Properties

Label 234.3.bb.c.37.1
Level $234$
Weight $3$
Character 234.37
Analytic conductor $6.376$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [234,3,Mod(19,234)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(234, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([0, 5]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("234.19");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 234 = 2 \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 234.bb (of order \(12\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.37603818603\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{12})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 78)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 37.1
Root \(-0.866025 - 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 234.37
Dual form 234.3.bb.c.19.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.366025 + 1.36603i) q^{2} +(-1.73205 - 1.00000i) q^{4} +(1.26795 + 1.26795i) q^{5} +(-2.50000 - 9.33013i) q^{7} +(2.00000 - 2.00000i) q^{8} +(-2.19615 + 1.26795i) q^{10} +(-9.92820 - 2.66025i) q^{11} +(-11.2583 - 6.50000i) q^{13} +13.6603 q^{14} +(2.00000 + 3.46410i) q^{16} +(-16.3923 - 9.46410i) q^{17} +(31.9545 - 8.56218i) q^{19} +(-0.928203 - 3.46410i) q^{20} +(7.26795 - 12.5885i) q^{22} +(3.58846 - 2.07180i) q^{23} -21.7846i q^{25} +(13.0000 - 13.0000i) q^{26} +(-5.00000 + 18.6603i) q^{28} +(-8.66025 - 15.0000i) q^{29} +(22.1699 + 22.1699i) q^{31} +(-5.46410 + 1.46410i) q^{32} +(18.9282 - 18.9282i) q^{34} +(8.66025 - 15.0000i) q^{35} +(-35.7583 - 9.58142i) q^{37} +46.7846i q^{38} +5.07180 q^{40} +(6.67949 - 24.9282i) q^{41} +(-13.2846 - 7.66987i) q^{43} +(14.5359 + 14.5359i) q^{44} +(1.51666 + 5.66025i) q^{46} +(-7.01924 + 7.01924i) q^{47} +(-38.3660 + 22.1506i) q^{49} +(29.7583 + 7.97372i) q^{50} +(13.0000 + 22.5167i) q^{52} +61.6743 q^{53} +(-9.21539 - 15.9615i) q^{55} +(-23.6603 - 13.6603i) q^{56} +(23.6603 - 6.33975i) q^{58} +(17.1051 + 63.8372i) q^{59} +(3.65064 - 6.32309i) q^{61} +(-38.3993 + 22.1699i) q^{62} -8.00000i q^{64} +(-6.03332 - 22.5167i) q^{65} +(-10.1532 + 37.8923i) q^{67} +(18.9282 + 32.7846i) q^{68} +(17.3205 + 17.3205i) q^{70} +(-103.890 + 27.8372i) q^{71} +(-67.4186 + 67.4186i) q^{73} +(26.1769 - 45.3397i) q^{74} +(-63.9090 - 17.1244i) q^{76} +99.2820i q^{77} +11.8756 q^{79} +(-1.85641 + 6.92820i) q^{80} +(31.6077 + 18.2487i) q^{82} +(-111.033 - 111.033i) q^{83} +(-8.78461 - 32.7846i) q^{85} +(15.3397 - 15.3397i) q^{86} +(-25.1769 + 14.5359i) q^{88} +(-162.067 - 43.4256i) q^{89} +(-32.5000 + 121.292i) q^{91} -8.28719 q^{92} +(-7.01924 - 12.1577i) q^{94} +(51.3731 + 29.6603i) q^{95} +(150.246 - 40.2583i) q^{97} +(-16.2154 - 60.5167i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{2} + 12 q^{5} - 10 q^{7} + 8 q^{8} + 12 q^{10} - 12 q^{11} + 20 q^{14} + 8 q^{16} - 24 q^{17} + 62 q^{19} + 24 q^{20} + 36 q^{22} - 48 q^{23} + 52 q^{26} - 20 q^{28} + 106 q^{31} - 8 q^{32} + 48 q^{34}+ \cdots - 148 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/234\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(209\)
\(\chi(n)\) \(e\left(\frac{7}{12}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.366025 + 1.36603i −0.183013 + 0.683013i
\(3\) 0 0
\(4\) −1.73205 1.00000i −0.433013 0.250000i
\(5\) 1.26795 + 1.26795i 0.253590 + 0.253590i 0.822441 0.568851i \(-0.192612\pi\)
−0.568851 + 0.822441i \(0.692612\pi\)
\(6\) 0 0
\(7\) −2.50000 9.33013i −0.357143 1.33288i −0.877766 0.479089i \(-0.840967\pi\)
0.520624 0.853786i \(-0.325700\pi\)
\(8\) 2.00000 2.00000i 0.250000 0.250000i
\(9\) 0 0
\(10\) −2.19615 + 1.26795i −0.219615 + 0.126795i
\(11\) −9.92820 2.66025i −0.902564 0.241841i −0.222447 0.974945i \(-0.571404\pi\)
−0.680117 + 0.733104i \(0.738071\pi\)
\(12\) 0 0
\(13\) −11.2583 6.50000i −0.866025 0.500000i
\(14\) 13.6603 0.975732
\(15\) 0 0
\(16\) 2.00000 + 3.46410i 0.125000 + 0.216506i
\(17\) −16.3923 9.46410i −0.964253 0.556712i −0.0667738 0.997768i \(-0.521271\pi\)
−0.897479 + 0.441056i \(0.854604\pi\)
\(18\) 0 0
\(19\) 31.9545 8.56218i 1.68181 0.450641i 0.713558 0.700597i \(-0.247083\pi\)
0.968257 + 0.249956i \(0.0804160\pi\)
\(20\) −0.928203 3.46410i −0.0464102 0.173205i
\(21\) 0 0
\(22\) 7.26795 12.5885i 0.330361 0.572203i
\(23\) 3.58846 2.07180i 0.156020 0.0900781i −0.419957 0.907544i \(-0.637955\pi\)
0.575977 + 0.817466i \(0.304622\pi\)
\(24\) 0 0
\(25\) 21.7846i 0.871384i
\(26\) 13.0000 13.0000i 0.500000 0.500000i
\(27\) 0 0
\(28\) −5.00000 + 18.6603i −0.178571 + 0.666438i
\(29\) −8.66025 15.0000i −0.298629 0.517241i 0.677193 0.735805i \(-0.263196\pi\)
−0.975823 + 0.218564i \(0.929863\pi\)
\(30\) 0 0
\(31\) 22.1699 + 22.1699i 0.715157 + 0.715157i 0.967609 0.252452i \(-0.0812370\pi\)
−0.252452 + 0.967609i \(0.581237\pi\)
\(32\) −5.46410 + 1.46410i −0.170753 + 0.0457532i
\(33\) 0 0
\(34\) 18.9282 18.9282i 0.556712 0.556712i
\(35\) 8.66025 15.0000i 0.247436 0.428571i
\(36\) 0 0
\(37\) −35.7583 9.58142i −0.966441 0.258957i −0.259117 0.965846i \(-0.583431\pi\)
−0.707325 + 0.706889i \(0.750098\pi\)
\(38\) 46.7846i 1.23117i
\(39\) 0 0
\(40\) 5.07180 0.126795
\(41\) 6.67949 24.9282i 0.162914 0.608005i −0.835383 0.549669i \(-0.814754\pi\)
0.998297 0.0583360i \(-0.0185795\pi\)
\(42\) 0 0
\(43\) −13.2846 7.66987i −0.308944 0.178369i 0.337510 0.941322i \(-0.390415\pi\)
−0.646454 + 0.762953i \(0.723749\pi\)
\(44\) 14.5359 + 14.5359i 0.330361 + 0.330361i
\(45\) 0 0
\(46\) 1.51666 + 5.66025i 0.0329709 + 0.123049i
\(47\) −7.01924 + 7.01924i −0.149345 + 0.149345i −0.777826 0.628480i \(-0.783677\pi\)
0.628480 + 0.777826i \(0.283677\pi\)
\(48\) 0 0
\(49\) −38.3660 + 22.1506i −0.782980 + 0.452054i
\(50\) 29.7583 + 7.97372i 0.595167 + 0.159474i
\(51\) 0 0
\(52\) 13.0000 + 22.5167i 0.250000 + 0.433013i
\(53\) 61.6743 1.16367 0.581833 0.813308i \(-0.302336\pi\)
0.581833 + 0.813308i \(0.302336\pi\)
\(54\) 0 0
\(55\) −9.21539 15.9615i −0.167553 0.290210i
\(56\) −23.6603 13.6603i −0.422505 0.243933i
\(57\) 0 0
\(58\) 23.6603 6.33975i 0.407935 0.109306i
\(59\) 17.1051 + 63.8372i 0.289917 + 1.08199i 0.945171 + 0.326577i \(0.105895\pi\)
−0.655253 + 0.755409i \(0.727438\pi\)
\(60\) 0 0
\(61\) 3.65064 6.32309i 0.0598465 0.103657i −0.834550 0.550932i \(-0.814272\pi\)
0.894396 + 0.447275i \(0.147606\pi\)
\(62\) −38.3993 + 22.1699i −0.619344 + 0.357579i
\(63\) 0 0
\(64\) 8.00000i 0.125000i
\(65\) −6.03332 22.5167i −0.0928203 0.346410i
\(66\) 0 0
\(67\) −10.1532 + 37.8923i −0.151540 + 0.565557i 0.847836 + 0.530258i \(0.177905\pi\)
−0.999377 + 0.0352988i \(0.988762\pi\)
\(68\) 18.9282 + 32.7846i 0.278356 + 0.482127i
\(69\) 0 0
\(70\) 17.3205 + 17.3205i 0.247436 + 0.247436i
\(71\) −103.890 + 27.8372i −1.46324 + 0.392073i −0.900606 0.434636i \(-0.856877\pi\)
−0.562630 + 0.826709i \(0.690210\pi\)
\(72\) 0 0
\(73\) −67.4186 + 67.4186i −0.923542 + 0.923542i −0.997278 0.0737356i \(-0.976508\pi\)
0.0737356 + 0.997278i \(0.476508\pi\)
\(74\) 26.1769 45.3397i 0.353742 0.612699i
\(75\) 0 0
\(76\) −63.9090 17.1244i −0.840907 0.225320i
\(77\) 99.2820i 1.28938i
\(78\) 0 0
\(79\) 11.8756 0.150325 0.0751623 0.997171i \(-0.476053\pi\)
0.0751623 + 0.997171i \(0.476053\pi\)
\(80\) −1.85641 + 6.92820i −0.0232051 + 0.0866025i
\(81\) 0 0
\(82\) 31.6077 + 18.2487i 0.385460 + 0.222545i
\(83\) −111.033 111.033i −1.33775 1.33775i −0.898235 0.439516i \(-0.855150\pi\)
−0.439516 0.898235i \(-0.644850\pi\)
\(84\) 0 0
\(85\) −8.78461 32.7846i −0.103348 0.385701i
\(86\) 15.3397 15.3397i 0.178369 0.178369i
\(87\) 0 0
\(88\) −25.1769 + 14.5359i −0.286101 + 0.165181i
\(89\) −162.067 43.4256i −1.82097 0.487928i −0.824065 0.566496i \(-0.808299\pi\)
−0.996909 + 0.0785673i \(0.974965\pi\)
\(90\) 0 0
\(91\) −32.5000 + 121.292i −0.357143 + 1.33288i
\(92\) −8.28719 −0.0900781
\(93\) 0 0
\(94\) −7.01924 12.1577i −0.0746727 0.129337i
\(95\) 51.3731 + 29.6603i 0.540769 + 0.312213i
\(96\) 0 0
\(97\) 150.246 40.2583i 1.54893 0.415034i 0.619791 0.784767i \(-0.287217\pi\)
0.929138 + 0.369733i \(0.120551\pi\)
\(98\) −16.2154 60.5167i −0.165463 0.617517i
\(99\) 0 0
\(100\) −21.7846 + 37.7321i −0.217846 + 0.377321i
\(101\) 161.785 93.4064i 1.60183 0.924816i 0.610706 0.791857i \(-0.290886\pi\)
0.991122 0.132958i \(-0.0424477\pi\)
\(102\) 0 0
\(103\) 83.2628i 0.808377i 0.914676 + 0.404188i \(0.132446\pi\)
−0.914676 + 0.404188i \(0.867554\pi\)
\(104\) −35.5167 + 9.51666i −0.341506 + 0.0915064i
\(105\) 0 0
\(106\) −22.5744 + 84.2487i −0.212966 + 0.794799i
\(107\) 51.2487 + 88.7654i 0.478960 + 0.829583i 0.999709 0.0241269i \(-0.00768059\pi\)
−0.520749 + 0.853710i \(0.674347\pi\)
\(108\) 0 0
\(109\) 48.1891 + 48.1891i 0.442102 + 0.442102i 0.892718 0.450616i \(-0.148796\pi\)
−0.450616 + 0.892718i \(0.648796\pi\)
\(110\) 25.1769 6.74613i 0.228881 0.0613285i
\(111\) 0 0
\(112\) 27.3205 27.3205i 0.243933 0.243933i
\(113\) −22.6077 + 39.1577i −0.200068 + 0.346528i −0.948550 0.316627i \(-0.897450\pi\)
0.748482 + 0.663155i \(0.230783\pi\)
\(114\) 0 0
\(115\) 7.17691 + 1.92305i 0.0624080 + 0.0167222i
\(116\) 34.6410i 0.298629i
\(117\) 0 0
\(118\) −93.4641 −0.792069
\(119\) −47.3205 + 176.603i −0.397651 + 1.48405i
\(120\) 0 0
\(121\) −13.2968 7.67691i −0.109891 0.0634456i
\(122\) 7.30127 + 7.30127i 0.0598465 + 0.0598465i
\(123\) 0 0
\(124\) −16.2295 60.5692i −0.130883 0.488461i
\(125\) 59.3205 59.3205i 0.474564 0.474564i
\(126\) 0 0
\(127\) 205.115 118.423i 1.61508 0.932465i 0.626908 0.779093i \(-0.284320\pi\)
0.988169 0.153372i \(-0.0490132\pi\)
\(128\) 10.9282 + 2.92820i 0.0853766 + 0.0228766i
\(129\) 0 0
\(130\) 32.9667 0.253590
\(131\) 209.636 1.60027 0.800137 0.599817i \(-0.204760\pi\)
0.800137 + 0.599817i \(0.204760\pi\)
\(132\) 0 0
\(133\) −159.772 276.734i −1.20130 2.08071i
\(134\) −48.0455 27.7391i −0.358549 0.207008i
\(135\) 0 0
\(136\) −51.7128 + 13.8564i −0.380241 + 0.101885i
\(137\) −29.4782 110.014i −0.215169 0.803023i −0.986107 0.166112i \(-0.946879\pi\)
0.770938 0.636911i \(-0.219788\pi\)
\(138\) 0 0
\(139\) 47.8538 82.8853i 0.344272 0.596297i −0.640949 0.767583i \(-0.721459\pi\)
0.985221 + 0.171287i \(0.0547924\pi\)
\(140\) −30.0000 + 17.3205i −0.214286 + 0.123718i
\(141\) 0 0
\(142\) 152.105i 1.07116i
\(143\) 94.4833 + 94.4833i 0.660723 + 0.660723i
\(144\) 0 0
\(145\) 8.03848 30.0000i 0.0554378 0.206897i
\(146\) −67.4186 116.772i −0.461771 0.799811i
\(147\) 0 0
\(148\) 52.3538 + 52.3538i 0.353742 + 0.353742i
\(149\) 54.9282 14.7180i 0.368646 0.0987783i −0.0697402 0.997565i \(-0.522217\pi\)
0.438386 + 0.898787i \(0.355550\pi\)
\(150\) 0 0
\(151\) −55.0385 + 55.0385i −0.364493 + 0.364493i −0.865464 0.500971i \(-0.832976\pi\)
0.500971 + 0.865464i \(0.332976\pi\)
\(152\) 46.7846 81.0333i 0.307793 0.533114i
\(153\) 0 0
\(154\) −135.622 36.3397i −0.880661 0.235972i
\(155\) 56.2205i 0.362713i
\(156\) 0 0
\(157\) 55.4308 0.353062 0.176531 0.984295i \(-0.443512\pi\)
0.176531 + 0.984295i \(0.443512\pi\)
\(158\) −4.34679 + 16.2224i −0.0275113 + 0.102674i
\(159\) 0 0
\(160\) −8.78461 5.07180i −0.0549038 0.0316987i
\(161\) −28.3013 28.3013i −0.175784 0.175784i
\(162\) 0 0
\(163\) −52.9468 197.600i −0.324827 1.21227i −0.914486 0.404618i \(-0.867405\pi\)
0.589659 0.807652i \(-0.299262\pi\)
\(164\) −36.4974 + 36.4974i −0.222545 + 0.222545i
\(165\) 0 0
\(166\) 192.315 111.033i 1.15853 0.668875i
\(167\) 156.315 + 41.8846i 0.936020 + 0.250806i 0.694420 0.719570i \(-0.255661\pi\)
0.241600 + 0.970376i \(0.422328\pi\)
\(168\) 0 0
\(169\) 84.5000 + 146.358i 0.500000 + 0.866025i
\(170\) 48.0000 0.282353
\(171\) 0 0
\(172\) 15.3397 + 26.5692i 0.0891846 + 0.154472i
\(173\) −232.492 134.229i −1.34389 0.775893i −0.356511 0.934291i \(-0.616034\pi\)
−0.987375 + 0.158398i \(0.949367\pi\)
\(174\) 0 0
\(175\) −203.253 + 54.4615i −1.16145 + 0.311209i
\(176\) −10.6410 39.7128i −0.0604603 0.225641i
\(177\) 0 0
\(178\) 118.641 205.492i 0.666523 1.15445i
\(179\) 247.492 142.890i 1.38264 0.798267i 0.390167 0.920744i \(-0.372417\pi\)
0.992471 + 0.122477i \(0.0390839\pi\)
\(180\) 0 0
\(181\) 177.646i 0.981471i 0.871309 + 0.490735i \(0.163272\pi\)
−0.871309 + 0.490735i \(0.836728\pi\)
\(182\) −153.792 88.7917i −0.845009 0.487866i
\(183\) 0 0
\(184\) 3.03332 11.3205i 0.0164854 0.0615245i
\(185\) −33.1910 57.4885i −0.179411 0.310749i
\(186\) 0 0
\(187\) 137.569 + 137.569i 0.735664 + 0.735664i
\(188\) 19.1769 5.13844i 0.102005 0.0273321i
\(189\) 0 0
\(190\) −59.3205 + 59.3205i −0.312213 + 0.312213i
\(191\) 98.6603 170.885i 0.516546 0.894684i −0.483270 0.875472i \(-0.660551\pi\)
0.999815 0.0192120i \(-0.00611576\pi\)
\(192\) 0 0
\(193\) −20.2846 5.43524i −0.105102 0.0281619i 0.205885 0.978576i \(-0.433993\pi\)
−0.310987 + 0.950414i \(0.600659\pi\)
\(194\) 219.976i 1.13389i
\(195\) 0 0
\(196\) 88.6025 0.452054
\(197\) −39.1487 + 146.105i −0.198725 + 0.741650i 0.792547 + 0.609811i \(0.208755\pi\)
−0.991271 + 0.131839i \(0.957912\pi\)
\(198\) 0 0
\(199\) 19.2391 + 11.1077i 0.0966789 + 0.0558176i 0.547560 0.836766i \(-0.315557\pi\)
−0.450881 + 0.892584i \(0.648890\pi\)
\(200\) −43.5692 43.5692i −0.217846 0.217846i
\(201\) 0 0
\(202\) 68.3782 + 255.191i 0.338506 + 1.26332i
\(203\) −118.301 + 118.301i −0.582765 + 0.582765i
\(204\) 0 0
\(205\) 40.0770 23.1384i 0.195497 0.112870i
\(206\) −113.739 30.4763i −0.552132 0.147943i
\(207\) 0 0
\(208\) 52.0000i 0.250000i
\(209\) −340.028 −1.62693
\(210\) 0 0
\(211\) −32.1007 55.6000i −0.152136 0.263507i 0.779877 0.625933i \(-0.215282\pi\)
−0.932012 + 0.362426i \(0.881948\pi\)
\(212\) −106.823 61.6743i −0.503882 0.290917i
\(213\) 0 0
\(214\) −140.014 + 37.5167i −0.654271 + 0.175311i
\(215\) −7.11920 26.5692i −0.0331126 0.123578i
\(216\) 0 0
\(217\) 151.423 262.272i 0.697802 1.20863i
\(218\) −83.4660 + 48.1891i −0.382872 + 0.221051i
\(219\) 0 0
\(220\) 36.8616i 0.167553i
\(221\) 123.033 + 213.100i 0.556712 + 0.964253i
\(222\) 0 0
\(223\) −56.5622 + 211.093i −0.253642 + 0.946605i 0.715199 + 0.698921i \(0.246336\pi\)
−0.968841 + 0.247684i \(0.920331\pi\)
\(224\) 27.3205 + 47.3205i 0.121967 + 0.211252i
\(225\) 0 0
\(226\) −45.2154 45.2154i −0.200068 0.200068i
\(227\) −62.4449 + 16.7321i −0.275088 + 0.0737095i −0.393725 0.919228i \(-0.628814\pi\)
0.118638 + 0.992938i \(0.462147\pi\)
\(228\) 0 0
\(229\) 58.6846 58.6846i 0.256265 0.256265i −0.567268 0.823533i \(-0.692000\pi\)
0.823533 + 0.567268i \(0.192000\pi\)
\(230\) −5.25387 + 9.09996i −0.0228429 + 0.0395651i
\(231\) 0 0
\(232\) −47.3205 12.6795i −0.203968 0.0546530i
\(233\) 380.669i 1.63377i −0.576798 0.816887i \(-0.695698\pi\)
0.576798 0.816887i \(-0.304302\pi\)
\(234\) 0 0
\(235\) −17.8001 −0.0757450
\(236\) 34.2102 127.674i 0.144959 0.540993i
\(237\) 0 0
\(238\) −223.923 129.282i −0.940853 0.543202i
\(239\) 167.138 + 167.138i 0.699324 + 0.699324i 0.964265 0.264941i \(-0.0853524\pi\)
−0.264941 + 0.964265i \(0.585352\pi\)
\(240\) 0 0
\(241\) 0.796806 + 2.97372i 0.00330625 + 0.0123391i 0.967559 0.252644i \(-0.0813002\pi\)
−0.964253 + 0.264983i \(0.914634\pi\)
\(242\) 15.3538 15.3538i 0.0634456 0.0634456i
\(243\) 0 0
\(244\) −12.6462 + 7.30127i −0.0518286 + 0.0299232i
\(245\) −76.7321 20.5603i −0.313192 0.0839196i
\(246\) 0 0
\(247\) −415.408 111.308i −1.68181 0.450641i
\(248\) 88.6795 0.357579
\(249\) 0 0
\(250\) 59.3205 + 102.746i 0.237282 + 0.410985i
\(251\) 180.746 + 104.354i 0.720104 + 0.415752i 0.814791 0.579755i \(-0.196852\pi\)
−0.0946869 + 0.995507i \(0.530185\pi\)
\(252\) 0 0
\(253\) −41.1384 + 11.0230i −0.162603 + 0.0435692i
\(254\) 86.6917 + 323.538i 0.341306 + 1.27377i
\(255\) 0 0
\(256\) −8.00000 + 13.8564i −0.0312500 + 0.0541266i
\(257\) −64.2769 + 37.1103i −0.250105 + 0.144398i −0.619812 0.784750i \(-0.712791\pi\)
0.369708 + 0.929148i \(0.379458\pi\)
\(258\) 0 0
\(259\) 357.583i 1.38063i
\(260\) −12.0666 + 45.0333i −0.0464102 + 0.173205i
\(261\) 0 0
\(262\) −76.7321 + 286.368i −0.292870 + 1.09301i
\(263\) −12.1821 21.1000i −0.0463197 0.0802280i 0.841936 0.539577i \(-0.181416\pi\)
−0.888256 + 0.459349i \(0.848083\pi\)
\(264\) 0 0
\(265\) 78.1999 + 78.1999i 0.295094 + 0.295094i
\(266\) 436.506 116.962i 1.64100 0.439705i
\(267\) 0 0
\(268\) 55.4782 55.4782i 0.207008 0.207008i
\(269\) −87.8705 + 152.196i −0.326656 + 0.565785i −0.981846 0.189679i \(-0.939255\pi\)
0.655190 + 0.755464i \(0.272589\pi\)
\(270\) 0 0
\(271\) 269.169 + 72.1237i 0.993244 + 0.266139i 0.718613 0.695411i \(-0.244777\pi\)
0.274632 + 0.961550i \(0.411444\pi\)
\(272\) 75.7128i 0.278356i
\(273\) 0 0
\(274\) 161.072 0.587853
\(275\) −57.9526 + 216.282i −0.210737 + 0.786480i
\(276\) 0 0
\(277\) −387.100 223.492i −1.39747 0.806831i −0.403345 0.915048i \(-0.632153\pi\)
−0.994127 + 0.108216i \(0.965486\pi\)
\(278\) 95.7077 + 95.7077i 0.344272 + 0.344272i
\(279\) 0 0
\(280\) −12.6795 47.3205i −0.0452839 0.169002i
\(281\) 5.54483 5.54483i 0.0197325 0.0197325i −0.697172 0.716904i \(-0.745558\pi\)
0.716904 + 0.697172i \(0.245558\pi\)
\(282\) 0 0
\(283\) 14.4160 8.32309i 0.0509400 0.0294102i −0.474314 0.880356i \(-0.657304\pi\)
0.525254 + 0.850946i \(0.323970\pi\)
\(284\) 207.779 + 55.6743i 0.731618 + 0.196036i
\(285\) 0 0
\(286\) −163.650 + 94.4833i −0.572203 + 0.330361i
\(287\) −249.282 −0.868579
\(288\) 0 0
\(289\) 34.6384 + 59.9955i 0.119856 + 0.207597i
\(290\) 38.0385 + 21.9615i 0.131167 + 0.0757294i
\(291\) 0 0
\(292\) 184.191 49.3538i 0.630791 0.169020i
\(293\) −48.4885 180.962i −0.165490 0.617616i −0.997977 0.0635723i \(-0.979751\pi\)
0.832487 0.554044i \(-0.186916\pi\)
\(294\) 0 0
\(295\) −59.2539 + 102.631i −0.200861 + 0.347901i
\(296\) −90.6795 + 52.3538i −0.306350 + 0.176871i
\(297\) 0 0
\(298\) 80.4205i 0.269867i
\(299\) −53.8667 −0.180156
\(300\) 0 0
\(301\) −38.3494 + 143.122i −0.127407 + 0.475488i
\(302\) −55.0385 95.3294i −0.182247 0.315660i
\(303\) 0 0
\(304\) 93.5692 + 93.5692i 0.307793 + 0.307793i
\(305\) 12.6462 3.38853i 0.0414629 0.0111099i
\(306\) 0 0
\(307\) 375.069 375.069i 1.22172 1.22172i 0.254702 0.967020i \(-0.418023\pi\)
0.967020 0.254702i \(-0.0819774\pi\)
\(308\) 99.2820 171.962i 0.322344 0.558317i
\(309\) 0 0
\(310\) −76.7987 20.5781i −0.247738 0.0663811i
\(311\) 296.238i 0.952535i 0.879300 + 0.476268i \(0.158011\pi\)
−0.879300 + 0.476268i \(0.841989\pi\)
\(312\) 0 0
\(313\) 118.286 0.377910 0.188955 0.981986i \(-0.439490\pi\)
0.188955 + 0.981986i \(0.439490\pi\)
\(314\) −20.2891 + 75.7199i −0.0646149 + 0.241146i
\(315\) 0 0
\(316\) −20.5692 11.8756i −0.0650925 0.0375812i
\(317\) 280.708 + 280.708i 0.885513 + 0.885513i 0.994088 0.108575i \(-0.0346288\pi\)
−0.108575 + 0.994088i \(0.534629\pi\)
\(318\) 0 0
\(319\) 46.0770 + 171.962i 0.144442 + 0.539064i
\(320\) 10.1436 10.1436i 0.0316987 0.0316987i
\(321\) 0 0
\(322\) 49.0192 28.3013i 0.152234 0.0878921i
\(323\) −604.841 162.067i −1.87257 0.501754i
\(324\) 0 0
\(325\) −141.600 + 245.258i −0.435692 + 0.754641i
\(326\) 289.306 0.887443
\(327\) 0 0
\(328\) −36.4974 63.2154i −0.111273 0.192730i
\(329\) 83.0385 + 47.9423i 0.252397 + 0.145721i
\(330\) 0 0
\(331\) −137.454 + 36.8308i −0.415270 + 0.111271i −0.460404 0.887710i \(-0.652295\pi\)
0.0451334 + 0.998981i \(0.485629\pi\)
\(332\) 81.2820 + 303.349i 0.244825 + 0.913701i
\(333\) 0 0
\(334\) −114.431 + 198.200i −0.342607 + 0.593413i
\(335\) −60.9193 + 35.1718i −0.181849 + 0.104990i
\(336\) 0 0
\(337\) 347.508i 1.03118i 0.856835 + 0.515590i \(0.172427\pi\)
−0.856835 + 0.515590i \(0.827573\pi\)
\(338\) −230.858 + 61.8583i −0.683013 + 0.183013i
\(339\) 0 0
\(340\) −17.5692 + 65.5692i −0.0516742 + 0.192851i
\(341\) −161.130 279.084i −0.472521 0.818430i
\(342\) 0 0
\(343\) −32.0929 32.0929i −0.0935654 0.0935654i
\(344\) −41.9090 + 11.2295i −0.121828 + 0.0326438i
\(345\) 0 0
\(346\) 268.459 268.459i 0.775893 0.775893i
\(347\) 218.851 379.061i 0.630695 1.09240i −0.356715 0.934213i \(-0.616103\pi\)
0.987410 0.158183i \(-0.0505635\pi\)
\(348\) 0 0
\(349\) −432.889 115.992i −1.24037 0.332356i −0.421761 0.906707i \(-0.638588\pi\)
−0.818609 + 0.574351i \(0.805254\pi\)
\(350\) 297.583i 0.850238i
\(351\) 0 0
\(352\) 58.1436 0.165181
\(353\) 151.914 566.951i 0.430352 1.60609i −0.321600 0.946876i \(-0.604221\pi\)
0.751951 0.659218i \(-0.229113\pi\)
\(354\) 0 0
\(355\) −167.023 96.4308i −0.470487 0.271636i
\(356\) 237.282 + 237.282i 0.666523 + 0.666523i
\(357\) 0 0
\(358\) 104.603 + 390.382i 0.292186 + 1.09045i
\(359\) −64.2769 + 64.2769i −0.179044 + 0.179044i −0.790939 0.611895i \(-0.790408\pi\)
0.611895 + 0.790939i \(0.290408\pi\)
\(360\) 0 0
\(361\) 635.143 366.700i 1.75940 1.01579i
\(362\) −242.669 65.0230i −0.670357 0.179622i
\(363\) 0 0
\(364\) 177.583 177.583i 0.487866 0.487866i
\(365\) −170.967 −0.468402
\(366\) 0 0
\(367\) 108.892 + 188.607i 0.296709 + 0.513916i 0.975381 0.220526i \(-0.0707774\pi\)
−0.678672 + 0.734442i \(0.737444\pi\)
\(368\) 14.3538 + 8.28719i 0.0390050 + 0.0225195i
\(369\) 0 0
\(370\) 90.6795 24.2975i 0.245080 0.0656689i
\(371\) −154.186 575.429i −0.415595 1.55102i
\(372\) 0 0
\(373\) 109.803 190.185i 0.294378 0.509878i −0.680462 0.732784i \(-0.738221\pi\)
0.974840 + 0.222905i \(0.0715541\pi\)
\(374\) −238.277 + 137.569i −0.637104 + 0.367832i
\(375\) 0 0
\(376\) 28.0770i 0.0746727i
\(377\) 225.167i 0.597259i
\(378\) 0 0
\(379\) 50.1846 187.292i 0.132413 0.494173i −0.867582 0.497294i \(-0.834327\pi\)
0.999995 + 0.00312126i \(0.000993528\pi\)
\(380\) −59.3205 102.746i −0.156107 0.270385i
\(381\) 0 0
\(382\) 197.321 + 197.321i 0.516546 + 0.516546i
\(383\) −188.172 + 50.4205i −0.491310 + 0.131646i −0.495964 0.868343i \(-0.665185\pi\)
0.00465401 + 0.999989i \(0.498519\pi\)
\(384\) 0 0
\(385\) −125.885 + 125.885i −0.326973 + 0.326973i
\(386\) 14.8494 25.7199i 0.0384699 0.0666317i
\(387\) 0 0
\(388\) −300.492 80.5167i −0.774465 0.207517i
\(389\) 17.7513i 0.0456331i 0.999740 + 0.0228166i \(0.00726337\pi\)
−0.999740 + 0.0228166i \(0.992737\pi\)
\(390\) 0 0
\(391\) −78.4308 −0.200590
\(392\) −32.4308 + 121.033i −0.0827316 + 0.308758i
\(393\) 0 0
\(394\) −185.254 106.956i −0.470187 0.271463i
\(395\) 15.0577 + 15.0577i 0.0381208 + 0.0381208i
\(396\) 0 0
\(397\) −87.3494 325.992i −0.220024 0.821139i −0.984337 0.176295i \(-0.943589\pi\)
0.764314 0.644844i \(-0.223078\pi\)
\(398\) −22.2154 + 22.2154i −0.0558176 + 0.0558176i
\(399\) 0 0
\(400\) 75.4641 43.5692i 0.188660 0.108923i
\(401\) 496.435 + 133.019i 1.23799 + 0.331719i 0.817686 0.575664i \(-0.195256\pi\)
0.420305 + 0.907383i \(0.361923\pi\)
\(402\) 0 0
\(403\) −105.492 393.700i −0.261766 0.976923i
\(404\) −373.626 −0.924816
\(405\) 0 0
\(406\) −118.301 204.904i −0.291382 0.504689i
\(407\) 329.527 + 190.252i 0.809649 + 0.467451i
\(408\) 0 0
\(409\) −562.838 + 150.812i −1.37613 + 0.368734i −0.869715 0.493554i \(-0.835697\pi\)
−0.506418 + 0.862288i \(0.669031\pi\)
\(410\) 16.9385 + 63.2154i 0.0413134 + 0.154184i
\(411\) 0 0
\(412\) 83.2628 144.215i 0.202094 0.350037i
\(413\) 552.846 319.186i 1.33861 0.772847i
\(414\) 0 0
\(415\) 281.569i 0.678480i
\(416\) 71.0333 + 19.0333i 0.170753 + 0.0457532i
\(417\) 0 0
\(418\) 124.459 464.487i 0.297749 1.11121i
\(419\) −391.177 677.538i −0.933596 1.61704i −0.777118 0.629355i \(-0.783319\pi\)
−0.156479 0.987681i \(-0.550014\pi\)
\(420\) 0 0
\(421\) −27.0352 27.0352i −0.0642166 0.0642166i 0.674269 0.738486i \(-0.264459\pi\)
−0.738486 + 0.674269i \(0.764459\pi\)
\(422\) 87.7006 23.4993i 0.207821 0.0556856i
\(423\) 0 0
\(424\) 123.349 123.349i 0.290917 0.290917i
\(425\) −206.172 + 357.100i −0.485110 + 0.840235i
\(426\) 0 0
\(427\) −68.1218 18.2532i −0.159536 0.0427475i
\(428\) 204.995i 0.478960i
\(429\) 0 0
\(430\) 38.9000 0.0904652
\(431\) −162.995 + 608.305i −0.378178 + 1.41138i 0.470467 + 0.882418i \(0.344086\pi\)
−0.848645 + 0.528963i \(0.822581\pi\)
\(432\) 0 0
\(433\) −205.928 118.892i −0.475583 0.274578i 0.242991 0.970029i \(-0.421872\pi\)
−0.718574 + 0.695451i \(0.755205\pi\)
\(434\) 302.846 + 302.846i 0.697802 + 0.697802i
\(435\) 0 0
\(436\) −35.2769 131.655i −0.0809103 0.301961i
\(437\) 96.9282 96.9282i 0.221804 0.221804i
\(438\) 0 0
\(439\) 597.092 344.731i 1.36012 0.785265i 0.370480 0.928841i \(-0.379193\pi\)
0.989639 + 0.143576i \(0.0458600\pi\)
\(440\) −50.3538 13.4923i −0.114441 0.0306642i
\(441\) 0 0
\(442\) −336.133 + 90.0666i −0.760483 + 0.203771i
\(443\) 304.028 0.686294 0.343147 0.939282i \(-0.388507\pi\)
0.343147 + 0.939282i \(0.388507\pi\)
\(444\) 0 0
\(445\) −150.431 260.554i −0.338047 0.585514i
\(446\) −267.655 154.531i −0.600124 0.346481i
\(447\) 0 0
\(448\) −74.6410 + 20.0000i −0.166609 + 0.0446429i
\(449\) 73.4589 + 274.153i 0.163606 + 0.610585i 0.998214 + 0.0597407i \(0.0190274\pi\)
−0.834608 + 0.550844i \(0.814306\pi\)
\(450\) 0 0
\(451\) −132.631 + 229.723i −0.294081 + 0.509364i
\(452\) 78.3154 45.2154i 0.173264 0.100034i
\(453\) 0 0
\(454\) 91.4256i 0.201378i
\(455\) −195.000 + 112.583i −0.428571 + 0.247436i
\(456\) 0 0
\(457\) −37.1584 + 138.677i −0.0813093 + 0.303451i −0.994590 0.103881i \(-0.966874\pi\)
0.913280 + 0.407331i \(0.133541\pi\)
\(458\) 58.6846 + 101.645i 0.128132 + 0.221932i
\(459\) 0 0
\(460\) −10.5077 10.5077i −0.0228429 0.0228429i
\(461\) −568.435 + 152.312i −1.23305 + 0.330394i −0.815765 0.578383i \(-0.803684\pi\)
−0.417282 + 0.908777i \(0.637017\pi\)
\(462\) 0 0
\(463\) −169.599 + 169.599i −0.366305 + 0.366305i −0.866128 0.499823i \(-0.833399\pi\)
0.499823 + 0.866128i \(0.333399\pi\)
\(464\) 34.6410 60.0000i 0.0746574 0.129310i
\(465\) 0 0
\(466\) 520.004 + 139.335i 1.11589 + 0.299001i
\(467\) 732.649i 1.56884i −0.620230 0.784420i \(-0.712961\pi\)
0.620230 0.784420i \(-0.287039\pi\)
\(468\) 0 0
\(469\) 378.923 0.807938
\(470\) 6.51528 24.3154i 0.0138623 0.0517348i
\(471\) 0 0
\(472\) 161.885 + 93.4641i 0.342976 + 0.198017i
\(473\) 111.488 + 111.488i 0.235705 + 0.235705i
\(474\) 0 0
\(475\) −186.524 696.116i −0.392681 1.46551i
\(476\) 258.564 258.564i 0.543202 0.543202i
\(477\) 0 0
\(478\) −289.492 + 167.138i −0.605632 + 0.349662i
\(479\) 357.167 + 95.7025i 0.745651 + 0.199796i 0.611588 0.791176i \(-0.290531\pi\)
0.134063 + 0.990973i \(0.457198\pi\)
\(480\) 0 0
\(481\) 340.300 + 340.300i 0.707484 + 0.707484i
\(482\) −4.35383 −0.00903284
\(483\) 0 0
\(484\) 15.3538 + 26.5936i 0.0317228 + 0.0549455i
\(485\) 241.550 + 139.459i 0.498041 + 0.287544i
\(486\) 0 0
\(487\) 187.145 50.1455i 0.384282 0.102968i −0.0615056 0.998107i \(-0.519590\pi\)
0.445788 + 0.895139i \(0.352924\pi\)
\(488\) −5.34490 19.9474i −0.0109527 0.0408759i
\(489\) 0 0
\(490\) 56.1718 97.2923i 0.114636 0.198556i
\(491\) 31.9808 18.4641i 0.0651339 0.0376051i −0.467079 0.884215i \(-0.654694\pi\)
0.532213 + 0.846610i \(0.321360\pi\)
\(492\) 0 0
\(493\) 327.846i 0.665002i
\(494\) 304.100 526.717i 0.615587 1.06623i
\(495\) 0 0
\(496\) −32.4589 + 121.138i −0.0654414 + 0.244231i
\(497\) 519.449 + 899.711i 1.04517 + 1.81028i
\(498\) 0 0
\(499\) 462.769 + 462.769i 0.927393 + 0.927393i 0.997537 0.0701438i \(-0.0223458\pi\)
−0.0701438 + 0.997537i \(0.522346\pi\)
\(500\) −162.067 + 43.4256i −0.324133 + 0.0868513i
\(501\) 0 0
\(502\) −208.708 + 208.708i −0.415752 + 0.415752i
\(503\) −179.378 + 310.692i −0.356617 + 0.617678i −0.987393 0.158286i \(-0.949403\pi\)
0.630777 + 0.775965i \(0.282736\pi\)
\(504\) 0 0
\(505\) 323.569 + 86.7001i 0.640731 + 0.171683i
\(506\) 60.2309i 0.119033i
\(507\) 0 0
\(508\) −473.692 −0.932465
\(509\) 190.972 712.717i 0.375190 1.40023i −0.477876 0.878427i \(-0.658593\pi\)
0.853067 0.521802i \(-0.174740\pi\)
\(510\) 0 0
\(511\) 797.570 + 460.477i 1.56080 + 0.901130i
\(512\) −16.0000 16.0000i −0.0312500 0.0312500i
\(513\) 0 0
\(514\) −27.1666 101.387i −0.0528533 0.197251i
\(515\) −105.573 + 105.573i −0.204996 + 0.204996i
\(516\) 0 0
\(517\) 88.3614 51.0155i 0.170912 0.0986759i
\(518\) −488.468 130.885i −0.942988 0.252673i
\(519\) 0 0
\(520\) −57.1000 32.9667i −0.109808 0.0633975i
\(521\) −156.049 −0.299518 −0.149759 0.988723i \(-0.547850\pi\)
−0.149759 + 0.988723i \(0.547850\pi\)
\(522\) 0 0
\(523\) −20.9615 36.3064i −0.0400794 0.0694196i 0.845290 0.534308i \(-0.179428\pi\)
−0.885369 + 0.464888i \(0.846094\pi\)
\(524\) −363.100 209.636i −0.692939 0.400068i
\(525\) 0 0
\(526\) 33.2820 8.91789i 0.0632738 0.0169542i
\(527\) −153.597 573.233i −0.291456 1.08773i
\(528\) 0 0
\(529\) −255.915 + 443.258i −0.483772 + 0.837917i
\(530\) −135.446 + 78.1999i −0.255559 + 0.147547i
\(531\) 0 0
\(532\) 639.090i 1.20130i
\(533\) −237.233 + 237.233i −0.445091 + 0.445091i
\(534\) 0 0
\(535\) −47.5692 + 177.531i −0.0889144 + 0.331833i
\(536\) 55.4782 + 96.0910i 0.103504 + 0.179274i
\(537\) 0 0
\(538\) −175.741 175.741i −0.326656 0.326656i
\(539\) 439.832 117.853i 0.816015 0.218651i
\(540\) 0 0
\(541\) −4.44298 + 4.44298i −0.00821253 + 0.00821253i −0.711201 0.702989i \(-0.751848\pi\)
0.702989 + 0.711201i \(0.251848\pi\)
\(542\) −197.046 + 341.293i −0.363553 + 0.629692i
\(543\) 0 0
\(544\) 103.426 + 27.7128i 0.190121 + 0.0509427i
\(545\) 122.203i 0.224225i
\(546\) 0 0
\(547\) −101.508 −0.185572 −0.0927859 0.995686i \(-0.529577\pi\)
−0.0927859 + 0.995686i \(0.529577\pi\)
\(548\) −58.9564 + 220.028i −0.107585 + 0.401511i
\(549\) 0 0
\(550\) −274.235 158.329i −0.498608 0.287872i
\(551\) −405.167 405.167i −0.735330 0.735330i
\(552\) 0 0
\(553\) −29.6891 110.801i −0.0536874 0.200364i
\(554\) 446.985 446.985i 0.806831 0.806831i
\(555\) 0 0
\(556\) −165.771 + 95.7077i −0.298148 + 0.172136i
\(557\) 636.358 + 170.512i 1.14247 + 0.306125i 0.779945 0.625848i \(-0.215247\pi\)
0.362528 + 0.931973i \(0.381914\pi\)
\(558\) 0 0
\(559\) 99.7083 + 172.700i 0.178369 + 0.308944i
\(560\) 69.2820 0.123718
\(561\) 0 0
\(562\) 5.54483 + 9.60392i 0.00986624 + 0.0170888i
\(563\) −76.8385 44.3628i −0.136481 0.0787971i 0.430205 0.902731i \(-0.358441\pi\)
−0.566686 + 0.823934i \(0.691775\pi\)
\(564\) 0 0
\(565\) −78.3154 + 20.9845i −0.138611 + 0.0371408i
\(566\) 6.09292 + 22.7391i 0.0107649 + 0.0401751i
\(567\) 0 0
\(568\) −152.105 + 263.454i −0.267791 + 0.463827i
\(569\) 373.750 215.785i 0.656854 0.379235i −0.134223 0.990951i \(-0.542854\pi\)
0.791077 + 0.611716i \(0.209521\pi\)
\(570\) 0 0
\(571\) 959.892i 1.68107i −0.541756 0.840536i \(-0.682240\pi\)
0.541756 0.840536i \(-0.317760\pi\)
\(572\) −69.1666 258.133i −0.120921 0.451282i
\(573\) 0 0
\(574\) 91.2436 340.526i 0.158961 0.593250i
\(575\) −45.1333 78.1731i −0.0784927 0.135953i
\(576\) 0 0
\(577\) −313.669 313.669i −0.543621 0.543621i 0.380968 0.924588i \(-0.375591\pi\)
−0.924588 + 0.380968i \(0.875591\pi\)
\(578\) −94.6340 + 25.3571i −0.163727 + 0.0438704i
\(579\) 0 0
\(580\) −43.9230 + 43.9230i −0.0757294 + 0.0757294i
\(581\) −758.372 + 1313.54i −1.30529 + 2.26082i
\(582\) 0 0
\(583\) −612.315 164.069i −1.05028 0.281423i
\(584\) 269.674i 0.461771i
\(585\) 0 0
\(586\) 264.946 0.452126
\(587\) 58.5654 218.569i 0.0997708 0.372350i −0.897929 0.440141i \(-0.854929\pi\)
0.997700 + 0.0677912i \(0.0215952\pi\)
\(588\) 0 0
\(589\) 898.249 + 518.604i 1.52504 + 0.880483i
\(590\) −118.508 118.508i −0.200861 0.200861i
\(591\) 0 0
\(592\) −38.3257 143.033i −0.0647393 0.241610i
\(593\) −335.229 + 335.229i −0.565311 + 0.565311i −0.930811 0.365500i \(-0.880898\pi\)
0.365500 + 0.930811i \(0.380898\pi\)
\(594\) 0 0
\(595\) −283.923 + 163.923i −0.477182 + 0.275501i
\(596\) −109.856 29.4359i −0.184323 0.0493892i
\(597\) 0 0
\(598\) 19.7166 73.5833i 0.0329709 0.123049i
\(599\) −136.908 −0.228560 −0.114280 0.993449i \(-0.536456\pi\)
−0.114280 + 0.993449i \(0.536456\pi\)
\(600\) 0 0
\(601\) 8.78461 + 15.2154i 0.0146167 + 0.0253168i 0.873241 0.487288i \(-0.162014\pi\)
−0.858625 + 0.512605i \(0.828681\pi\)
\(602\) −181.471 104.772i −0.301447 0.174041i
\(603\) 0 0
\(604\) 150.368 40.2910i 0.248953 0.0667069i
\(605\) −7.12574 26.5936i −0.0117781 0.0439564i
\(606\) 0 0
\(607\) −422.300 + 731.445i −0.695716 + 1.20502i 0.274222 + 0.961666i \(0.411580\pi\)
−0.969939 + 0.243350i \(0.921754\pi\)
\(608\) −162.067 + 93.5692i −0.266557 + 0.153897i
\(609\) 0 0
\(610\) 18.5153i 0.0303529i
\(611\) 124.650 33.3999i 0.204010 0.0546642i
\(612\) 0 0
\(613\) −163.158 + 608.915i −0.266164 + 0.993337i 0.695370 + 0.718651i \(0.255240\pi\)
−0.961534 + 0.274685i \(0.911426\pi\)
\(614\) 375.069 + 649.638i 0.610861 + 1.05804i
\(615\) 0 0
\(616\) 198.564 + 198.564i 0.322344 + 0.322344i
\(617\) −107.014 + 28.6743i −0.173443 + 0.0464738i −0.344495 0.938788i \(-0.611950\pi\)
0.171053 + 0.985262i \(0.445283\pi\)
\(618\) 0 0
\(619\) −111.970 + 111.970i −0.180888 + 0.180888i −0.791743 0.610854i \(-0.790826\pi\)
0.610854 + 0.791743i \(0.290826\pi\)
\(620\) 56.2205 97.3768i 0.0906783 0.157059i
\(621\) 0 0
\(622\) −404.669 108.431i −0.650594 0.174326i
\(623\) 1620.67i 2.60139i
\(624\) 0 0
\(625\) −394.184 −0.630695
\(626\) −43.2956 + 161.581i −0.0691623 + 0.258117i
\(627\) 0 0
\(628\) −96.0089 55.4308i −0.152880 0.0882656i
\(629\) 495.482 + 495.482i 0.787730 + 0.787730i
\(630\) 0 0
\(631\) 283.101 + 1056.55i 0.448654 + 1.67440i 0.706104 + 0.708108i \(0.250451\pi\)
−0.257450 + 0.966292i \(0.582882\pi\)
\(632\) 23.7513 23.7513i 0.0375812 0.0375812i
\(633\) 0 0
\(634\) −486.200 + 280.708i −0.766877 + 0.442757i
\(635\) 410.229 + 109.921i 0.646031 + 0.173103i
\(636\) 0 0
\(637\) 575.917 0.904108
\(638\) −251.769 −0.394622
\(639\) 0 0
\(640\) 10.1436 + 17.5692i 0.0158494 + 0.0274519i
\(641\) 353.869 + 204.306i 0.552058 + 0.318731i 0.749952 0.661493i \(-0.230077\pi\)
−0.197894 + 0.980223i \(0.563410\pi\)
\(642\) 0 0
\(643\) −432.661 + 115.931i −0.672879 + 0.180297i −0.579052 0.815291i \(-0.696577\pi\)
−0.0938279 + 0.995588i \(0.529910\pi\)
\(644\) 20.7180 + 77.3205i 0.0321708 + 0.120063i
\(645\) 0 0
\(646\) 442.774 766.908i 0.685409 1.18716i
\(647\) 279.588 161.420i 0.432131 0.249491i −0.268123 0.963385i \(-0.586403\pi\)
0.700254 + 0.713894i \(0.253070\pi\)
\(648\) 0 0
\(649\) 679.292i 1.04668i
\(650\) −283.200 283.200i −0.435692 0.435692i
\(651\) 0 0
\(652\) −105.894 + 395.200i −0.162413 + 0.606135i
\(653\) −510.424 884.081i −0.781660 1.35388i −0.930974 0.365086i \(-0.881040\pi\)
0.149314 0.988790i \(-0.452294\pi\)
\(654\) 0 0
\(655\) 265.808 + 265.808i 0.405813 + 0.405813i
\(656\) 99.7128 26.7180i 0.152001 0.0407286i
\(657\) 0 0
\(658\) −95.8846 + 95.8846i −0.145721 + 0.145721i
\(659\) 113.842 197.181i 0.172750 0.299212i −0.766630 0.642089i \(-0.778068\pi\)
0.939380 + 0.342877i \(0.111401\pi\)
\(660\) 0 0
\(661\) 146.181 + 39.1692i 0.221152 + 0.0592575i 0.367693 0.929947i \(-0.380148\pi\)
−0.146542 + 0.989205i \(0.546814\pi\)
\(662\) 201.247i 0.303999i
\(663\) 0 0
\(664\) −444.133 −0.668875
\(665\) 148.301 553.468i 0.223009 0.832283i
\(666\) 0 0
\(667\) −62.1539 35.8846i −0.0931843 0.0538000i
\(668\) −228.862 228.862i −0.342607 0.342607i
\(669\) 0 0
\(670\) −25.7475 96.0910i −0.0384291 0.143419i
\(671\) −53.0653 + 53.0653i −0.0790838 + 0.0790838i
\(672\) 0 0
\(673\) −613.138 + 353.996i −0.911052 + 0.525996i −0.880770 0.473545i \(-0.842974\pi\)
−0.0302828 + 0.999541i \(0.509641\pi\)
\(674\) −474.704 127.197i −0.704309 0.188719i
\(675\) 0 0
\(676\) 338.000i 0.500000i
\(677\) 754.592 1.11461 0.557306 0.830307i \(-0.311835\pi\)
0.557306 + 0.830307i \(0.311835\pi\)
\(678\) 0 0
\(679\) −751.231 1301.17i −1.10638 1.91630i
\(680\) −83.1384 48.0000i −0.122262 0.0705882i
\(681\) 0 0
\(682\) 440.214 117.955i 0.645475 0.172955i
\(683\) 37.2168 + 138.895i 0.0544901 + 0.203360i 0.987804 0.155701i \(-0.0497636\pi\)
−0.933314 + 0.359061i \(0.883097\pi\)
\(684\) 0 0
\(685\) 102.115 176.869i 0.149074 0.258203i
\(686\) 55.5866 32.0929i 0.0810300 0.0467827i
\(687\) 0 0
\(688\) 61.3590i 0.0891846i
\(689\) −694.350 400.883i −1.00776 0.581833i
\(690\) 0 0
\(691\) 140.931 525.961i 0.203952 0.761159i −0.785815 0.618462i \(-0.787756\pi\)
0.989766 0.142697i \(-0.0455774\pi\)
\(692\) 268.459 + 464.985i 0.387946 + 0.671943i
\(693\) 0 0
\(694\) 437.703 + 437.703i 0.630695 + 0.630695i
\(695\) 165.771 44.4181i 0.238519 0.0639109i
\(696\) 0 0
\(697\) −345.415 + 345.415i −0.495574 + 0.495574i
\(698\) 316.897 548.881i 0.454007 0.786363i
\(699\) 0 0
\(700\) 406.506 + 108.923i 0.580723 + 0.155604i
\(701\) 568.344i 0.810761i 0.914148 + 0.405381i \(0.132861\pi\)
−0.914148 + 0.405381i \(0.867139\pi\)
\(702\) 0 0
\(703\) −1224.68 −1.74207
\(704\) −21.2820 + 79.4256i −0.0302302 + 0.112820i
\(705\) 0 0
\(706\) 718.865 + 415.037i 1.01822 + 0.587871i
\(707\) −1275.95 1275.95i −1.80475 1.80475i
\(708\) 0 0
\(709\) 94.9538 + 354.372i 0.133926 + 0.499820i 1.00000 9.64632e-5i \(-3.07052e-5\pi\)
−0.866074 + 0.499916i \(0.833364\pi\)
\(710\) 192.862 192.862i 0.271636 0.271636i
\(711\) 0 0
\(712\) −410.985 + 237.282i −0.577225 + 0.333261i
\(713\) 125.487 + 33.6242i 0.175999 + 0.0471587i
\(714\) 0 0
\(715\) 239.600i 0.335105i
\(716\) −571.559 −0.798267
\(717\) 0 0
\(718\) −64.2769 111.331i −0.0895221 0.155057i
\(719\) −228.215 131.760i −0.317407 0.183255i 0.332829 0.942987i \(-0.391997\pi\)
−0.650236 + 0.759732i \(0.725330\pi\)
\(720\) 0 0
\(721\) 776.852 208.157i 1.07747 0.288706i
\(722\) 268.443 + 1001.84i 0.371805 + 1.38759i
\(723\) 0 0
\(724\) 177.646 307.692i 0.245368 0.424989i
\(725\) −326.769 + 188.660i −0.450716 + 0.260221i
\(726\) 0 0
\(727\) 878.415i 1.20827i −0.796880 0.604137i \(-0.793518\pi\)
0.796880 0.604137i \(-0.206482\pi\)
\(728\) 177.583 + 307.583i 0.243933 + 0.422505i
\(729\) 0 0
\(730\) 62.5781 233.545i 0.0857235 0.319924i
\(731\) 145.177 + 251.454i 0.198600 + 0.343986i
\(732\) 0 0
\(733\) −146.627 146.627i −0.200037 0.200037i 0.599979 0.800016i \(-0.295176\pi\)
−0.800016 + 0.599979i \(0.795176\pi\)
\(734\) −297.499 + 79.7147i −0.405312 + 0.108603i
\(735\) 0 0
\(736\) −16.5744 + 16.5744i −0.0225195 + 0.0225195i
\(737\) 201.606 349.192i 0.273550 0.473802i
\(738\) 0 0
\(739\) 621.762 + 166.601i 0.841356 + 0.225441i 0.653662 0.756787i \(-0.273232\pi\)
0.187694 + 0.982227i \(0.439899\pi\)
\(740\) 132.764i 0.179411i
\(741\) 0 0
\(742\) 842.487 1.13543
\(743\) 3.52835 13.1680i 0.00474879 0.0177227i −0.963511 0.267670i \(-0.913746\pi\)
0.968260 + 0.249947i \(0.0804131\pi\)
\(744\) 0 0
\(745\) 88.3078 + 50.9845i 0.118534 + 0.0684356i
\(746\) 219.606 + 219.606i 0.294378 + 0.294378i
\(747\) 0 0
\(748\) −100.708 375.846i −0.134636 0.502468i
\(749\) 700.070 700.070i 0.934673 0.934673i
\(750\) 0 0
\(751\) −138.631 + 80.0385i −0.184595 + 0.106576i −0.589450 0.807805i \(-0.700655\pi\)
0.404855 + 0.914381i \(0.367322\pi\)
\(752\) −38.3538 10.2769i −0.0510024 0.0136661i
\(753\) 0 0
\(754\) −307.583 82.4167i −0.407935 0.109306i
\(755\) −139.572 −0.184864
\(756\) 0 0
\(757\) 733.692 + 1270.79i 0.969210 + 1.67872i 0.697850 + 0.716244i \(0.254140\pi\)
0.271360 + 0.962478i \(0.412527\pi\)
\(758\) 237.476 + 137.107i 0.313293 + 0.180880i
\(759\) 0 0
\(760\) 162.067 43.4256i 0.213246 0.0571390i
\(761\) −47.3514 176.718i −0.0622227 0.232218i 0.927811 0.373051i \(-0.121688\pi\)
−0.990033 + 0.140833i \(0.955022\pi\)
\(762\) 0 0
\(763\) 329.138 570.083i 0.431373 0.747160i
\(764\) −341.769 + 197.321i −0.447342 + 0.258273i
\(765\) 0 0
\(766\) 275.503i 0.359664i
\(767\) 222.367 829.883i 0.289917 1.08199i
\(768\) 0 0
\(769\) 351.866 1313.18i 0.457563 1.70765i −0.222879 0.974846i \(-0.571546\pi\)
0.680442 0.732802i \(-0.261788\pi\)
\(770\) −125.885 218.038i −0.163486 0.283167i
\(771\) 0 0
\(772\) 29.6987 + 29.6987i 0.0384699 + 0.0384699i
\(773\) −945.606 + 253.374i −1.22329 + 0.327781i −0.811965 0.583706i \(-0.801602\pi\)
−0.411329 + 0.911487i \(0.634935\pi\)
\(774\) 0 0
\(775\) 482.962 482.962i 0.623177 0.623177i
\(776\) 219.976 381.009i 0.283474 0.490991i
\(777\) 0 0
\(778\) −24.2487 6.49742i −0.0311680 0.00835144i
\(779\) 853.759i 1.09597i
\(780\) 0 0
\(781\) 1105.49 1.41548
\(782\) 28.7077 107.138i 0.0367106 0.137006i
\(783\) 0 0
\(784\) −153.464 88.6025i −0.195745 0.113013i
\(785\) 70.2834 + 70.2834i 0.0895330 + 0.0895330i
\(786\) 0 0
\(787\) 30.5460 + 113.999i 0.0388132 + 0.144853i 0.982613 0.185664i \(-0.0594436\pi\)
−0.943800 + 0.330517i \(0.892777\pi\)
\(788\) 213.913 213.913i 0.271463 0.271463i
\(789\) 0 0
\(790\) −26.0807 + 15.0577i −0.0330136 + 0.0190604i
\(791\) 421.865 + 113.038i 0.533332 + 0.142906i
\(792\) 0 0
\(793\) −82.2001 + 47.4583i −0.103657 + 0.0598465i
\(794\) 477.286 0.601116
\(795\) 0 0
\(796\) −22.2154 38.4782i −0.0279088 0.0483394i
\(797\) −491.138 283.559i −0.616234 0.355783i 0.159167 0.987252i \(-0.449119\pi\)
−0.775401 + 0.631469i \(0.782452\pi\)
\(798\) 0 0
\(799\) 181.492 48.6307i 0.227149 0.0608645i
\(800\) 31.8949 + 119.033i 0.0398686 + 0.148792i
\(801\) 0 0
\(802\) −363.415 + 629.454i −0.453136 + 0.784855i
\(803\) 848.696 489.995i 1.05691 0.610205i
\(804\) 0 0
\(805\) 71.7691i 0.0891542i
\(806\) 576.417 0.715157
\(807\) 0 0
\(808\) 136.756 510.382i 0.169253 0.631661i
\(809\) 43.7231 + 75.7307i 0.0540459 + 0.0936102i 0.891783 0.452464i \(-0.149455\pi\)
−0.837737 + 0.546074i \(0.816122\pi\)
\(810\) 0 0
\(811\) −519.193 519.193i −0.640189 0.640189i 0.310413 0.950602i \(-0.399533\pi\)
−0.950602 + 0.310413i \(0.899533\pi\)
\(812\) 323.205 86.6025i 0.398036 0.106653i
\(813\) 0 0
\(814\) −380.505 + 380.505i −0.467451 + 0.467451i
\(815\) 183.413 317.681i 0.225047 0.389792i
\(816\) 0 0
\(817\) −490.174 131.342i −0.599968 0.160761i
\(818\) 824.053i 1.00740i
\(819\) 0 0
\(820\) −92.5538 −0.112870
\(821\) −148.881 + 555.631i −0.181341 + 0.676773i 0.814044 + 0.580804i \(0.197262\pi\)
−0.995384 + 0.0959692i \(0.969405\pi\)
\(822\) 0 0
\(823\) −285.069 164.585i −0.346378 0.199981i 0.316711 0.948522i \(-0.397422\pi\)
−0.663089 + 0.748541i \(0.730755\pi\)
\(824\) 166.526 + 166.526i 0.202094 + 0.202094i
\(825\) 0 0
\(826\) 233.660 + 872.032i 0.282882 + 1.05573i
\(827\) −514.410 + 514.410i −0.622020 + 0.622020i −0.946048 0.324028i \(-0.894963\pi\)
0.324028 + 0.946048i \(0.394963\pi\)
\(828\) 0 0
\(829\) −816.742 + 471.546i −0.985213 + 0.568813i −0.903840 0.427871i \(-0.859264\pi\)
−0.0813731 + 0.996684i \(0.525931\pi\)
\(830\) 384.631 + 103.061i 0.463410 + 0.124170i
\(831\) 0 0
\(832\) −52.0000 + 90.0666i −0.0625000 + 0.108253i
\(833\) 838.543 1.00665
\(834\) 0 0
\(835\) 145.092 + 251.307i 0.173763 + 0.300967i
\(836\) 588.946 + 340.028i 0.704481 + 0.406732i
\(837\) 0 0
\(838\) 1068.72 286.361i 1.27532 0.341720i
\(839\) 203.536 + 759.606i 0.242593 + 0.905371i 0.974578 + 0.224050i \(0.0719278\pi\)
−0.731984 + 0.681321i \(0.761406\pi\)
\(840\) 0 0
\(841\) 270.500 468.520i 0.321641 0.557098i
\(842\) 46.8264 27.0352i 0.0556132 0.0321083i
\(843\) 0 0
\(844\) 128.403i 0.152136i
\(845\) −78.4332 + 292.717i −0.0928203 + 0.346410i
\(846\) 0 0
\(847\) −38.3846 + 143.253i −0.0453183 + 0.169130i
\(848\) 123.349 + 213.646i 0.145458 + 0.251941i
\(849\) 0 0
\(850\) −412.344 412.344i −0.485110 0.485110i
\(851\) −148.168 + 39.7015i −0.174110 + 0.0466528i
\(852\) 0 0
\(853\) 472.527 472.527i 0.553960 0.553960i −0.373622 0.927581i \(-0.621884\pi\)
0.927581 + 0.373622i \(0.121884\pi\)
\(854\) 49.8686 86.3750i 0.0583941 0.101142i
\(855\) 0 0
\(856\) 280.028 + 75.0333i 0.327136 + 0.0876557i
\(857\) 436.543i 0.509386i 0.967022 + 0.254693i \(0.0819743\pi\)
−0.967022 + 0.254693i \(0.918026\pi\)
\(858\) 0 0
\(859\) −1238.40 −1.44167 −0.720837 0.693104i \(-0.756243\pi\)
−0.720837 + 0.693104i \(0.756243\pi\)
\(860\) −14.2384 + 53.1384i −0.0165563 + 0.0617889i
\(861\) 0 0
\(862\) −771.300 445.310i −0.894779 0.516601i
\(863\) −729.373 729.373i −0.845160 0.845160i 0.144365 0.989525i \(-0.453886\pi\)
−0.989525 + 0.144365i \(0.953886\pi\)
\(864\) 0 0
\(865\) −124.592 464.985i −0.144037 0.537554i
\(866\) 237.785 237.785i 0.274578 0.274578i
\(867\) 0 0
\(868\) −524.545 + 302.846i −0.604314 + 0.348901i
\(869\) −117.904 31.5922i −0.135678 0.0363547i
\(870\) 0 0
\(871\) 360.608 360.608i 0.414016 0.414016i
\(872\) 192.756 0.221051
\(873\) 0 0
\(874\) 96.9282 + 167.885i 0.110902 + 0.192088i
\(875\) −701.769 405.167i −0.802022 0.463048i
\(876\) 0 0
\(877\) 1314.21 352.142i 1.49853 0.401530i 0.585923 0.810367i \(-0.300732\pi\)
0.912607 + 0.408837i \(0.134066\pi\)
\(878\) 252.361 + 941.824i 0.287427 + 1.07269i
\(879\) 0 0
\(880\) 36.8616 63.8461i 0.0418881 0.0725524i
\(881\) −1354.17 + 781.832i −1.53709 + 0.887437i −0.538079 + 0.842895i \(0.680850\pi\)
−0.999007 + 0.0445423i \(0.985817\pi\)
\(882\) 0 0
\(883\) 452.723i 0.512710i −0.966583 0.256355i \(-0.917478\pi\)
0.966583 0.256355i \(-0.0825216\pi\)
\(884\) 492.133i 0.556712i
\(885\) 0 0
\(886\) −111.282 + 415.310i −0.125600 + 0.468747i
\(887\) 455.469 + 788.896i 0.513494 + 0.889398i 0.999877 + 0.0156524i \(0.00498250\pi\)
−0.486383 + 0.873745i \(0.661684\pi\)
\(888\) 0 0
\(889\) −1617.69 1617.69i −1.81967 1.81967i
\(890\) 410.985 110.123i 0.461780 0.123734i
\(891\) 0 0
\(892\) 309.061 309.061i 0.346481 0.346481i
\(893\) −164.196 + 284.396i −0.183870 + 0.318473i
\(894\) 0 0
\(895\) 494.985 + 132.631i 0.553055 + 0.148191i
\(896\) 109.282i 0.121967i
\(897\) 0 0
\(898\) −401.387 −0.446979
\(899\) 140.551 524.545i 0.156342 0.583476i
\(900\) 0 0
\(901\) −1010.98 583.692i −1.12207 0.647827i
\(902\) −265.261 265.261i −0.294081 0.294081i
\(903\) 0 0
\(904\) 33.1000 + 123.531i 0.0366150 + 0.136649i
\(905\) −225.246 + 225.246i −0.248891 + 0.248891i
\(906\) 0 0
\(907\) 385.501 222.569i 0.425029 0.245391i −0.272198 0.962241i \(-0.587750\pi\)
0.697227 + 0.716851i \(0.254417\pi\)
\(908\) 124.890 + 33.4641i 0.137544 + 0.0368547i
\(909\) 0 0
\(910\) −82.4167 307.583i −0.0905678 0.338004i
\(911\) −717.233 −0.787303 −0.393652 0.919260i \(-0.628788\pi\)
−0.393652 + 0.919260i \(0.628788\pi\)
\(912\) 0 0
\(913\) 806.985 + 1397.74i 0.883882 + 1.53093i
\(914\) −175.835 101.519i −0.192380 0.111071i
\(915\) 0 0
\(916\) −160.329 + 42.9601i −0.175032 + 0.0468997i
\(917\) −524.090 1955.93i −0.571526 2.13297i
\(918\) 0 0
\(919\) −371.569 + 643.577i −0.404319 + 0.700301i −0.994242 0.107158i \(-0.965825\pi\)
0.589923 + 0.807460i \(0.299158\pi\)
\(920\) 18.1999 10.5077i 0.0197825 0.0114214i
\(921\) 0 0
\(922\) 832.246i 0.902653i
\(923\) 1350.57 + 361.883i 1.46324 + 0.392073i
\(924\) 0 0
\(925\) −208.727 + 778.981i −0.225651 + 0.842142i
\(926\) −169.599 293.755i −0.183153 0.317230i
\(927\) 0 0
\(928\) 69.2820 + 69.2820i 0.0746574 + 0.0746574i
\(929\) −1424.14 + 381.597i −1.53298 + 0.410761i −0.923991 0.382415i \(-0.875092\pi\)
−0.608992 + 0.793176i \(0.708426\pi\)
\(930\) 0 0
\(931\) −1036.31 + 1036.31i −1.11311 + 1.11311i
\(932\) −380.669 + 659.338i −0.408443 + 0.707445i
\(933\) 0 0
\(934\) 1000.82 + 268.168i 1.07154 + 0.287118i
\(935\) 348.862i 0.373114i
\(936\) 0 0
\(937\) −172.477 −0.184073 −0.0920367 0.995756i \(-0.529338\pi\)
−0.0920367 + 0.995756i \(0.529338\pi\)
\(938\) −138.695 + 517.619i −0.147863 + 0.551832i
\(939\) 0 0
\(940\) 30.8306 + 17.8001i 0.0327985 + 0.0189362i
\(941\) −145.055 145.055i −0.154150 0.154150i 0.625819 0.779969i \(-0.284765\pi\)
−0.779969 + 0.625819i \(0.784765\pi\)
\(942\) 0 0
\(943\) −27.6771 103.292i −0.0293501 0.109536i
\(944\) −186.928 + 186.928i −0.198017 + 0.198017i
\(945\) 0 0
\(946\) −193.104 + 111.488i −0.204127 + 0.117853i
\(947\) 665.902 + 178.428i 0.703170 + 0.188414i 0.592650 0.805460i \(-0.298082\pi\)
0.110520 + 0.993874i \(0.464748\pi\)
\(948\) 0 0
\(949\) 1197.24 320.800i 1.26158 0.338040i
\(950\) 1019.18 1.07283
\(951\) 0 0
\(952\) 258.564 + 447.846i 0.271601 + 0.470427i
\(953\) 1044.96 + 603.309i 1.09650 + 0.633063i 0.935299 0.353859i \(-0.115131\pi\)
0.161198 + 0.986922i \(0.448464\pi\)
\(954\) 0 0
\(955\) 341.769 91.5768i 0.357873 0.0958919i
\(956\) −122.354 456.631i −0.127985 0.477647i
\(957\) 0 0
\(958\) −261.464 + 452.869i −0.272927 + 0.472723i
\(959\) −952.750 + 550.070i −0.993483 + 0.573588i
\(960\) 0 0
\(961\) 22.0065i 0.0228996i
\(962\) −589.417 + 340.300i −0.612699 + 0.353742i
\(963\) 0 0
\(964\) 1.59361 5.94744i 0.00165312 0.00616954i
\(965\) −18.8282 32.6115i −0.0195111 0.0337943i
\(966\) 0 0
\(967\) −169.831 169.831i −0.175626 0.175626i 0.613820 0.789446i \(-0.289632\pi\)
−0.789446 + 0.613820i \(0.789632\pi\)
\(968\) −41.9474 + 11.2398i −0.0433341 + 0.0116113i
\(969\) 0 0
\(970\) −278.918 + 278.918i −0.287544 + 0.287544i
\(971\) 373.850 647.527i 0.385015 0.666866i −0.606756 0.794888i \(-0.707529\pi\)
0.991771 + 0.128022i \(0.0408628\pi\)
\(972\) 0 0
\(973\) −892.965 239.269i −0.917744 0.245909i
\(974\) 274.000i 0.281314i
\(975\) 0 0
\(976\) 29.2051 0.0299232
\(977\) 55.9897 208.956i 0.0573078 0.213876i −0.931334 0.364166i \(-0.881354\pi\)
0.988642 + 0.150290i \(0.0480208\pi\)
\(978\) 0 0
\(979\) 1493.51 + 862.277i 1.52554 + 0.880773i
\(980\) 112.344 + 112.344i 0.114636 + 0.114636i
\(981\) 0 0
\(982\) 13.5167 + 50.4449i 0.0137644 + 0.0513695i
\(983\) −1367.93 + 1367.93i −1.39158 + 1.39158i −0.569801 + 0.821783i \(0.692980\pi\)
−0.821783 + 0.569801i \(0.807020\pi\)
\(984\) 0 0
\(985\) −234.892 + 135.615i −0.238470 + 0.137680i
\(986\) −447.846 120.000i −0.454205 0.121704i
\(987\) 0 0
\(988\) 608.200 + 608.200i 0.615587 + 0.615587i
\(989\) −63.5617 −0.0642686
\(990\) 0 0
\(991\) 935.631 + 1620.56i 0.944128 + 1.63528i 0.757488 + 0.652849i \(0.226426\pi\)
0.186640 + 0.982428i \(0.440240\pi\)
\(992\) −153.597 88.6795i −0.154836 0.0893946i
\(993\) 0 0
\(994\) −1419.16 + 380.263i −1.42773 + 0.382558i
\(995\) 10.3102 + 38.4782i 0.0103620 + 0.0386715i
\(996\) 0 0
\(997\) −768.584 + 1331.23i −0.770897 + 1.33523i 0.166175 + 0.986096i \(0.446858\pi\)
−0.937072 + 0.349137i \(0.886475\pi\)
\(998\) −801.540 + 462.769i −0.803146 + 0.463697i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 234.3.bb.c.37.1 4
3.2 odd 2 78.3.l.a.37.1 yes 4
13.6 odd 12 inner 234.3.bb.c.19.1 4
39.2 even 12 1014.3.f.e.577.2 4
39.11 even 12 1014.3.f.d.577.2 4
39.23 odd 6 1014.3.f.d.775.2 4
39.29 odd 6 1014.3.f.e.775.2 4
39.32 even 12 78.3.l.a.19.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
78.3.l.a.19.1 4 39.32 even 12
78.3.l.a.37.1 yes 4 3.2 odd 2
234.3.bb.c.19.1 4 13.6 odd 12 inner
234.3.bb.c.37.1 4 1.1 even 1 trivial
1014.3.f.d.577.2 4 39.11 even 12
1014.3.f.d.775.2 4 39.23 odd 6
1014.3.f.e.577.2 4 39.2 even 12
1014.3.f.e.775.2 4 39.29 odd 6