\(738\) 0 0
\(739\) 1337.69 358.434i 1.81014 0.485026i 0.814655 0.579946i \(-0.196926\pi\)
0.995485 + 0.0949200i \(0.0302595\pi\)
\(740\) 86.1425i 0.116409i
\(741\) 0 0
\(742\) −210.272 −0.283385
\(743\) 150.945 + 563.335i 0.203156 + 0.758190i 0.990004 + 0.141042i \(0.0450452\pi\)
−0.786847 + 0.617148i \(0.788288\pi\)
\(744\) 0 0
\(745\) 1109.95 640.829i 1.48986 0.860173i
\(746\) 617.271 617.271i 0.827441 0.827441i
\(747\) 0 0
\(748\) −180.276 + 672.800i −0.241011 + 0.899466i
\(749\) −165.646 165.646i −0.221156 0.221156i
\(750\) 0 0
\(751\) −1012.32 584.461i −1.34796 0.778244i −0.359998 0.932953i \(-0.617223\pi\)
−0.987960 + 0.154709i \(0.950556\pi\)
\(752\) −41.8352 + 11.2097i −0.0556319 + 0.0149065i
\(753\) 0 0
\(754\) 160.769 375.591i 0.213221 0.498132i
\(755\) 676.588 0.896143
\(756\) 0 0
\(757\) 561.343 972.275i 0.741537 1.28438i −0.210259 0.977646i \(-0.567431\pi\)
0.951796 0.306733i \(-0.0992360\pi\)
\(758\) −657.282 + 379.482i −0.867126 + 0.500636i
\(759\) 0 0
\(760\) −487.976 130.753i −0.642073 0.172043i
\(761\) −246.221 + 918.907i −0.323549 + 1.20750i 0.592214 + 0.805781i \(0.298254\pi\)
−0.915763 + 0.401719i \(0.868413\pi\)
\(762\) 0 0
\(763\) −166.222 287.906i −0.217854 0.377334i
\(764\) −70.2001 40.5301i −0.0918850 0.0530498i
\(765\) 0 0
\(766\) 370.506i 0.483690i
\(767\) 451.411 + 193.222i 0.588541 + 0.251920i
\(768\) 0 0
\(769\) −53.4110 199.332i −0.0694551 0.259210i 0.922464 0.386084i \(-0.126172\pi\)
−0.991919 + 0.126874i \(0.959506\pi\)
\(770\) 303.144 525.061i 0.393694 0.681898i
\(771\) 0 0
\(772\) 205.193 205.193i 0.265794 0.265794i
\(773\) 431.675 + 115.667i 0.558441 + 0.149634i 0.526990 0.849871i \(-0.323320\pi\)
0.0314512 + 0.999505i \(0.489987\pi\)
\(774\) 0 0
\(775\) 179.824 + 179.824i 0.232031 + 0.232031i
\(776\) −35.5934 61.6496i −0.0458678 0.0794453i
\(777\) 0 0
\(778\) −252.156 + 67.5651i −0.324108 + 0.0868445i
\(779\) 1923.14i 2.46872i
\(780\) 0 0
\(781\) −32.8465 −0.0420570
\(782\) −55.7934 208.224i −0.0713471 0.266271i
\(783\) 0 0
\(784\) 102.555 59.2103i 0.130810 0.0755233i
\(785\) −847.151 + 847.151i −1.07917 + 1.07917i
\(786\) 0 0
\(787\) 173.642 648.040i 0.220638 0.823431i −0.763468 0.645846i \(-0.776505\pi\)
0.984105 0.177585i \(-0.0568284\pi\)
\(788\) −218.963 218.963i −0.277872 0.277872i
\(789\) 0 0
\(790\) −158.769 91.6653i −0.200973 0.116032i
\(791\) 154.104 41.2921i 0.194822 0.0522025i
\(792\) 0 0
\(793\) 278.430 111.517i 0.351110 0.140627i
\(794\) −359.016 −0.452162
\(795\) 0 0
\(796\) 260.350 450.940i 0.327073 0.566508i
\(797\) 207.230 119.644i 0.260013 0.150118i −0.364328 0.931271i \(-0.618701\pi\)
0.624340 + 0.781152i \(0.285368\pi\)
\(798\) 0 0
\(799\) −253.560 67.9413i −0.317347 0.0850329i
\(800\) −30.6312 + 114.317i −0.0382890 + 0.142896i
\(801\) 0 0
\(802\) −191.654 331.955i −0.238971 0.413909i
\(803\) 671.683 + 387.796i 0.836466 + 0.482934i
\(804\) 0 0
\(805\) 187.639i 0.233092i
\(806\) 138.116 175.684i 0.171359 0.217971i
\(807\) 0 0
\(808\) 111.134 + 414.758i 0.137542 + 0.513315i
\(809\) 234.046 405.380i 0.289303 0.501088i −0.684340 0.729163i \(-0.739910\pi\)
0.973644 + 0.228075i \(0.0732431\pi\)
\(810\) 0 0
\(811\) −680.928 + 680.928i −0.839615 + 0.839615i −0.988808 0.149193i \(-0.952332\pi\)
0.149193 + 0.988808i \(0.452332\pi\)
\(812\) −189.063 50.6593i −0.232836 0.0623883i
\(813\) 0 0
\(814\) 91.3046 + 91.3046i 0.112168 + 0.112168i
\(815\) 410.819 + 711.560i 0.504073 + 0.873080i
\(816\) 0 0
\(817\) 792.843 212.442i 0.970433 0.260027i
\(818\) 223.270i 0.272946i
\(819\) 0 0
\(820\) −988.886 −1.20596
\(821\) 326.171 + 1217.29i 0.397285 + 1.48269i 0.817854 + 0.575426i \(0.195164\pi\)
−0.420569 + 0.907260i \(0.638170\pi\)
\(822\) 0 0
\(823\) 499.204 288.216i 0.606566 0.350201i −0.165054 0.986285i \(-0.552780\pi\)
0.771620 + 0.636083i \(0.219447\pi\)
\(824\) −34.7344 + 34.7344i −0.0421534 + 0.0421534i
\(825\) 0 0
\(826\) 60.8858 227.229i 0.0737116 0.275095i
\(827\) −434.651 434.651i −0.525575 0.525575i 0.393675 0.919250i \(-0.371204\pi\)
−0.919250 + 0.393675i \(0.871204\pi\)
\(828\) 0 0
\(829\) −109.340 63.1272i −0.131893 0.0761486i 0.432602 0.901585i \(-0.357596\pi\)
−0.564495 + 0.825437i \(0.690929\pi\)
\(830\) −455.210 + 121.973i −0.548446 + 0.146956i
\(831\) 0 0
\(832\) 102.944 + 14.7847i 0.123730 + 0.0177701i
\(833\) 717.739 0.861632
\(834\) 0 0
\(835\) 1005.33 1741.28i 1.20399 2.08537i
\(836\) −655.806 + 378.630i −0.784457 + 0.452906i
\(837\) 0 0
\(838\) 891.299 + 238.823i 1.06360 + 0.284991i
\(839\) 329.574 1229.99i 0.392817 1.46601i −0.432649 0.901562i \(-0.642421\pi\)
0.825466 0.564451i \(-0.190912\pi\)
\(840\) 0 0
\(841\) 173.584 + 300.656i 0.206401 + 0.357498i
\(842\) −510.220 294.576i −0.605962 0.349852i
\(843\) 0 0
\(844\) 832.812i 0.986744i
\(845\) 1004.98 549.165i 1.18932 0.649900i
\(846\) 0 0
\(847\) −97.2960 363.114i −0.114871 0.428706i
\(848\) 67.5231 116.953i 0.0796263 0.137917i
\(849\) 0 0
\(850\) −507.215 + 507.215i −0.596723 + 0.596723i
\(851\) −38.6007 10.3430i −0.0453593 0.0121540i
\(852\) 0 0
\(853\) 162.871 + 162.871i 0.190939 + 0.190939i 0.796102 0.605163i \(-0.206892\pi\)
−0.605163 + 0.796102i \(0.706892\pi\)
\(854\) −71.8470 124.443i −0.0841299 0.145717i
\(855\) 0 0
\(856\) 145.325 38.9398i 0.169772 0.0454904i
\(857\) 1077.67i 1.25750i −0.777609 0.628748i \(-0.783568\pi\)
0.777609 0.628748i \(-0.216432\pi\)
\(858\) 0 0
\(859\) 654.044 0.761402 0.380701 0.924698i \(-0.375683\pi\)
0.380701 + 0.924698i \(0.375683\pi\)
\(860\) −109.239 407.684i −0.127022 0.474051i
\(861\) 0 0
\(862\) −86.4982 + 49.9398i −0.100346 + 0.0579348i
\(863\) −916.358 + 916.358i −1.06183 + 1.06183i −0.0638705 + 0.997958i \(0.520344\pi\)
−0.997958 + 0.0638705i \(0.979656\pi\)
\(864\) 0 0
\(865\) −488.443 + 1822.89i −0.564674 + 2.10739i
\(866\) −466.918 466.918i −0.539167 0.539167i
\(867\) 0 0
\(868\) −92.7201 53.5320i −0.106820 0.0616728i
\(869\) −265.441 + 71.1248i −0.305456 + 0.0818468i
\(870\) 0 0
\(871\) −1389.15 + 166.313i −1.59490 + 0.190945i
\(872\) 213.512 0.244853
\(873\) 0 0
\(874\) 117.182 202.964i 0.134075 0.232225i
\(875\) −105.411 + 60.8589i −0.120469 + 0.0695530i
\(876\) 0 0
\(877\) −886.252 237.471i −1.01055 0.270776i −0.284691 0.958619i \(-0.591891\pi\)
−0.725859 + 0.687843i \(0.758558\pi\)
\(878\) 43.7768 163.377i 0.0498597 0.186079i
\(879\) 0 0
\(880\) 194.693 + 337.219i 0.221242 + 0.383203i
\(881\) −837.311 483.422i −0.950410 0.548719i −0.0572017 0.998363i \(-0.518218\pi\)
−0.893208 + 0.449643i \(0.851551\pi\)
\(882\) 0 0
\(883\) 1129.48i 1.27914i 0.768731 + 0.639572i \(0.220888\pi\)
−0.768731 + 0.639572i \(0.779112\pi\)
\(884\) 495.539 + 389.571i 0.560564 + 0.440692i
\(885\) 0 0
\(886\) −20.7614 77.4827i −0.0234328 0.0874523i
\(887\) −827.477 + 1433.23i −0.932894 + 1.61582i −0.154547 + 0.987985i \(0.549392\pi\)
−0.778347 + 0.627834i \(0.783942\pi\)
\(888\) 0 0
\(889\) −414.436 + 414.436i −0.466182 + 0.466182i
\(890\) −33.2728 8.91542i −0.0373852 0.0100173i
\(891\) 0 0
\(892\) −288.926 288.926i −0.323909 0.323909i
\(893\) −142.695 247.155i −0.159793 0.276770i
\(894\) 0 0
\(895\) 515.500 138.128i 0.575977 0.154333i
\(896\) 49.8251i 0.0556084i
\(897\) 0 0
\(898\) 261.348 0.291033
\(899\) −69.9127 260.918i −0.0777672 0.290231i
\(900\) 0 0
\(901\) 708.847 409.253i 0.786733 0.454221i
\(902\) −1048.14 + 1048.14i −1.16202 + 1.16202i
\(903\) 0 0
\(904\) −26.5197 + 98.9730i −0.0293360 + 0.109483i
\(905\) 961.981 + 961.981i 1.06296 + 1.06296i
\(906\) 0 0
\(907\) 386.408 + 223.093i 0.426029 + 0.245968i 0.697653 0.716435i \(-0.254228\pi\)
−0.271625 + 0.962403i \(0.587561\pi\)
\(908\) −214.904 + 57.5835i −0.236679 + 0.0634179i
\(909\) 0 0
\(910\) −328.873 439.180i −0.361399 0.482615i
\(911\) −1639.85 −1.80005 −0.900025 0.435838i \(-0.856452\pi\)
−0.900025 + 0.435838i \(0.856452\pi\)
\(912\) 0 0
\(913\) −353.206 + 611.771i −0.386863 + 0.670067i
\(914\) 362.673 209.389i 0.396797 0.229091i
\(915\) 0 0
\(916\) 580.039 + 155.421i 0.633231 + 0.169674i
\(917\) −43.6256 + 162.813i −0.0475743 + 0.177550i
\(918\) 0 0
\(919\) −595.311 1031.11i −0.647782 1.12199i −0.983652 0.180082i \(-0.942364\pi\)
0.335870 0.941908i \(-0.390970\pi\)
\(920\) −104.365 60.2553i −0.113441 0.0654949i
\(921\) 0 0
\(922\) 872.906i 0.946752i
\(923\) −11.6969 + 27.3267i −0.0126727 + 0.0296064i
\(924\) 0 0
\(925\) 34.4166 + 128.445i 0.0372071 + 0.138859i
\(926\) 198.699 344.157i 0.214578 0.371660i
\(927\) 0 0
\(928\) 88.8894 88.8894i 0.0957860 0.0957860i
\(929\) 770.131 + 206.356i 0.828990 + 0.222127i 0.648273 0.761408i \(-0.275492\pi\)
0.180717 + 0.983535i \(0.442158\pi\)
\(930\) 0 0
\(931\) 551.765 + 551.765i 0.592658 + 0.592658i
\(932\) −46.5826 80.6834i −0.0499813 0.0865702i
\(933\) 0 0
\(934\) −713.086 + 191.071i −0.763475 + 0.204573i
\(935\) 2360.05i 2.52411i
\(936\) 0 0
\(937\) 406.611 0.433950 0.216975 0.976177i \(-0.430381\pi\)
0.216975 + 0.976177i \(0.430381\pi\)
\(938\) 173.481 + 647.440i 0.184948 + 0.690234i
\(939\) 0 0
\(940\) −127.089 + 73.3746i −0.135201 + 0.0780581i
\(941\) 67.4219 67.4219i 0.0716492 0.0716492i −0.670374 0.742023i \(-0.733866\pi\)
0.742023 + 0.670374i \(0.233866\pi\)
\(942\) 0 0
\(943\) 118.735 443.123i 0.125911 0.469908i
\(944\) 106.833 + 106.833i 0.113171 + 0.113171i
\(945\) 0 0
\(946\) −547.899 316.330i −0.579175 0.334387i
\(947\) 1589.57 425.925i 1.67853 0.449762i 0.711143 0.703047i \(-0.248178\pi\)
0.967392 + 0.253285i \(0.0815112\pi\)
\(948\) 0 0
\(949\) 561.820 420.709i 0.592012 0.443318i
\(950\) −779.846 −0.820891
\(951\) 0 0
\(952\) 150.993 261.528i 0.158606 0.274714i
\(953\) 807.423 466.166i 0.847243 0.489156i −0.0124765 0.999922i \(-0.503971\pi\)
0.859720 + 0.510766i \(0.170638\pi\)
\(954\) 0 0
\(955\) −265.295 71.0856i −0.277796 0.0744351i
\(956\) 101.249 377.866i 0.105909 0.395258i
\(957\) 0 0
\(958\) 240.091 + 415.850i 0.250617 + 0.434081i
\(959\) 30.6457 + 17.6933i 0.0319559 + 0.0184498i
\(960\) 0 0
\(961\) 813.246i 0.846249i
\(962\) 108.475 43.4465i 0.112760 0.0451627i
\(963\) 0 0
\(964\) −116.394 434.389i −0.120741 0.450611i
\(965\) 491.615 851.503i 0.509446 0.882386i
\(966\) 0 0
\(967\) −540.669 + 540.669i −0.559120 + 0.559120i −0.929057 0.369937i \(-0.879379\pi\)
0.369937 + 0.929057i \(0.379379\pi\)
\(968\) 233.209 + 62.4880i 0.240918 + 0.0645538i
\(969\) 0 0
\(970\) −170.554 170.554i −0.175829 0.175829i
\(971\) 848.378 + 1469.43i 0.873716 + 1.51332i 0.858124 + 0.513442i \(0.171630\pi\)
0.0155919 + 0.999878i \(0.495037\pi\)
\(972\) 0 0
\(973\) 1037.79 278.074i 1.06658 0.285790i
\(974\) 305.164i 0.313310i
\(975\) 0 0
\(976\) 92.2869 0.0945563
\(977\) −73.8571 275.638i −0.0755958 0.282127i 0.917772 0.397108i \(-0.129986\pi\)
−0.993368 + 0.114981i \(0.963319\pi\)
\(978\) 0 0
\(979\) −44.7164 + 25.8170i −0.0456756 + 0.0263708i
\(980\) 283.720 283.720i 0.289510 0.289510i
\(981\) 0 0
\(982\) 203.230 758.464i 0.206955 0.772367i
\(983\) 41.0192 + 41.0192i 0.0417286 + 0.0417286i 0.727663 0.685935i \(-0.240606\pi\)
−0.685935 + 0.727663i \(0.740606\pi\)
\(984\) 0 0
\(985\) −908.647 524.607i −0.922484 0.532596i
\(986\) 735.950 197.197i 0.746399 0.199997i
\(987\) 0 0
\(988\) 81.4629 + 680.432i 0.0824523 + 0.688696i
\(989\) 195.801 0.197979
\(990\) 0 0
\(991\) −188.074 + 325.754i −0.189782 + 0.328712i −0.945178 0.326557i \(-0.894111\pi\)
0.755395 + 0.655269i \(0.227445\pi\)
\(992\) 59.5492 34.3807i 0.0600294 0.0346580i
\(993\) 0 0
\(994\) 13.7556 + 3.68579i 0.0138386 + 0.00370804i
\(995\) 456.628 1704.16i 0.458922 1.71272i
\(996\) 0 0
\(997\) 722.549 + 1251.49i 0.724724 + 1.25526i 0.959088 + 0.283109i \(0.0913659\pi\)
−0.234364 + 0.972149i \(0.575301\pi\)
\(998\) 695.624 + 401.619i 0.697018 + 0.402424i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 234.3.bb.f.19.1 8
3.2 odd 2 26.3.f.b.19.1 yes 8
12.11 even 2 208.3.bd.f.97.2 8
13.11 odd 12 inner 234.3.bb.f.37.1 8
39.2 even 12 338.3.f.i.89.1 8
39.5 even 4 338.3.f.j.319.1 8
39.8 even 4 338.3.f.h.319.1 8
39.11 even 12 26.3.f.b.11.1 8
39.17 odd 6 338.3.d.f.239.3 8
39.20 even 12 338.3.d.g.99.3 8
39.23 odd 6 338.3.f.j.249.1 8
39.29 odd 6 338.3.f.h.249.1 8
39.32 even 12 338.3.d.f.99.3 8
39.35 odd 6 338.3.d.g.239.3 8
39.38 odd 2 338.3.f.i.19.1 8
156.11 odd 12 208.3.bd.f.193.2 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
26.3.f.b.11.1 8 39.11 even 12
26.3.f.b.19.1 yes 8 3.2 odd 2
208.3.bd.f.97.2 8 12.11 even 2
208.3.bd.f.193.2 8 156.11 odd 12
234.3.bb.f.19.1 8 1.1 even 1 trivial
234.3.bb.f.37.1 8 13.11 odd 12 inner
338.3.d.f.99.3 8 39.32 even 12
338.3.d.f.239.3 8 39.17 odd 6
338.3.d.g.99.3 8 39.20 even 12
338.3.d.g.239.3 8 39.35 odd 6
338.3.f.h.249.1 8 39.29 odd 6
338.3.f.h.319.1 8 39.8 even 4
338.3.f.i.19.1 8 39.38 odd 2
338.3.f.i.89.1 8 39.2 even 12
338.3.f.j.249.1 8 39.23 odd 6
338.3.f.j.319.1 8 39.5 even 4