Properties

Label 234.3.bb.d.19.1
Level $234$
Weight $3$
Character 234.19
Analytic conductor $6.376$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [234,3,Mod(19,234)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(234, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([0, 5]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("234.19");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 234 = 2 \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 234.bb (of order \(12\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.37603818603\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{12})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 2x^{7} + 2x^{6} + 82x^{5} + 5053x^{4} - 6736x^{3} + 6728x^{2} + 275384x + 5635876 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 78)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 19.1
Root \(5.41254 + 5.41254i\) of defining polynomial
Character \(\chi\) \(=\) 234.19
Dual form 234.3.bb.d.37.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.366025 + 1.36603i) q^{2} +(-1.73205 + 1.00000i) q^{4} +(-4.41254 + 4.41254i) q^{5} +(2.11510 - 7.89367i) q^{7} +(-2.00000 - 2.00000i) q^{8} +O(q^{10})\) \(q+(0.366025 + 1.36603i) q^{2} +(-1.73205 + 1.00000i) q^{4} +(-4.41254 + 4.41254i) q^{5} +(2.11510 - 7.89367i) q^{7} +(-2.00000 - 2.00000i) q^{8} +(-7.64274 - 4.41254i) q^{10} +(-18.5194 + 4.96225i) q^{11} +(-12.9213 + 1.42820i) q^{13} +11.5571 q^{14} +(2.00000 - 3.46410i) q^{16} +(19.9936 - 11.5433i) q^{17} +(0.417587 + 0.111892i) q^{19} +(3.23020 - 12.0553i) q^{20} +(-13.5571 - 23.4816i) q^{22} +(-36.4688 - 21.0553i) q^{23} -13.9410i q^{25} +(-6.68049 - 17.1281i) q^{26} +(4.23020 + 15.7873i) q^{28} +(3.25785 - 5.64275i) q^{29} +(-17.8476 + 17.8476i) q^{31} +(5.46410 + 1.46410i) q^{32} +(23.0866 + 23.0866i) q^{34} +(25.4982 + 44.1641i) q^{35} +(-1.37988 + 0.369738i) q^{37} +0.611390i q^{38} +17.6502 q^{40} +(10.8187 + 40.3758i) q^{41} +(-51.1299 + 29.5199i) q^{43} +(27.1143 - 27.1143i) q^{44} +(15.4135 - 57.5241i) q^{46} +(-15.0543 - 15.0543i) q^{47} +(-15.4011 - 8.89182i) q^{49} +(19.0438 - 5.10277i) q^{50} +(20.9522 - 15.3950i) q^{52} -8.90794 q^{53} +(59.8214 - 103.614i) q^{55} +(-20.0175 + 11.5571i) q^{56} +(8.90060 + 2.38491i) q^{58} +(-11.4200 + 42.6199i) q^{59} +(44.8027 + 77.6005i) q^{61} +(-30.9130 - 17.8476i) q^{62} +8.00000i q^{64} +(50.7138 - 63.3178i) q^{65} +(10.2563 + 38.2772i) q^{67} +(-23.0866 + 39.9872i) q^{68} +(-50.9963 + 50.9963i) q^{70} +(-8.56730 - 2.29560i) q^{71} +(-5.92683 - 5.92683i) q^{73} +(-1.01014 - 1.74962i) q^{74} +(-0.835174 + 0.223784i) q^{76} +156.682i q^{77} +115.826 q^{79} +(6.46041 + 24.1106i) q^{80} +(-51.1945 + 29.5572i) q^{82} +(34.2340 - 34.2340i) q^{83} +(-37.2872 + 139.158i) q^{85} +(-59.0397 - 59.0397i) q^{86} +(46.9633 + 27.1143i) q^{88} +(-58.0728 + 15.5606i) q^{89} +(-16.0561 + 105.017i) q^{91} +84.2211 q^{92} +(15.0543 - 26.0747i) q^{94} +(-2.33635 + 1.34889i) q^{95} +(-129.142 - 34.6035i) q^{97} +(6.50926 - 24.2929i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 4 q^{2} + 6 q^{5} + 10 q^{7} - 16 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 8 q - 4 q^{2} + 6 q^{5} + 10 q^{7} - 16 q^{8} - 6 q^{10} - 24 q^{11} - 4 q^{14} + 16 q^{16} + 84 q^{17} + 10 q^{19} + 12 q^{20} - 12 q^{22} + 12 q^{23} - 26 q^{26} + 20 q^{28} - 36 q^{29} - 94 q^{31} + 16 q^{32} + 60 q^{34} + 204 q^{35} + 140 q^{37} - 24 q^{40} - 72 q^{41} - 222 q^{43} + 24 q^{44} - 84 q^{46} - 300 q^{47} + 42 q^{49} + 62 q^{50} + 44 q^{52} - 84 q^{53} + 396 q^{55} - 36 q^{56} - 66 q^{58} + 60 q^{59} - 90 q^{61} - 198 q^{62} + 108 q^{65} + 304 q^{67} - 60 q^{68} - 408 q^{70} + 192 q^{71} + 16 q^{73} + 46 q^{74} - 20 q^{76} - 96 q^{79} + 24 q^{80} + 114 q^{82} - 390 q^{85} - 168 q^{86} + 72 q^{88} - 354 q^{89} - 218 q^{91} + 288 q^{92} + 300 q^{94} + 576 q^{95} - 460 q^{97} - 58 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/234\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(209\)
\(\chi(n)\) \(e\left(\frac{5}{12}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.366025 + 1.36603i 0.183013 + 0.683013i
\(3\) 0 0
\(4\) −1.73205 + 1.00000i −0.433013 + 0.250000i
\(5\) −4.41254 + 4.41254i −0.882508 + 0.882508i −0.993789 0.111281i \(-0.964505\pi\)
0.111281 + 0.993789i \(0.464505\pi\)
\(6\) 0 0
\(7\) 2.11510 7.89367i 0.302157 1.12767i −0.633207 0.773982i \(-0.718262\pi\)
0.935365 0.353685i \(-0.115071\pi\)
\(8\) −2.00000 2.00000i −0.250000 0.250000i
\(9\) 0 0
\(10\) −7.64274 4.41254i −0.764274 0.441254i
\(11\) −18.5194 + 4.96225i −1.68358 + 0.451114i −0.968721 0.248154i \(-0.920176\pi\)
−0.714860 + 0.699268i \(0.753510\pi\)
\(12\) 0 0
\(13\) −12.9213 + 1.42820i −0.993947 + 0.109862i
\(14\) 11.5571 0.825509
\(15\) 0 0
\(16\) 2.00000 3.46410i 0.125000 0.216506i
\(17\) 19.9936 11.5433i 1.17609 0.679018i 0.220986 0.975277i \(-0.429073\pi\)
0.955108 + 0.296259i \(0.0957392\pi\)
\(18\) 0 0
\(19\) 0.417587 + 0.111892i 0.0219783 + 0.00588906i 0.269791 0.962919i \(-0.413045\pi\)
−0.247813 + 0.968808i \(0.579712\pi\)
\(20\) 3.23020 12.0553i 0.161510 0.602764i
\(21\) 0 0
\(22\) −13.5571 23.4816i −0.616233 1.06735i
\(23\) −36.4688 21.0553i −1.58560 0.915447i −0.994020 0.109202i \(-0.965171\pi\)
−0.591581 0.806245i \(-0.701496\pi\)
\(24\) 0 0
\(25\) 13.9410i 0.557641i
\(26\) −6.68049 17.1281i −0.256942 0.658772i
\(27\) 0 0
\(28\) 4.23020 + 15.7873i 0.151079 + 0.563833i
\(29\) 3.25785 5.64275i 0.112340 0.194578i −0.804374 0.594124i \(-0.797499\pi\)
0.916713 + 0.399546i \(0.130832\pi\)
\(30\) 0 0
\(31\) −17.8476 + 17.8476i −0.575730 + 0.575730i −0.933724 0.357994i \(-0.883461\pi\)
0.357994 + 0.933724i \(0.383461\pi\)
\(32\) 5.46410 + 1.46410i 0.170753 + 0.0457532i
\(33\) 0 0
\(34\) 23.0866 + 23.0866i 0.679018 + 0.679018i
\(35\) 25.4982 + 44.1641i 0.728519 + 1.26183i
\(36\) 0 0
\(37\) −1.37988 + 0.369738i −0.0372940 + 0.00999291i −0.277418 0.960749i \(-0.589479\pi\)
0.240124 + 0.970742i \(0.422812\pi\)
\(38\) 0.611390i 0.0160892i
\(39\) 0 0
\(40\) 17.6502 0.441254
\(41\) 10.8187 + 40.3758i 0.263870 + 0.984776i 0.962938 + 0.269721i \(0.0869316\pi\)
−0.699068 + 0.715055i \(0.746402\pi\)
\(42\) 0 0
\(43\) −51.1299 + 29.5199i −1.18907 + 0.686509i −0.958095 0.286452i \(-0.907524\pi\)
−0.230973 + 0.972960i \(0.574191\pi\)
\(44\) 27.1143 27.1143i 0.616233 0.616233i
\(45\) 0 0
\(46\) 15.4135 57.5241i 0.335077 1.25052i
\(47\) −15.0543 15.0543i −0.320303 0.320303i 0.528580 0.848883i \(-0.322725\pi\)
−0.848883 + 0.528580i \(0.822725\pi\)
\(48\) 0 0
\(49\) −15.4011 8.89182i −0.314308 0.181466i
\(50\) 19.0438 5.10277i 0.380876 0.102055i
\(51\) 0 0
\(52\) 20.9522 15.3950i 0.402926 0.296058i
\(53\) −8.90794 −0.168074 −0.0840372 0.996463i \(-0.526781\pi\)
−0.0840372 + 0.996463i \(0.526781\pi\)
\(54\) 0 0
\(55\) 59.8214 103.614i 1.08766 1.88389i
\(56\) −20.0175 + 11.5571i −0.357456 + 0.206377i
\(57\) 0 0
\(58\) 8.90060 + 2.38491i 0.153459 + 0.0411191i
\(59\) −11.4200 + 42.6199i −0.193559 + 0.722371i 0.799077 + 0.601229i \(0.205322\pi\)
−0.992635 + 0.121141i \(0.961345\pi\)
\(60\) 0 0
\(61\) 44.8027 + 77.6005i 0.734470 + 1.27214i 0.954955 + 0.296749i \(0.0959025\pi\)
−0.220485 + 0.975390i \(0.570764\pi\)
\(62\) −30.9130 17.8476i −0.498597 0.287865i
\(63\) 0 0
\(64\) 8.00000i 0.125000i
\(65\) 50.7138 63.3178i 0.780212 0.974120i
\(66\) 0 0
\(67\) 10.2563 + 38.2772i 0.153080 + 0.571302i 0.999262 + 0.0384081i \(0.0122287\pi\)
−0.846182 + 0.532893i \(0.821105\pi\)
\(68\) −23.0866 + 39.9872i −0.339509 + 0.588047i
\(69\) 0 0
\(70\) −50.9963 + 50.9963i −0.728519 + 0.728519i
\(71\) −8.56730 2.29560i −0.120666 0.0323324i 0.197981 0.980206i \(-0.436562\pi\)
−0.318647 + 0.947874i \(0.603228\pi\)
\(72\) 0 0
\(73\) −5.92683 5.92683i −0.0811895 0.0811895i 0.665346 0.746535i \(-0.268284\pi\)
−0.746535 + 0.665346i \(0.768284\pi\)
\(74\) −1.01014 1.74962i −0.0136506 0.0236435i
\(75\) 0 0
\(76\) −0.835174 + 0.223784i −0.0109891 + 0.00294453i
\(77\) 156.682i 2.03483i
\(78\) 0 0
\(79\) 115.826 1.46616 0.733078 0.680144i \(-0.238083\pi\)
0.733078 + 0.680144i \(0.238083\pi\)
\(80\) 6.46041 + 24.1106i 0.0807551 + 0.301382i
\(81\) 0 0
\(82\) −51.1945 + 29.5572i −0.624323 + 0.360453i
\(83\) 34.2340 34.2340i 0.412458 0.412458i −0.470136 0.882594i \(-0.655795\pi\)
0.882594 + 0.470136i \(0.155795\pi\)
\(84\) 0 0
\(85\) −37.2872 + 139.158i −0.438673 + 1.63715i
\(86\) −59.0397 59.0397i −0.686509 0.686509i
\(87\) 0 0
\(88\) 46.9633 + 27.1143i 0.533674 + 0.308117i
\(89\) −58.0728 + 15.5606i −0.652503 + 0.174838i −0.569860 0.821741i \(-0.693003\pi\)
−0.0826429 + 0.996579i \(0.526336\pi\)
\(90\) 0 0
\(91\) −16.0561 + 105.017i −0.176441 + 1.15404i
\(92\) 84.2211 0.915447
\(93\) 0 0
\(94\) 15.0543 26.0747i 0.160152 0.277391i
\(95\) −2.33635 + 1.34889i −0.0245931 + 0.0141988i
\(96\) 0 0
\(97\) −129.142 34.6035i −1.33136 0.356737i −0.478139 0.878284i \(-0.658688\pi\)
−0.853223 + 0.521547i \(0.825355\pi\)
\(98\) 6.50926 24.2929i 0.0664211 0.247887i
\(99\) 0 0
\(100\) 13.9410 + 24.1466i 0.139410 + 0.241466i
\(101\) −33.1291 19.1271i −0.328010 0.189377i 0.326947 0.945043i \(-0.393980\pi\)
−0.654957 + 0.755666i \(0.727313\pi\)
\(102\) 0 0
\(103\) 65.9827i 0.640609i −0.947315 0.320304i \(-0.896215\pi\)
0.947315 0.320304i \(-0.103785\pi\)
\(104\) 28.6990 + 22.9862i 0.275952 + 0.221021i
\(105\) 0 0
\(106\) −3.26053 12.1685i −0.0307597 0.114797i
\(107\) 47.2413 81.8244i 0.441508 0.764714i −0.556294 0.830986i \(-0.687777\pi\)
0.997802 + 0.0662716i \(0.0211104\pi\)
\(108\) 0 0
\(109\) −100.935 + 100.935i −0.926011 + 0.926011i −0.997445 0.0714342i \(-0.977242\pi\)
0.0714342 + 0.997445i \(0.477242\pi\)
\(110\) 163.435 + 43.7923i 1.48577 + 0.398112i
\(111\) 0 0
\(112\) −23.1143 23.1143i −0.206377 0.206377i
\(113\) 15.3509 + 26.5885i 0.135849 + 0.235297i 0.925921 0.377716i \(-0.123291\pi\)
−0.790073 + 0.613013i \(0.789957\pi\)
\(114\) 0 0
\(115\) 253.827 68.0129i 2.20720 0.591416i
\(116\) 13.0314i 0.112340i
\(117\) 0 0
\(118\) −62.3998 −0.528812
\(119\) −48.8305 182.238i −0.410341 1.53141i
\(120\) 0 0
\(121\) 213.555 123.296i 1.76491 1.01897i
\(122\) −89.6053 + 89.6053i −0.734470 + 0.734470i
\(123\) 0 0
\(124\) 13.0654 48.7607i 0.105366 0.393231i
\(125\) −48.7982 48.7982i −0.390385 0.390385i
\(126\) 0 0
\(127\) −137.861 79.5940i −1.08552 0.626725i −0.153139 0.988205i \(-0.548938\pi\)
−0.932380 + 0.361480i \(0.882272\pi\)
\(128\) −10.9282 + 2.92820i −0.0853766 + 0.0228766i
\(129\) 0 0
\(130\) 105.056 + 46.1004i 0.808125 + 0.354619i
\(131\) −88.8918 −0.678563 −0.339282 0.940685i \(-0.610184\pi\)
−0.339282 + 0.940685i \(0.610184\pi\)
\(132\) 0 0
\(133\) 1.76648 3.05963i 0.0132818 0.0230047i
\(134\) −48.5335 + 28.0209i −0.362191 + 0.209111i
\(135\) 0 0
\(136\) −63.0738 16.9006i −0.463778 0.124269i
\(137\) −28.4831 + 106.300i −0.207906 + 0.775915i 0.780638 + 0.624983i \(0.214894\pi\)
−0.988544 + 0.150932i \(0.951773\pi\)
\(138\) 0 0
\(139\) −124.068 214.891i −0.892573 1.54598i −0.836780 0.547539i \(-0.815565\pi\)
−0.0557926 0.998442i \(-0.517769\pi\)
\(140\) −88.3282 50.9963i −0.630916 0.364259i
\(141\) 0 0
\(142\) 12.5434i 0.0883338i
\(143\) 232.208 90.5683i 1.62383 0.633345i
\(144\) 0 0
\(145\) 10.5235 + 39.2743i 0.0725759 + 0.270857i
\(146\) 5.92683 10.2656i 0.0405947 0.0703121i
\(147\) 0 0
\(148\) 2.02028 2.02028i 0.0136506 0.0136506i
\(149\) 133.409 + 35.7469i 0.895363 + 0.239912i 0.677024 0.735961i \(-0.263269\pi\)
0.218339 + 0.975873i \(0.429936\pi\)
\(150\) 0 0
\(151\) −19.6390 19.6390i −0.130060 0.130060i 0.639080 0.769140i \(-0.279315\pi\)
−0.769140 + 0.639080i \(0.779315\pi\)
\(152\) −0.611390 1.05896i −0.00402230 0.00696683i
\(153\) 0 0
\(154\) −214.031 + 57.3494i −1.38981 + 0.372399i
\(155\) 157.507i 1.01617i
\(156\) 0 0
\(157\) −121.293 −0.772569 −0.386285 0.922380i \(-0.626242\pi\)
−0.386285 + 0.922380i \(0.626242\pi\)
\(158\) 42.3954 + 158.222i 0.268325 + 1.00140i
\(159\) 0 0
\(160\) −30.5710 + 17.6502i −0.191069 + 0.110314i
\(161\) −243.339 + 243.339i −1.51142 + 1.51142i
\(162\) 0 0
\(163\) 48.9961 182.856i 0.300590 1.12182i −0.636086 0.771618i \(-0.719448\pi\)
0.936676 0.350198i \(-0.113886\pi\)
\(164\) −59.1143 59.1143i −0.360453 0.360453i
\(165\) 0 0
\(166\) 59.2950 + 34.2340i 0.357199 + 0.206229i
\(167\) 54.7719 14.6761i 0.327976 0.0878808i −0.0910740 0.995844i \(-0.529030\pi\)
0.419050 + 0.907963i \(0.362363\pi\)
\(168\) 0 0
\(169\) 164.920 36.9085i 0.975861 0.218394i
\(170\) −203.741 −1.19848
\(171\) 0 0
\(172\) 59.0397 102.260i 0.343254 0.594534i
\(173\) 281.887 162.747i 1.62940 0.940736i 0.645130 0.764072i \(-0.276803\pi\)
0.984271 0.176663i \(-0.0565303\pi\)
\(174\) 0 0
\(175\) −110.046 29.4867i −0.628833 0.168495i
\(176\) −19.8490 + 74.0775i −0.112779 + 0.420895i
\(177\) 0 0
\(178\) −42.5122 73.6334i −0.238833 0.413671i
\(179\) 122.019 + 70.4476i 0.681670 + 0.393562i 0.800484 0.599354i \(-0.204576\pi\)
−0.118814 + 0.992917i \(0.537909\pi\)
\(180\) 0 0
\(181\) 56.0814i 0.309842i −0.987927 0.154921i \(-0.950488\pi\)
0.987927 0.154921i \(-0.0495123\pi\)
\(182\) −149.333 + 16.5059i −0.820512 + 0.0906919i
\(183\) 0 0
\(184\) 30.8271 + 115.048i 0.167538 + 0.625262i
\(185\) 4.45729 7.72026i 0.0240935 0.0417311i
\(186\) 0 0
\(187\) −312.988 + 312.988i −1.67373 + 1.67373i
\(188\) 41.1290 + 11.0205i 0.218771 + 0.0586196i
\(189\) 0 0
\(190\) −2.69778 2.69778i −0.0141988 0.0141988i
\(191\) −80.6165 139.632i −0.422076 0.731057i 0.574067 0.818809i \(-0.305365\pi\)
−0.996142 + 0.0877520i \(0.972032\pi\)
\(192\) 0 0
\(193\) 162.089 43.4316i 0.839838 0.225034i 0.186837 0.982391i \(-0.440176\pi\)
0.653001 + 0.757357i \(0.273510\pi\)
\(194\) 189.077i 0.974624i
\(195\) 0 0
\(196\) 35.5673 0.181466
\(197\) −52.3324 195.307i −0.265647 0.991407i −0.961853 0.273565i \(-0.911797\pi\)
0.696207 0.717841i \(-0.254870\pi\)
\(198\) 0 0
\(199\) 80.8275 46.6658i 0.406168 0.234501i −0.282974 0.959128i \(-0.591321\pi\)
0.689142 + 0.724626i \(0.257988\pi\)
\(200\) −27.8820 + 27.8820i −0.139410 + 0.139410i
\(201\) 0 0
\(202\) 14.0020 52.2561i 0.0693168 0.258694i
\(203\) −37.6513 37.6513i −0.185475 0.185475i
\(204\) 0 0
\(205\) −225.898 130.422i −1.10194 0.636206i
\(206\) 90.1341 24.1514i 0.437544 0.117240i
\(207\) 0 0
\(208\) −20.8952 + 47.6171i −0.100458 + 0.228929i
\(209\) −8.28869 −0.0396588
\(210\) 0 0
\(211\) −158.226 + 274.055i −0.749885 + 1.29884i 0.197993 + 0.980203i \(0.436558\pi\)
−0.947877 + 0.318635i \(0.896776\pi\)
\(212\) 15.4290 8.90794i 0.0727783 0.0420186i
\(213\) 0 0
\(214\) 129.066 + 34.5831i 0.603111 + 0.161603i
\(215\) 95.3552 355.870i 0.443513 1.65521i
\(216\) 0 0
\(217\) 103.134 + 178.633i 0.475271 + 0.823193i
\(218\) −174.825 100.935i −0.801949 0.463006i
\(219\) 0 0
\(220\) 239.286i 1.08766i
\(221\) −241.857 + 177.710i −1.09438 + 0.804116i
\(222\) 0 0
\(223\) 17.6758 + 65.9671i 0.0792638 + 0.295817i 0.994166 0.107858i \(-0.0343993\pi\)
−0.914902 + 0.403675i \(0.867733\pi\)
\(224\) 23.1143 40.0351i 0.103189 0.178728i
\(225\) 0 0
\(226\) −30.7018 + 30.7018i −0.135849 + 0.135849i
\(227\) −24.3066 6.51292i −0.107077 0.0286913i 0.204882 0.978787i \(-0.434319\pi\)
−0.311960 + 0.950095i \(0.600985\pi\)
\(228\) 0 0
\(229\) −274.910 274.910i −1.20048 1.20048i −0.974020 0.226461i \(-0.927284\pi\)
−0.226461 0.974020i \(-0.572716\pi\)
\(230\) 185.815 + 321.840i 0.807889 + 1.39931i
\(231\) 0 0
\(232\) −17.8012 + 4.76982i −0.0767293 + 0.0205596i
\(233\) 401.576i 1.72350i 0.507333 + 0.861750i \(0.330631\pi\)
−0.507333 + 0.861750i \(0.669369\pi\)
\(234\) 0 0
\(235\) 132.855 0.565341
\(236\) −22.8399 85.2397i −0.0967793 0.361185i
\(237\) 0 0
\(238\) 231.069 133.407i 0.970876 0.560536i
\(239\) −305.397 + 305.397i −1.27781 + 1.27781i −0.335919 + 0.941891i \(0.609047\pi\)
−0.941891 + 0.335919i \(0.890953\pi\)
\(240\) 0 0
\(241\) −28.8074 + 107.511i −0.119533 + 0.446102i −0.999586 0.0287729i \(-0.990840\pi\)
0.880053 + 0.474875i \(0.157507\pi\)
\(242\) 246.592 + 246.592i 1.01897 + 1.01897i
\(243\) 0 0
\(244\) −155.201 89.6053i −0.636070 0.367235i
\(245\) 107.193 28.7224i 0.437524 0.117234i
\(246\) 0 0
\(247\) −5.55557 0.849393i −0.0224922 0.00343884i
\(248\) 71.3905 0.287865
\(249\) 0 0
\(250\) 48.7982 84.5209i 0.195193 0.338084i
\(251\) −75.9010 + 43.8214i −0.302394 + 0.174587i −0.643518 0.765431i \(-0.722526\pi\)
0.341124 + 0.940018i \(0.389192\pi\)
\(252\) 0 0
\(253\) 779.862 + 208.963i 3.08246 + 0.825942i
\(254\) 58.2669 217.455i 0.229397 0.856122i
\(255\) 0 0
\(256\) −8.00000 13.8564i −0.0312500 0.0541266i
\(257\) 151.909 + 87.7045i 0.591084 + 0.341263i 0.765526 0.643405i \(-0.222479\pi\)
−0.174442 + 0.984667i \(0.555812\pi\)
\(258\) 0 0
\(259\) 11.6743i 0.0450747i
\(260\) −24.5211 + 160.383i −0.0943118 + 0.616859i
\(261\) 0 0
\(262\) −32.5366 121.428i −0.124186 0.463467i
\(263\) −63.6818 + 110.300i −0.242136 + 0.419392i −0.961323 0.275425i \(-0.911181\pi\)
0.719186 + 0.694817i \(0.244515\pi\)
\(264\) 0 0
\(265\) 39.3066 39.3066i 0.148327 0.148327i
\(266\) 4.82611 + 1.29315i 0.0181433 + 0.00486147i
\(267\) 0 0
\(268\) −56.0417 56.0417i −0.209111 0.209111i
\(269\) −104.127 180.352i −0.387087 0.670455i 0.604969 0.796249i \(-0.293186\pi\)
−0.992056 + 0.125794i \(0.959852\pi\)
\(270\) 0 0
\(271\) 3.66031 0.980776i 0.0135067 0.00361910i −0.252059 0.967712i \(-0.581108\pi\)
0.265566 + 0.964093i \(0.414441\pi\)
\(272\) 92.3464i 0.339509i
\(273\) 0 0
\(274\) −155.634 −0.568009
\(275\) 69.1789 + 258.179i 0.251560 + 0.938833i
\(276\) 0 0
\(277\) 59.5357 34.3730i 0.214930 0.124090i −0.388670 0.921377i \(-0.627065\pi\)
0.603601 + 0.797287i \(0.293732\pi\)
\(278\) 248.135 248.135i 0.892573 0.892573i
\(279\) 0 0
\(280\) 37.3319 139.324i 0.133328 0.497587i
\(281\) 19.5583 + 19.5583i 0.0696025 + 0.0696025i 0.741051 0.671449i \(-0.234328\pi\)
−0.671449 + 0.741051i \(0.734328\pi\)
\(282\) 0 0
\(283\) −109.532 63.2384i −0.387039 0.223457i 0.293837 0.955855i \(-0.405068\pi\)
−0.680876 + 0.732398i \(0.738401\pi\)
\(284\) 17.1346 4.59120i 0.0603331 0.0161662i
\(285\) 0 0
\(286\) 208.712 + 284.051i 0.729764 + 0.993186i
\(287\) 341.596 1.19023
\(288\) 0 0
\(289\) 121.996 211.303i 0.422131 0.731152i
\(290\) −49.7978 + 28.7507i −0.171716 + 0.0991405i
\(291\) 0 0
\(292\) 16.1924 + 4.33874i 0.0554534 + 0.0148587i
\(293\) −96.4402 + 359.920i −0.329148 + 1.22840i 0.580929 + 0.813954i \(0.302689\pi\)
−0.910076 + 0.414441i \(0.863977\pi\)
\(294\) 0 0
\(295\) −137.671 238.453i −0.466681 0.808315i
\(296\) 3.49923 + 2.02028i 0.0118217 + 0.00682528i
\(297\) 0 0
\(298\) 195.325i 0.655452i
\(299\) 501.296 + 219.977i 1.67658 + 0.735709i
\(300\) 0 0
\(301\) 124.875 + 466.040i 0.414867 + 1.54831i
\(302\) 19.6390 34.0158i 0.0650299 0.112635i
\(303\) 0 0
\(304\) 1.22278 1.22278i 0.00402230 0.00402230i
\(305\) −540.109 144.722i −1.77085 0.474498i
\(306\) 0 0
\(307\) 259.830 + 259.830i 0.846352 + 0.846352i 0.989676 0.143324i \(-0.0457792\pi\)
−0.143324 + 0.989676i \(0.545779\pi\)
\(308\) −156.682 271.380i −0.508706 0.881105i
\(309\) 0 0
\(310\) 215.158 57.6515i 0.694059 0.185973i
\(311\) 356.838i 1.14739i −0.819069 0.573695i \(-0.805509\pi\)
0.819069 0.573695i \(-0.194491\pi\)
\(312\) 0 0
\(313\) −19.6152 −0.0626683 −0.0313342 0.999509i \(-0.509976\pi\)
−0.0313342 + 0.999509i \(0.509976\pi\)
\(314\) −44.3965 165.690i −0.141390 0.527675i
\(315\) 0 0
\(316\) −200.617 + 115.826i −0.634865 + 0.366539i
\(317\) 139.801 139.801i 0.441011 0.441011i −0.451341 0.892352i \(-0.649054\pi\)
0.892352 + 0.451341i \(0.149054\pi\)
\(318\) 0 0
\(319\) −32.3325 + 120.667i −0.101356 + 0.378265i
\(320\) −35.3003 35.3003i −0.110314 0.110314i
\(321\) 0 0
\(322\) −421.475 243.339i −1.30893 0.755710i
\(323\) 9.64066 2.58321i 0.0298473 0.00799755i
\(324\) 0 0
\(325\) 19.9106 + 180.136i 0.0612634 + 0.554265i
\(326\) 267.720 0.821226
\(327\) 0 0
\(328\) 59.1143 102.389i 0.180227 0.312162i
\(329\) −150.675 + 86.9920i −0.457978 + 0.264413i
\(330\) 0 0
\(331\) 265.737 + 71.2040i 0.802830 + 0.215118i 0.636826 0.771007i \(-0.280247\pi\)
0.166004 + 0.986125i \(0.446914\pi\)
\(332\) −25.0610 + 93.5290i −0.0754850 + 0.281714i
\(333\) 0 0
\(334\) 40.0958 + 69.4480i 0.120047 + 0.207928i
\(335\) −214.156 123.643i −0.639272 0.369084i
\(336\) 0 0
\(337\) 625.952i 1.85743i 0.370800 + 0.928713i \(0.379084\pi\)
−0.370800 + 0.928713i \(0.620916\pi\)
\(338\) 110.783 + 211.776i 0.327760 + 0.626557i
\(339\) 0 0
\(340\) −74.5745 278.316i −0.219337 0.818575i
\(341\) 241.963 419.092i 0.709568 1.22901i
\(342\) 0 0
\(343\) 180.386 180.386i 0.525906 0.525906i
\(344\) 161.300 + 43.2201i 0.468894 + 0.125640i
\(345\) 0 0
\(346\) 325.495 + 325.495i 0.940736 + 0.940736i
\(347\) −52.8438 91.5282i −0.152288 0.263770i 0.779780 0.626053i \(-0.215331\pi\)
−0.932068 + 0.362283i \(0.881997\pi\)
\(348\) 0 0
\(349\) −418.494 + 112.135i −1.19912 + 0.321304i −0.802485 0.596672i \(-0.796489\pi\)
−0.396637 + 0.917976i \(0.629823\pi\)
\(350\) 161.118i 0.460338i
\(351\) 0 0
\(352\) −108.457 −0.308117
\(353\) 152.231 + 568.133i 0.431248 + 1.60944i 0.749888 + 0.661565i \(0.230108\pi\)
−0.318639 + 0.947876i \(0.603226\pi\)
\(354\) 0 0
\(355\) 47.9330 27.6741i 0.135023 0.0779553i
\(356\) 85.0245 85.0245i 0.238833 0.238833i
\(357\) 0 0
\(358\) −51.5712 + 192.466i −0.144054 + 0.537616i
\(359\) −172.896 172.896i −0.481604 0.481604i 0.424040 0.905644i \(-0.360612\pi\)
−0.905644 + 0.424040i \(0.860612\pi\)
\(360\) 0 0
\(361\) −312.473 180.407i −0.865577 0.499741i
\(362\) 76.6086 20.5272i 0.211626 0.0567050i
\(363\) 0 0
\(364\) −77.2073 197.951i −0.212108 0.543823i
\(365\) 52.3048 0.143301
\(366\) 0 0
\(367\) 172.613 298.974i 0.470335 0.814644i −0.529090 0.848566i \(-0.677467\pi\)
0.999424 + 0.0339223i \(0.0107999\pi\)
\(368\) −145.875 + 84.2211i −0.396400 + 0.228862i
\(369\) 0 0
\(370\) 12.1775 + 3.26296i 0.0329123 + 0.00881882i
\(371\) −18.8412 + 70.3163i −0.0507849 + 0.189532i
\(372\) 0 0
\(373\) −223.291 386.751i −0.598635 1.03687i −0.993023 0.117922i \(-0.962377\pi\)
0.394388 0.918944i \(-0.370957\pi\)
\(374\) −542.111 312.988i −1.44950 0.836867i
\(375\) 0 0
\(376\) 60.2170i 0.160152i
\(377\) −34.0366 + 77.5646i −0.0902828 + 0.205742i
\(378\) 0 0
\(379\) 58.0212 + 216.538i 0.153090 + 0.571340i 0.999261 + 0.0384290i \(0.0122353\pi\)
−0.846171 + 0.532911i \(0.821098\pi\)
\(380\) 2.69778 4.67269i 0.00709942 0.0122966i
\(381\) 0 0
\(382\) 161.233 161.233i 0.422076 0.422076i
\(383\) −275.080 73.7074i −0.718224 0.192448i −0.118845 0.992913i \(-0.537919\pi\)
−0.599379 + 0.800465i \(0.704586\pi\)
\(384\) 0 0
\(385\) −691.364 691.364i −1.79575 1.79575i
\(386\) 118.657 + 205.520i 0.307402 + 0.532436i
\(387\) 0 0
\(388\) 258.284 69.2070i 0.665681 0.178369i
\(389\) 55.5965i 0.142922i −0.997443 0.0714608i \(-0.977234\pi\)
0.997443 0.0714608i \(-0.0227661\pi\)
\(390\) 0 0
\(391\) −972.190 −2.48642
\(392\) 13.0185 + 48.5858i 0.0332105 + 0.123943i
\(393\) 0 0
\(394\) 247.640 142.975i 0.628527 0.362880i
\(395\) −511.089 + 511.089i −1.29390 + 1.29390i
\(396\) 0 0
\(397\) −60.5246 + 225.881i −0.152455 + 0.568969i 0.846855 + 0.531824i \(0.178493\pi\)
−0.999310 + 0.0371454i \(0.988174\pi\)
\(398\) 93.3316 + 93.3316i 0.234501 + 0.234501i
\(399\) 0 0
\(400\) −48.2931 27.8820i −0.120733 0.0697051i
\(401\) 139.942 37.4974i 0.348983 0.0935096i −0.0800696 0.996789i \(-0.525514\pi\)
0.429052 + 0.903280i \(0.358848\pi\)
\(402\) 0 0
\(403\) 205.125 256.105i 0.508995 0.635496i
\(404\) 76.5083 0.189377
\(405\) 0 0
\(406\) 37.6513 65.2140i 0.0927373 0.160626i
\(407\) 23.7198 13.6946i 0.0582796 0.0336477i
\(408\) 0 0
\(409\) −666.035 178.463i −1.62845 0.436341i −0.674979 0.737837i \(-0.735847\pi\)
−0.953468 + 0.301496i \(0.902514\pi\)
\(410\) 95.4756 356.320i 0.232867 0.869073i
\(411\) 0 0
\(412\) 65.9827 + 114.285i 0.160152 + 0.277392i
\(413\) 312.273 + 180.291i 0.756108 + 0.436539i
\(414\) 0 0
\(415\) 302.118i 0.727994i
\(416\) −72.6944 11.1143i −0.174746 0.0267170i
\(417\) 0 0
\(418\) −3.03387 11.3226i −0.00725806 0.0270875i
\(419\) −35.3241 + 61.1831i −0.0843056 + 0.146022i −0.905095 0.425209i \(-0.860201\pi\)
0.820789 + 0.571231i \(0.193534\pi\)
\(420\) 0 0
\(421\) −269.923 + 269.923i −0.641148 + 0.641148i −0.950838 0.309690i \(-0.899775\pi\)
0.309690 + 0.950838i \(0.399775\pi\)
\(422\) −432.281 115.829i −1.02436 0.274477i
\(423\) 0 0
\(424\) 17.8159 + 17.8159i 0.0420186 + 0.0420186i
\(425\) −160.925 278.731i −0.378648 0.655838i
\(426\) 0 0
\(427\) 707.315 189.524i 1.65647 0.443851i
\(428\) 188.965i 0.441508i
\(429\) 0 0
\(430\) 521.030 1.21170
\(431\) 167.809 + 626.272i 0.389348 + 1.45307i 0.831197 + 0.555978i \(0.187656\pi\)
−0.441848 + 0.897090i \(0.645677\pi\)
\(432\) 0 0
\(433\) 330.115 190.592i 0.762391 0.440166i −0.0677628 0.997701i \(-0.521586\pi\)
0.830153 + 0.557535i \(0.188253\pi\)
\(434\) −206.267 + 206.267i −0.475271 + 0.475271i
\(435\) 0 0
\(436\) 73.8897 275.760i 0.169472 0.632477i
\(437\) −12.8730 12.8730i −0.0294576 0.0294576i
\(438\) 0 0
\(439\) 96.4945 + 55.7111i 0.219805 + 0.126905i 0.605860 0.795571i \(-0.292829\pi\)
−0.386055 + 0.922476i \(0.626162\pi\)
\(440\) −326.870 + 87.5846i −0.742887 + 0.199056i
\(441\) 0 0
\(442\) −331.282 265.337i −0.749506 0.600310i
\(443\) −480.157 −1.08388 −0.541938 0.840418i \(-0.682309\pi\)
−0.541938 + 0.840418i \(0.682309\pi\)
\(444\) 0 0
\(445\) 187.587 324.910i 0.421544 0.730135i
\(446\) −83.6430 + 48.2913i −0.187540 + 0.108276i
\(447\) 0 0
\(448\) 63.1493 + 16.9208i 0.140958 + 0.0377697i
\(449\) 105.379 393.279i 0.234697 0.875900i −0.743589 0.668637i \(-0.766878\pi\)
0.978285 0.207263i \(-0.0664555\pi\)
\(450\) 0 0
\(451\) −400.710 694.051i −0.888493 1.53891i
\(452\) −53.1771 30.7018i −0.117648 0.0679243i
\(453\) 0 0
\(454\) 35.5873i 0.0783861i
\(455\) −392.545 534.241i −0.862736 1.17416i
\(456\) 0 0
\(457\) −5.25408 19.6085i −0.0114969 0.0429069i 0.959939 0.280209i \(-0.0904037\pi\)
−0.971436 + 0.237302i \(0.923737\pi\)
\(458\) 274.910 476.159i 0.600241 1.03965i
\(459\) 0 0
\(460\) −371.629 + 371.629i −0.807889 + 0.807889i
\(461\) −457.719 122.645i −0.992882 0.266042i −0.274421 0.961610i \(-0.588486\pi\)
−0.718461 + 0.695568i \(0.755153\pi\)
\(462\) 0 0
\(463\) 266.154 + 266.154i 0.574846 + 0.574846i 0.933479 0.358633i \(-0.116757\pi\)
−0.358633 + 0.933479i \(0.616757\pi\)
\(464\) −13.0314 22.5710i −0.0280849 0.0486444i
\(465\) 0 0
\(466\) −548.562 + 146.987i −1.17717 + 0.315422i
\(467\) 231.396i 0.495494i 0.968825 + 0.247747i \(0.0796901\pi\)
−0.968825 + 0.247747i \(0.920310\pi\)
\(468\) 0 0
\(469\) 323.841 0.690492
\(470\) 48.6283 + 181.483i 0.103465 + 0.386135i
\(471\) 0 0
\(472\) 108.080 62.3998i 0.228982 0.132203i
\(473\) 800.410 800.410i 1.69220 1.69220i
\(474\) 0 0
\(475\) 1.55989 5.82159i 0.00328398 0.0122560i
\(476\) 266.815 + 266.815i 0.560536 + 0.560536i
\(477\) 0 0
\(478\) −528.962 305.397i −1.10662 0.638905i
\(479\) 81.0183 21.7088i 0.169140 0.0453210i −0.173255 0.984877i \(-0.555428\pi\)
0.342395 + 0.939556i \(0.388762\pi\)
\(480\) 0 0
\(481\) 17.3018 6.74824i 0.0359705 0.0140296i
\(482\) −157.406 −0.326569
\(483\) 0 0
\(484\) −246.592 + 427.109i −0.509487 + 0.882457i
\(485\) 722.534 417.155i 1.48976 0.860114i
\(486\) 0 0
\(487\) −51.6346 13.8354i −0.106026 0.0284095i 0.205416 0.978675i \(-0.434145\pi\)
−0.311442 + 0.950265i \(0.600812\pi\)
\(488\) 65.5957 244.806i 0.134417 0.501652i
\(489\) 0 0
\(490\) 78.4710 + 135.916i 0.160145 + 0.277379i
\(491\) 755.689 + 436.297i 1.53908 + 0.888589i 0.998893 + 0.0470443i \(0.0149802\pi\)
0.540188 + 0.841544i \(0.318353\pi\)
\(492\) 0 0
\(493\) 150.425i 0.305122i
\(494\) −0.873189 7.89995i −0.00176759 0.0159918i
\(495\) 0 0
\(496\) 26.1308 + 97.5213i 0.0526830 + 0.196616i
\(497\) −36.2414 + 62.7720i −0.0729204 + 0.126302i
\(498\) 0 0
\(499\) 178.607 178.607i 0.357929 0.357929i −0.505120 0.863049i \(-0.668552\pi\)
0.863049 + 0.505120i \(0.168552\pi\)
\(500\) 133.319 + 35.7228i 0.266638 + 0.0714455i
\(501\) 0 0
\(502\) −87.6429 87.6429i −0.174587 0.174587i
\(503\) −290.935 503.915i −0.578401 1.00182i −0.995663 0.0930331i \(-0.970344\pi\)
0.417262 0.908786i \(-0.362990\pi\)
\(504\) 0 0
\(505\) 230.582 61.7843i 0.456599 0.122345i
\(506\) 1141.80i 2.25652i
\(507\) 0 0
\(508\) 318.376 0.626725
\(509\) 80.3135 + 299.734i 0.157787 + 0.588868i 0.998851 + 0.0479323i \(0.0152632\pi\)
−0.841064 + 0.540936i \(0.818070\pi\)
\(510\) 0 0
\(511\) −59.3203 + 34.2486i −0.116087 + 0.0670227i
\(512\) 16.0000 16.0000i 0.0312500 0.0312500i
\(513\) 0 0
\(514\) −64.2041 + 239.613i −0.124911 + 0.466173i
\(515\) 291.151 + 291.151i 0.565343 + 0.565343i
\(516\) 0 0
\(517\) 353.499 + 204.093i 0.683750 + 0.394763i
\(518\) −15.9474 + 4.27311i −0.0307866 + 0.00824924i
\(519\) 0 0
\(520\) −228.063 + 25.2080i −0.438583 + 0.0484770i
\(521\) −400.878 −0.769440 −0.384720 0.923033i \(-0.625702\pi\)
−0.384720 + 0.923033i \(0.625702\pi\)
\(522\) 0 0
\(523\) −255.340 + 442.262i −0.488222 + 0.845626i −0.999908 0.0135467i \(-0.995688\pi\)
0.511686 + 0.859173i \(0.329021\pi\)
\(524\) 153.965 88.8918i 0.293826 0.169641i
\(525\) 0 0
\(526\) −173.982 46.6183i −0.330764 0.0886279i
\(527\) −150.818 + 562.859i −0.286181 + 1.06804i
\(528\) 0 0
\(529\) 622.150 + 1077.60i 1.17609 + 2.03704i
\(530\) 68.0811 + 39.3066i 0.128455 + 0.0741635i
\(531\) 0 0
\(532\) 7.06591i 0.0132818i
\(533\) −197.456 506.257i −0.370462 0.949826i
\(534\) 0 0
\(535\) 152.599 + 569.508i 0.285232 + 1.06450i
\(536\) 56.0417 97.0671i 0.104555 0.181095i
\(537\) 0 0
\(538\) 208.253 208.253i 0.387087 0.387087i
\(539\) 329.342 + 88.2469i 0.611024 + 0.163723i
\(540\) 0 0
\(541\) 75.0411 + 75.0411i 0.138708 + 0.138708i 0.773051 0.634343i \(-0.218729\pi\)
−0.634343 + 0.773051i \(0.718729\pi\)
\(542\) 2.67953 + 4.64108i 0.00494378 + 0.00856288i
\(543\) 0 0
\(544\) 126.148 33.8011i 0.231889 0.0621345i
\(545\) 890.761i 1.63442i
\(546\) 0 0
\(547\) −328.719 −0.600950 −0.300475 0.953790i \(-0.597145\pi\)
−0.300475 + 0.953790i \(0.597145\pi\)
\(548\) −56.9662 212.601i −0.103953 0.387957i
\(549\) 0 0
\(550\) −327.358 + 189.000i −0.595196 + 0.343637i
\(551\) 1.99181 1.99181i 0.00361491 0.00361491i
\(552\) 0 0
\(553\) 244.985 914.295i 0.443010 1.65334i
\(554\) 68.7460 + 68.7460i 0.124090 + 0.124090i
\(555\) 0 0
\(556\) 429.783 + 248.135i 0.772991 + 0.446286i
\(557\) 331.165 88.7354i 0.594551 0.159309i 0.0510186 0.998698i \(-0.483753\pi\)
0.543532 + 0.839388i \(0.317087\pi\)
\(558\) 0 0
\(559\) 618.505 454.459i 1.10645 0.812986i
\(560\) 203.985 0.364259
\(561\) 0 0
\(562\) −19.5583 + 33.8760i −0.0348013 + 0.0602776i
\(563\) 314.882 181.797i 0.559293 0.322908i −0.193569 0.981087i \(-0.562006\pi\)
0.752862 + 0.658179i \(0.228673\pi\)
\(564\) 0 0
\(565\) −185.059 49.5865i −0.327539 0.0877637i
\(566\) 46.2937 172.770i 0.0817910 0.305248i
\(567\) 0 0
\(568\) 12.5434 + 21.7258i 0.0220835 + 0.0382497i
\(569\) −548.662 316.770i −0.964256 0.556714i −0.0667758 0.997768i \(-0.521271\pi\)
−0.897480 + 0.441054i \(0.854605\pi\)
\(570\) 0 0
\(571\) 54.2364i 0.0949849i 0.998872 + 0.0474925i \(0.0151230\pi\)
−0.998872 + 0.0474925i \(0.984877\pi\)
\(572\) −311.627 + 389.076i −0.544803 + 0.680204i
\(573\) 0 0
\(574\) 125.033 + 466.629i 0.217827 + 0.812942i
\(575\) −293.532 + 508.413i −0.510491 + 0.884196i
\(576\) 0 0
\(577\) −704.420 + 704.420i −1.22083 + 1.22083i −0.253495 + 0.967337i \(0.581580\pi\)
−0.967337 + 0.253495i \(0.918420\pi\)
\(578\) 333.299 + 89.3071i 0.576641 + 0.154511i
\(579\) 0 0
\(580\) −57.5015 57.5015i −0.0991405 0.0991405i
\(581\) −197.823 342.640i −0.340488 0.589742i
\(582\) 0 0
\(583\) 164.970 44.2035i 0.282967 0.0758207i
\(584\) 23.7073i 0.0405947i
\(585\) 0 0
\(586\) −526.959 −0.899248
\(587\) −243.773 909.773i −0.415286 1.54987i −0.784262 0.620430i \(-0.786958\pi\)
0.368975 0.929439i \(-0.379709\pi\)
\(588\) 0 0
\(589\) −9.44995 + 5.45593i −0.0160441 + 0.00926304i
\(590\) 275.342 275.342i 0.466681 0.466681i
\(591\) 0 0
\(592\) −1.47895 + 5.51952i −0.00249823 + 0.00932351i
\(593\) 457.589 + 457.589i 0.771650 + 0.771650i 0.978395 0.206745i \(-0.0662870\pi\)
−0.206745 + 0.978395i \(0.566287\pi\)
\(594\) 0 0
\(595\) 1019.60 + 588.666i 1.71361 + 0.989354i
\(596\) −266.818 + 71.4937i −0.447682 + 0.119956i
\(597\) 0 0
\(598\) −117.007 + 765.300i −0.195664 + 1.27977i
\(599\) 78.9882 0.131867 0.0659334 0.997824i \(-0.478998\pi\)
0.0659334 + 0.997824i \(0.478998\pi\)
\(600\) 0 0
\(601\) 182.344 315.829i 0.303401 0.525506i −0.673503 0.739185i \(-0.735211\pi\)
0.976904 + 0.213678i \(0.0685445\pi\)
\(602\) −590.915 + 341.165i −0.981587 + 0.566719i
\(603\) 0 0
\(604\) 53.6549 + 14.3768i 0.0888325 + 0.0238026i
\(605\) −398.271 + 1486.37i −0.658298 + 2.45680i
\(606\) 0 0
\(607\) −295.511 511.839i −0.486838 0.843228i 0.513048 0.858360i \(-0.328516\pi\)
−0.999886 + 0.0151322i \(0.995183\pi\)
\(608\) 2.11792 + 1.22278i 0.00348341 + 0.00201115i
\(609\) 0 0
\(610\) 790.774i 1.29635i
\(611\) 216.021 + 173.020i 0.353554 + 0.283175i
\(612\) 0 0
\(613\) −112.817 421.040i −0.184041 0.686852i −0.994834 0.101518i \(-0.967630\pi\)
0.810792 0.585334i \(-0.199037\pi\)
\(614\) −259.830 + 450.039i −0.423176 + 0.732962i
\(615\) 0 0
\(616\) 313.363 313.363i 0.508706 0.508706i
\(617\) 288.834 + 77.3930i 0.468127 + 0.125434i 0.485169 0.874420i \(-0.338758\pi\)
−0.0170417 + 0.999855i \(0.505425\pi\)
\(618\) 0 0
\(619\) 84.5481 + 84.5481i 0.136588 + 0.136588i 0.772095 0.635507i \(-0.219209\pi\)
−0.635507 + 0.772095i \(0.719209\pi\)
\(620\) 157.507 + 272.810i 0.254043 + 0.440016i
\(621\) 0 0
\(622\) 487.450 130.612i 0.783682 0.209987i
\(623\) 491.319i 0.788635i
\(624\) 0 0
\(625\) 779.173 1.24668
\(626\) −7.17966 26.7948i −0.0114691 0.0428033i
\(627\) 0 0
\(628\) 210.086 121.293i 0.334532 0.193142i
\(629\) −23.3208 + 23.3208i −0.0370759 + 0.0370759i
\(630\) 0 0
\(631\) −195.299 + 728.867i −0.309508 + 1.15510i 0.619488 + 0.785006i \(0.287340\pi\)
−0.928995 + 0.370092i \(0.879326\pi\)
\(632\) −231.653 231.653i −0.366539 0.366539i
\(633\) 0 0
\(634\) 242.142 + 139.801i 0.381927 + 0.220506i
\(635\) 959.529 257.105i 1.51107 0.404890i
\(636\) 0 0
\(637\) 211.702 + 92.8981i 0.332341 + 0.145837i
\(638\) −176.668 −0.276909
\(639\) 0 0
\(640\) 35.3003 61.1420i 0.0551568 0.0955343i
\(641\) −326.603 + 188.565i −0.509522 + 0.294172i −0.732637 0.680620i \(-0.761711\pi\)
0.223115 + 0.974792i \(0.428377\pi\)
\(642\) 0 0
\(643\) −1166.74 312.627i −1.81452 0.486200i −0.818438 0.574595i \(-0.805160\pi\)
−0.996086 + 0.0883945i \(0.971826\pi\)
\(644\) 178.136 664.814i 0.276609 1.03232i
\(645\) 0 0
\(646\) 7.05746 + 12.2239i 0.0109249 + 0.0189224i
\(647\) −219.028 126.456i −0.338529 0.195450i 0.321093 0.947048i \(-0.395950\pi\)
−0.659621 + 0.751598i \(0.729283\pi\)
\(648\) 0 0
\(649\) 845.962i 1.30349i
\(650\) −238.783 + 93.1328i −0.367358 + 0.143281i
\(651\) 0 0
\(652\) 97.9922 + 365.712i 0.150295 + 0.560908i
\(653\) 216.293 374.631i 0.331230 0.573707i −0.651523 0.758629i \(-0.725870\pi\)
0.982753 + 0.184921i \(0.0592031\pi\)
\(654\) 0 0
\(655\) 392.239 392.239i 0.598837 0.598837i
\(656\) 161.503 + 43.2747i 0.246194 + 0.0659675i
\(657\) 0 0
\(658\) −173.984 173.984i −0.264413 0.264413i
\(659\) 604.428 + 1046.90i 0.917190 + 1.58862i 0.803663 + 0.595085i \(0.202882\pi\)
0.113527 + 0.993535i \(0.463785\pi\)
\(660\) 0 0
\(661\) −1018.51 + 272.908i −1.54086 + 0.412872i −0.926543 0.376188i \(-0.877235\pi\)
−0.614316 + 0.789060i \(0.710568\pi\)
\(662\) 389.066i 0.587713i
\(663\) 0 0
\(664\) −136.936 −0.206229
\(665\) 5.70608 + 21.2954i 0.00858057 + 0.0320231i
\(666\) 0 0
\(667\) −237.620 + 137.190i −0.356251 + 0.205682i
\(668\) −80.1917 + 80.1917i −0.120047 + 0.120047i
\(669\) 0 0
\(670\) 90.5131 337.799i 0.135094 0.504178i
\(671\) −1214.79 1214.79i −1.81042 1.81042i
\(672\) 0 0
\(673\) 688.514 + 397.514i 1.02305 + 0.590659i 0.914986 0.403484i \(-0.132201\pi\)
0.108065 + 0.994144i \(0.465534\pi\)
\(674\) −855.067 + 229.114i −1.26865 + 0.339932i
\(675\) 0 0
\(676\) −248.742 + 228.848i −0.367962 + 0.338532i
\(677\) −642.236 −0.948649 −0.474325 0.880350i \(-0.657308\pi\)
−0.474325 + 0.880350i \(0.657308\pi\)
\(678\) 0 0
\(679\) −546.297 + 946.214i −0.804561 + 1.39354i
\(680\) 352.890 203.741i 0.518956 0.299619i
\(681\) 0 0
\(682\) 661.055 + 177.129i 0.969288 + 0.259720i
\(683\) −168.964 + 630.582i −0.247385 + 0.923253i 0.724785 + 0.688975i \(0.241939\pi\)
−0.972170 + 0.234277i \(0.924728\pi\)
\(684\) 0 0
\(685\) −343.372 594.737i −0.501272 0.868229i
\(686\) 312.437 + 180.386i 0.455448 + 0.262953i
\(687\) 0 0
\(688\) 236.159i 0.343254i
\(689\) 115.102 12.7223i 0.167057 0.0184649i
\(690\) 0 0
\(691\) −199.113 743.100i −0.288152 1.07540i −0.946505 0.322689i \(-0.895413\pi\)
0.658353 0.752709i \(-0.271253\pi\)
\(692\) −325.495 + 563.773i −0.470368 + 0.814701i
\(693\) 0 0
\(694\) 105.688 105.688i 0.152288 0.152288i
\(695\) 1495.67 + 400.764i 2.15204 + 0.576638i
\(696\) 0 0
\(697\) 682.375 + 682.375i 0.979017 + 0.979017i
\(698\) −306.359 530.629i −0.438909 0.760213i
\(699\) 0 0
\(700\) 220.092 58.9734i 0.314417 0.0842477i
\(701\) 415.401i 0.592584i 0.955097 + 0.296292i \(0.0957502\pi\)
−0.955097 + 0.296292i \(0.904250\pi\)
\(702\) 0 0
\(703\) −0.617590 −0.000878507
\(704\) −39.6980 148.155i −0.0563893 0.210448i
\(705\) 0 0
\(706\) −720.363 + 415.902i −1.02034 + 0.589096i
\(707\) −221.054 + 221.054i −0.312665 + 0.312665i
\(708\) 0 0
\(709\) 81.1586 302.888i 0.114469 0.427204i −0.884778 0.466014i \(-0.845690\pi\)
0.999247 + 0.0388092i \(0.0123565\pi\)
\(710\) 55.3483 + 55.3483i 0.0779553 + 0.0779553i
\(711\) 0 0
\(712\) 147.267 + 85.0245i 0.206835 + 0.119416i
\(713\) 1026.67 275.095i 1.43993 0.385828i
\(714\) 0 0
\(715\) −624.989 + 1424.26i −0.874111 + 1.99197i
\(716\) −281.790 −0.393562
\(717\) 0 0
\(718\) 172.896 299.464i 0.240802 0.417081i
\(719\) −205.104 + 118.417i −0.285263 + 0.164697i −0.635804 0.771851i \(-0.719331\pi\)
0.350541 + 0.936547i \(0.385998\pi\)
\(720\) 0 0
\(721\) −520.846 139.560i −0.722393 0.193565i
\(722\) 132.067 492.880i 0.182918 0.682659i
\(723\) 0 0
\(724\) 56.0814 + 97.1359i 0.0774605 + 0.134166i
\(725\) −78.6658 45.4177i −0.108504 0.0626451i
\(726\) 0 0
\(727\) 919.030i 1.26414i 0.774911 + 0.632070i \(0.217794\pi\)
−0.774911 + 0.632070i \(0.782206\pi\)
\(728\) 242.147 177.922i 0.332619 0.244399i
\(729\) 0 0
\(730\) 19.1449 + 71.4496i 0.0262258 + 0.0978762i
\(731\) −681.514 + 1180.42i −0.932303 + 1.61480i
\(732\) 0 0
\(733\) 709.566 709.566i 0.968030 0.968030i −0.0314750 0.999505i \(-0.510020\pi\)
0.999505 + 0.0314750i \(0.0100205\pi\)
\(734\) 471.587 + 126.361i 0.642489 + 0.172154i
\(735\) 0 0
\(736\) −168.442 168.442i −0.228862 0.228862i
\(737\) −379.882 657.976i −0.515444 0.892776i
\(738\) 0 0
\(739\) 118.782 31.8276i 0.160734 0.0430685i −0.177555 0.984111i \(-0.556819\pi\)
0.338289 + 0.941042i \(0.390152\pi\)
\(740\) 17.8292i 0.0240935i
\(741\) 0 0
\(742\) −102.950 −0.138747
\(743\) −344.461 1285.55i −0.463609 1.73021i −0.661461 0.749980i \(-0.730063\pi\)
0.197852 0.980232i \(-0.436604\pi\)
\(744\) 0 0
\(745\) −746.408 + 430.939i −1.00189 + 0.578441i
\(746\) 446.582 446.582i 0.598635 0.598635i
\(747\) 0 0
\(748\) 229.123 855.100i 0.306315 1.14318i
\(749\) −545.974 545.974i −0.728938 0.728938i
\(750\) 0 0
\(751\) −1177.85 680.031i −1.56837 0.905501i −0.996359 0.0852568i \(-0.972829\pi\)
−0.572014 0.820244i \(-0.693838\pi\)
\(752\) −82.2580 + 22.0410i −0.109386 + 0.0293098i
\(753\) 0 0
\(754\) −118.414 18.1043i −0.157047 0.0240110i
\(755\) 173.316 0.229558
\(756\) 0 0
\(757\) 541.869 938.545i 0.715812 1.23982i −0.246834 0.969058i \(-0.579390\pi\)
0.962646 0.270764i \(-0.0872764\pi\)
\(758\) −274.559 + 158.517i −0.362215 + 0.209125i
\(759\) 0 0
\(760\) 7.37047 + 1.97491i 0.00969799 + 0.00259857i
\(761\) 301.591 1125.55i 0.396309 1.47905i −0.423229 0.906023i \(-0.639103\pi\)
0.819538 0.573024i \(-0.194230\pi\)
\(762\) 0 0
\(763\) 583.261 + 1010.24i 0.764431 + 1.32403i
\(764\) 279.264 + 161.233i 0.365528 + 0.211038i
\(765\) 0 0
\(766\) 402.745i 0.525776i
\(767\) 86.6910 567.014i 0.113026 0.739263i
\(768\) 0 0
\(769\) −238.002 888.237i −0.309496 1.15505i −0.929006 0.370065i \(-0.879335\pi\)
0.619510 0.784989i \(-0.287331\pi\)
\(770\) 691.364 1197.48i 0.897875 1.55516i
\(771\) 0 0
\(772\) −237.314 + 237.314i −0.307402 + 0.307402i
\(773\) −1181.38 316.550i −1.52830 0.409508i −0.605839 0.795587i \(-0.707163\pi\)
−0.922466 + 0.386079i \(0.873829\pi\)
\(774\) 0 0
\(775\) 248.814 + 248.814i 0.321051 + 0.321051i
\(776\) 189.077 + 327.491i 0.243656 + 0.422025i
\(777\) 0 0