Properties

Label 234.3.bb.c.19.1
Level $234$
Weight $3$
Character 234.19
Analytic conductor $6.376$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [234,3,Mod(19,234)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(234, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([0, 5]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("234.19");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 234 = 2 \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 234.bb (of order \(12\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.37603818603\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{12})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 78)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 19.1
Root \(-0.866025 + 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 234.19
Dual form 234.3.bb.c.37.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.366025 - 1.36603i) q^{2} +(-1.73205 + 1.00000i) q^{4} +(1.26795 - 1.26795i) q^{5} +(-2.50000 + 9.33013i) q^{7} +(2.00000 + 2.00000i) q^{8} +(-2.19615 - 1.26795i) q^{10} +(-9.92820 + 2.66025i) q^{11} +(-11.2583 + 6.50000i) q^{13} +13.6603 q^{14} +(2.00000 - 3.46410i) q^{16} +(-16.3923 + 9.46410i) q^{17} +(31.9545 + 8.56218i) q^{19} +(-0.928203 + 3.46410i) q^{20} +(7.26795 + 12.5885i) q^{22} +(3.58846 + 2.07180i) q^{23} +21.7846i q^{25} +(13.0000 + 13.0000i) q^{26} +(-5.00000 - 18.6603i) q^{28} +(-8.66025 + 15.0000i) q^{29} +(22.1699 - 22.1699i) q^{31} +(-5.46410 - 1.46410i) q^{32} +(18.9282 + 18.9282i) q^{34} +(8.66025 + 15.0000i) q^{35} +(-35.7583 + 9.58142i) q^{37} -46.7846i q^{38} +5.07180 q^{40} +(6.67949 + 24.9282i) q^{41} +(-13.2846 + 7.66987i) q^{43} +(14.5359 - 14.5359i) q^{44} +(1.51666 - 5.66025i) q^{46} +(-7.01924 - 7.01924i) q^{47} +(-38.3660 - 22.1506i) q^{49} +(29.7583 - 7.97372i) q^{50} +(13.0000 - 22.5167i) q^{52} +61.6743 q^{53} +(-9.21539 + 15.9615i) q^{55} +(-23.6603 + 13.6603i) q^{56} +(23.6603 + 6.33975i) q^{58} +(17.1051 - 63.8372i) q^{59} +(3.65064 + 6.32309i) q^{61} +(-38.3993 - 22.1699i) q^{62} +8.00000i q^{64} +(-6.03332 + 22.5167i) q^{65} +(-10.1532 - 37.8923i) q^{67} +(18.9282 - 32.7846i) q^{68} +(17.3205 - 17.3205i) q^{70} +(-103.890 - 27.8372i) q^{71} +(-67.4186 - 67.4186i) q^{73} +(26.1769 + 45.3397i) q^{74} +(-63.9090 + 17.1244i) q^{76} -99.2820i q^{77} +11.8756 q^{79} +(-1.85641 - 6.92820i) q^{80} +(31.6077 - 18.2487i) q^{82} +(-111.033 + 111.033i) q^{83} +(-8.78461 + 32.7846i) q^{85} +(15.3397 + 15.3397i) q^{86} +(-25.1769 - 14.5359i) q^{88} +(-162.067 + 43.4256i) q^{89} +(-32.5000 - 121.292i) q^{91} -8.28719 q^{92} +(-7.01924 + 12.1577i) q^{94} +(51.3731 - 29.6603i) q^{95} +(150.246 + 40.2583i) q^{97} +(-16.2154 + 60.5167i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{2} + 12 q^{5} - 10 q^{7} + 8 q^{8} + 12 q^{10} - 12 q^{11} + 20 q^{14} + 8 q^{16} - 24 q^{17} + 62 q^{19} + 24 q^{20} + 36 q^{22} - 48 q^{23} + 52 q^{26} - 20 q^{28} + 106 q^{31} - 8 q^{32} + 48 q^{34}+ \cdots - 148 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/234\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(209\)
\(\chi(n)\) \(e\left(\frac{5}{12}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.366025 1.36603i −0.183013 0.683013i
\(3\) 0 0
\(4\) −1.73205 + 1.00000i −0.433013 + 0.250000i
\(5\) 1.26795 1.26795i 0.253590 0.253590i −0.568851 0.822441i \(-0.692612\pi\)
0.822441 + 0.568851i \(0.192612\pi\)
\(6\) 0 0
\(7\) −2.50000 + 9.33013i −0.357143 + 1.33288i 0.520624 + 0.853786i \(0.325700\pi\)
−0.877766 + 0.479089i \(0.840967\pi\)
\(8\) 2.00000 + 2.00000i 0.250000 + 0.250000i
\(9\) 0 0
\(10\) −2.19615 1.26795i −0.219615 0.126795i
\(11\) −9.92820 + 2.66025i −0.902564 + 0.241841i −0.680117 0.733104i \(-0.738071\pi\)
−0.222447 + 0.974945i \(0.571404\pi\)
\(12\) 0 0
\(13\) −11.2583 + 6.50000i −0.866025 + 0.500000i
\(14\) 13.6603 0.975732
\(15\) 0 0
\(16\) 2.00000 3.46410i 0.125000 0.216506i
\(17\) −16.3923 + 9.46410i −0.964253 + 0.556712i −0.897479 0.441056i \(-0.854604\pi\)
−0.0667738 + 0.997768i \(0.521271\pi\)
\(18\) 0 0
\(19\) 31.9545 + 8.56218i 1.68181 + 0.450641i 0.968257 0.249956i \(-0.0804160\pi\)
0.713558 + 0.700597i \(0.247083\pi\)
\(20\) −0.928203 + 3.46410i −0.0464102 + 0.173205i
\(21\) 0 0
\(22\) 7.26795 + 12.5885i 0.330361 + 0.572203i
\(23\) 3.58846 + 2.07180i 0.156020 + 0.0900781i 0.575977 0.817466i \(-0.304622\pi\)
−0.419957 + 0.907544i \(0.637955\pi\)
\(24\) 0 0
\(25\) 21.7846i 0.871384i
\(26\) 13.0000 + 13.0000i 0.500000 + 0.500000i
\(27\) 0 0
\(28\) −5.00000 18.6603i −0.178571 0.666438i
\(29\) −8.66025 + 15.0000i −0.298629 + 0.517241i −0.975823 0.218564i \(-0.929863\pi\)
0.677193 + 0.735805i \(0.263196\pi\)
\(30\) 0 0
\(31\) 22.1699 22.1699i 0.715157 0.715157i −0.252452 0.967609i \(-0.581237\pi\)
0.967609 + 0.252452i \(0.0812370\pi\)
\(32\) −5.46410 1.46410i −0.170753 0.0457532i
\(33\) 0 0
\(34\) 18.9282 + 18.9282i 0.556712 + 0.556712i
\(35\) 8.66025 + 15.0000i 0.247436 + 0.428571i
\(36\) 0 0
\(37\) −35.7583 + 9.58142i −0.966441 + 0.258957i −0.707325 0.706889i \(-0.750098\pi\)
−0.259117 + 0.965846i \(0.583431\pi\)
\(38\) 46.7846i 1.23117i
\(39\) 0 0
\(40\) 5.07180 0.126795
\(41\) 6.67949 + 24.9282i 0.162914 + 0.608005i 0.998297 + 0.0583360i \(0.0185795\pi\)
−0.835383 + 0.549669i \(0.814754\pi\)
\(42\) 0 0
\(43\) −13.2846 + 7.66987i −0.308944 + 0.178369i −0.646454 0.762953i \(-0.723749\pi\)
0.337510 + 0.941322i \(0.390415\pi\)
\(44\) 14.5359 14.5359i 0.330361 0.330361i
\(45\) 0 0
\(46\) 1.51666 5.66025i 0.0329709 0.123049i
\(47\) −7.01924 7.01924i −0.149345 0.149345i 0.628480 0.777826i \(-0.283677\pi\)
−0.777826 + 0.628480i \(0.783677\pi\)
\(48\) 0 0
\(49\) −38.3660 22.1506i −0.782980 0.452054i
\(50\) 29.7583 7.97372i 0.595167 0.159474i
\(51\) 0 0
\(52\) 13.0000 22.5167i 0.250000 0.433013i
\(53\) 61.6743 1.16367 0.581833 0.813308i \(-0.302336\pi\)
0.581833 + 0.813308i \(0.302336\pi\)
\(54\) 0 0
\(55\) −9.21539 + 15.9615i −0.167553 + 0.290210i
\(56\) −23.6603 + 13.6603i −0.422505 + 0.243933i
\(57\) 0 0
\(58\) 23.6603 + 6.33975i 0.407935 + 0.109306i
\(59\) 17.1051 63.8372i 0.289917 1.08199i −0.655253 0.755409i \(-0.727438\pi\)
0.945171 0.326577i \(-0.105895\pi\)
\(60\) 0 0
\(61\) 3.65064 + 6.32309i 0.0598465 + 0.103657i 0.894396 0.447275i \(-0.147606\pi\)
−0.834550 + 0.550932i \(0.814272\pi\)
\(62\) −38.3993 22.1699i −0.619344 0.357579i
\(63\) 0 0
\(64\) 8.00000i 0.125000i
\(65\) −6.03332 + 22.5167i −0.0928203 + 0.346410i
\(66\) 0 0
\(67\) −10.1532 37.8923i −0.151540 0.565557i −0.999377 0.0352988i \(-0.988762\pi\)
0.847836 0.530258i \(-0.177905\pi\)
\(68\) 18.9282 32.7846i 0.278356 0.482127i
\(69\) 0 0
\(70\) 17.3205 17.3205i 0.247436 0.247436i
\(71\) −103.890 27.8372i −1.46324 0.392073i −0.562630 0.826709i \(-0.690210\pi\)
−0.900606 + 0.434636i \(0.856877\pi\)
\(72\) 0 0
\(73\) −67.4186 67.4186i −0.923542 0.923542i 0.0737356 0.997278i \(-0.476508\pi\)
−0.997278 + 0.0737356i \(0.976508\pi\)
\(74\) 26.1769 + 45.3397i 0.353742 + 0.612699i
\(75\) 0 0
\(76\) −63.9090 + 17.1244i −0.840907 + 0.225320i
\(77\) 99.2820i 1.28938i
\(78\) 0 0
\(79\) 11.8756 0.150325 0.0751623 0.997171i \(-0.476053\pi\)
0.0751623 + 0.997171i \(0.476053\pi\)
\(80\) −1.85641 6.92820i −0.0232051 0.0866025i
\(81\) 0 0
\(82\) 31.6077 18.2487i 0.385460 0.222545i
\(83\) −111.033 + 111.033i −1.33775 + 1.33775i −0.439516 + 0.898235i \(0.644850\pi\)
−0.898235 + 0.439516i \(0.855150\pi\)
\(84\) 0 0
\(85\) −8.78461 + 32.7846i −0.103348 + 0.385701i
\(86\) 15.3397 + 15.3397i 0.178369 + 0.178369i
\(87\) 0 0
\(88\) −25.1769 14.5359i −0.286101 0.165181i
\(89\) −162.067 + 43.4256i −1.82097 + 0.487928i −0.996909 0.0785673i \(-0.974965\pi\)
−0.824065 + 0.566496i \(0.808299\pi\)
\(90\) 0 0
\(91\) −32.5000 121.292i −0.357143 1.33288i
\(92\) −8.28719 −0.0900781
\(93\) 0 0
\(94\) −7.01924 + 12.1577i −0.0746727 + 0.129337i
\(95\) 51.3731 29.6603i 0.540769 0.312213i
\(96\) 0 0
\(97\) 150.246 + 40.2583i 1.54893 + 0.415034i 0.929138 0.369733i \(-0.120551\pi\)
0.619791 + 0.784767i \(0.287217\pi\)
\(98\) −16.2154 + 60.5167i −0.165463 + 0.617517i
\(99\) 0 0
\(100\) −21.7846 37.7321i −0.217846 0.377321i
\(101\) 161.785 + 93.4064i 1.60183 + 0.924816i 0.991122 + 0.132958i \(0.0424477\pi\)
0.610706 + 0.791857i \(0.290886\pi\)
\(102\) 0 0
\(103\) 83.2628i 0.808377i −0.914676 0.404188i \(-0.867554\pi\)
0.914676 0.404188i \(-0.132446\pi\)
\(104\) −35.5167 9.51666i −0.341506 0.0915064i
\(105\) 0 0
\(106\) −22.5744 84.2487i −0.212966 0.794799i
\(107\) 51.2487 88.7654i 0.478960 0.829583i −0.520749 0.853710i \(-0.674347\pi\)
0.999709 + 0.0241269i \(0.00768059\pi\)
\(108\) 0 0
\(109\) 48.1891 48.1891i 0.442102 0.442102i −0.450616 0.892718i \(-0.648796\pi\)
0.892718 + 0.450616i \(0.148796\pi\)
\(110\) 25.1769 + 6.74613i 0.228881 + 0.0613285i
\(111\) 0 0
\(112\) 27.3205 + 27.3205i 0.243933 + 0.243933i
\(113\) −22.6077 39.1577i −0.200068 0.346528i 0.748482 0.663155i \(-0.230783\pi\)
−0.948550 + 0.316627i \(0.897450\pi\)
\(114\) 0 0
\(115\) 7.17691 1.92305i 0.0624080 0.0167222i
\(116\) 34.6410i 0.298629i
\(117\) 0 0
\(118\) −93.4641 −0.792069
\(119\) −47.3205 176.603i −0.397651 1.48405i
\(120\) 0 0
\(121\) −13.2968 + 7.67691i −0.109891 + 0.0634456i
\(122\) 7.30127 7.30127i 0.0598465 0.0598465i
\(123\) 0 0
\(124\) −16.2295 + 60.5692i −0.130883 + 0.488461i
\(125\) 59.3205 + 59.3205i 0.474564 + 0.474564i
\(126\) 0 0
\(127\) 205.115 + 118.423i 1.61508 + 0.932465i 0.988169 + 0.153372i \(0.0490132\pi\)
0.626908 + 0.779093i \(0.284320\pi\)
\(128\) 10.9282 2.92820i 0.0853766 0.0228766i
\(129\) 0 0
\(130\) 32.9667 0.253590
\(131\) 209.636 1.60027 0.800137 0.599817i \(-0.204760\pi\)
0.800137 + 0.599817i \(0.204760\pi\)
\(132\) 0 0
\(133\) −159.772 + 276.734i −1.20130 + 2.08071i
\(134\) −48.0455 + 27.7391i −0.358549 + 0.207008i
\(135\) 0 0
\(136\) −51.7128 13.8564i −0.380241 0.101885i
\(137\) −29.4782 + 110.014i −0.215169 + 0.803023i 0.770938 + 0.636911i \(0.219788\pi\)
−0.986107 + 0.166112i \(0.946879\pi\)
\(138\) 0 0
\(139\) 47.8538 + 82.8853i 0.344272 + 0.596297i 0.985221 0.171287i \(-0.0547924\pi\)
−0.640949 + 0.767583i \(0.721459\pi\)
\(140\) −30.0000 17.3205i −0.214286 0.123718i
\(141\) 0 0
\(142\) 152.105i 1.07116i
\(143\) 94.4833 94.4833i 0.660723 0.660723i
\(144\) 0 0
\(145\) 8.03848 + 30.0000i 0.0554378 + 0.206897i
\(146\) −67.4186 + 116.772i −0.461771 + 0.799811i
\(147\) 0 0
\(148\) 52.3538 52.3538i 0.353742 0.353742i
\(149\) 54.9282 + 14.7180i 0.368646 + 0.0987783i 0.438386 0.898787i \(-0.355550\pi\)
−0.0697402 + 0.997565i \(0.522217\pi\)
\(150\) 0 0
\(151\) −55.0385 55.0385i −0.364493 0.364493i 0.500971 0.865464i \(-0.332976\pi\)
−0.865464 + 0.500971i \(0.832976\pi\)
\(152\) 46.7846 + 81.0333i 0.307793 + 0.533114i
\(153\) 0 0
\(154\) −135.622 + 36.3397i −0.880661 + 0.235972i
\(155\) 56.2205i 0.362713i
\(156\) 0 0
\(157\) 55.4308 0.353062 0.176531 0.984295i \(-0.443512\pi\)
0.176531 + 0.984295i \(0.443512\pi\)
\(158\) −4.34679 16.2224i −0.0275113 0.102674i
\(159\) 0 0
\(160\) −8.78461 + 5.07180i −0.0549038 + 0.0316987i
\(161\) −28.3013 + 28.3013i −0.175784 + 0.175784i
\(162\) 0 0
\(163\) −52.9468 + 197.600i −0.324827 + 1.21227i 0.589659 + 0.807652i \(0.299262\pi\)
−0.914486 + 0.404618i \(0.867405\pi\)
\(164\) −36.4974 36.4974i −0.222545 0.222545i
\(165\) 0 0
\(166\) 192.315 + 111.033i 1.15853 + 0.668875i
\(167\) 156.315 41.8846i 0.936020 0.250806i 0.241600 0.970376i \(-0.422328\pi\)
0.694420 + 0.719570i \(0.255661\pi\)
\(168\) 0 0
\(169\) 84.5000 146.358i 0.500000 0.866025i
\(170\) 48.0000 0.282353
\(171\) 0 0
\(172\) 15.3397 26.5692i 0.0891846 0.154472i
\(173\) −232.492 + 134.229i −1.34389 + 0.775893i −0.987375 0.158398i \(-0.949367\pi\)
−0.356511 + 0.934291i \(0.616034\pi\)
\(174\) 0 0
\(175\) −203.253 54.4615i −1.16145 0.311209i
\(176\) −10.6410 + 39.7128i −0.0604603 + 0.225641i
\(177\) 0 0
\(178\) 118.641 + 205.492i 0.666523 + 1.15445i
\(179\) 247.492 + 142.890i 1.38264 + 0.798267i 0.992471 0.122477i \(-0.0390839\pi\)
0.390167 + 0.920744i \(0.372417\pi\)
\(180\) 0 0
\(181\) 177.646i 0.981471i −0.871309 0.490735i \(-0.836728\pi\)
0.871309 0.490735i \(-0.163272\pi\)
\(182\) −153.792 + 88.7917i −0.845009 + 0.487866i
\(183\) 0 0
\(184\) 3.03332 + 11.3205i 0.0164854 + 0.0615245i
\(185\) −33.1910 + 57.4885i −0.179411 + 0.310749i
\(186\) 0 0
\(187\) 137.569 137.569i 0.735664 0.735664i
\(188\) 19.1769 + 5.13844i 0.102005 + 0.0273321i
\(189\) 0 0
\(190\) −59.3205 59.3205i −0.312213 0.312213i
\(191\) 98.6603 + 170.885i 0.516546 + 0.894684i 0.999815 + 0.0192120i \(0.00611576\pi\)
−0.483270 + 0.875472i \(0.660551\pi\)
\(192\) 0 0
\(193\) −20.2846 + 5.43524i −0.105102 + 0.0281619i −0.310987 0.950414i \(-0.600659\pi\)
0.205885 + 0.978576i \(0.433993\pi\)
\(194\) 219.976i 1.13389i
\(195\) 0 0
\(196\) 88.6025 0.452054
\(197\) −39.1487 146.105i −0.198725 0.741650i −0.991271 0.131839i \(-0.957912\pi\)
0.792547 0.609811i \(-0.208755\pi\)
\(198\) 0 0
\(199\) 19.2391 11.1077i 0.0966789 0.0558176i −0.450881 0.892584i \(-0.648890\pi\)
0.547560 + 0.836766i \(0.315557\pi\)
\(200\) −43.5692 + 43.5692i −0.217846 + 0.217846i
\(201\) 0 0
\(202\) 68.3782 255.191i 0.338506 1.26332i
\(203\) −118.301 118.301i −0.582765 0.582765i
\(204\) 0 0
\(205\) 40.0770 + 23.1384i 0.195497 + 0.112870i
\(206\) −113.739 + 30.4763i −0.552132 + 0.147943i
\(207\) 0 0
\(208\) 52.0000i 0.250000i
\(209\) −340.028 −1.62693
\(210\) 0 0
\(211\) −32.1007 + 55.6000i −0.152136 + 0.263507i −0.932012 0.362426i \(-0.881948\pi\)
0.779877 + 0.625933i \(0.215282\pi\)
\(212\) −106.823 + 61.6743i −0.503882 + 0.290917i
\(213\) 0 0
\(214\) −140.014 37.5167i −0.654271 0.175311i
\(215\) −7.11920 + 26.5692i −0.0331126 + 0.123578i
\(216\) 0 0
\(217\) 151.423 + 262.272i 0.697802 + 1.20863i
\(218\) −83.4660 48.1891i −0.382872 0.221051i
\(219\) 0 0
\(220\) 36.8616i 0.167553i
\(221\) 123.033 213.100i 0.556712 0.964253i
\(222\) 0 0
\(223\) −56.5622 211.093i −0.253642 0.946605i −0.968841 0.247684i \(-0.920331\pi\)
0.715199 0.698921i \(-0.246336\pi\)
\(224\) 27.3205 47.3205i 0.121967 0.211252i
\(225\) 0 0
\(226\) −45.2154 + 45.2154i −0.200068 + 0.200068i
\(227\) −62.4449 16.7321i −0.275088 0.0737095i 0.118638 0.992938i \(-0.462147\pi\)
−0.393725 + 0.919228i \(0.628814\pi\)
\(228\) 0 0
\(229\) 58.6846 + 58.6846i 0.256265 + 0.256265i 0.823533 0.567268i \(-0.192000\pi\)
−0.567268 + 0.823533i \(0.692000\pi\)
\(230\) −5.25387 9.09996i −0.0228429 0.0395651i
\(231\) 0 0
\(232\) −47.3205 + 12.6795i −0.203968 + 0.0546530i
\(233\) 380.669i 1.63377i 0.576798 + 0.816887i \(0.304302\pi\)
−0.576798 + 0.816887i \(0.695698\pi\)
\(234\) 0 0
\(235\) −17.8001 −0.0757450
\(236\) 34.2102 + 127.674i 0.144959 + 0.540993i
\(237\) 0 0
\(238\) −223.923 + 129.282i −0.940853 + 0.543202i
\(239\) 167.138 167.138i 0.699324 0.699324i −0.264941 0.964265i \(-0.585352\pi\)
0.964265 + 0.264941i \(0.0853524\pi\)
\(240\) 0 0
\(241\) 0.796806 2.97372i 0.00330625 0.0123391i −0.964253 0.264983i \(-0.914634\pi\)
0.967559 + 0.252644i \(0.0813002\pi\)
\(242\) 15.3538 + 15.3538i 0.0634456 + 0.0634456i
\(243\) 0 0
\(244\) −12.6462 7.30127i −0.0518286 0.0299232i
\(245\) −76.7321 + 20.5603i −0.313192 + 0.0839196i
\(246\) 0 0
\(247\) −415.408 + 111.308i −1.68181 + 0.450641i
\(248\) 88.6795 0.357579
\(249\) 0 0
\(250\) 59.3205 102.746i 0.237282 0.410985i
\(251\) 180.746 104.354i 0.720104 0.415752i −0.0946869 0.995507i \(-0.530185\pi\)
0.814791 + 0.579755i \(0.196852\pi\)
\(252\) 0 0
\(253\) −41.1384 11.0230i −0.162603 0.0435692i
\(254\) 86.6917 323.538i 0.341306 1.27377i
\(255\) 0 0
\(256\) −8.00000 13.8564i −0.0312500 0.0541266i
\(257\) −64.2769 37.1103i −0.250105 0.144398i 0.369708 0.929148i \(-0.379458\pi\)
−0.619812 + 0.784750i \(0.712791\pi\)
\(258\) 0 0
\(259\) 357.583i 1.38063i
\(260\) −12.0666 45.0333i −0.0464102 0.173205i
\(261\) 0 0
\(262\) −76.7321 286.368i −0.292870 1.09301i
\(263\) −12.1821 + 21.1000i −0.0463197 + 0.0802280i −0.888256 0.459349i \(-0.848083\pi\)
0.841936 + 0.539577i \(0.181416\pi\)
\(264\) 0 0
\(265\) 78.1999 78.1999i 0.295094 0.295094i
\(266\) 436.506 + 116.962i 1.64100 + 0.439705i
\(267\) 0 0
\(268\) 55.4782 + 55.4782i 0.207008 + 0.207008i
\(269\) −87.8705 152.196i −0.326656 0.565785i 0.655190 0.755464i \(-0.272589\pi\)
−0.981846 + 0.189679i \(0.939255\pi\)
\(270\) 0 0
\(271\) 269.169 72.1237i 0.993244 0.266139i 0.274632 0.961550i \(-0.411444\pi\)
0.718613 + 0.695411i \(0.244777\pi\)
\(272\) 75.7128i 0.278356i
\(273\) 0 0
\(274\) 161.072 0.587853
\(275\) −57.9526 216.282i −0.210737 0.786480i
\(276\) 0 0
\(277\) −387.100 + 223.492i −1.39747 + 0.806831i −0.994127 0.108216i \(-0.965486\pi\)
−0.403345 + 0.915048i \(0.632153\pi\)
\(278\) 95.7077 95.7077i 0.344272 0.344272i
\(279\) 0 0
\(280\) −12.6795 + 47.3205i −0.0452839 + 0.169002i
\(281\) 5.54483 + 5.54483i 0.0197325 + 0.0197325i 0.716904 0.697172i \(-0.245558\pi\)
−0.697172 + 0.716904i \(0.745558\pi\)
\(282\) 0 0
\(283\) 14.4160 + 8.32309i 0.0509400 + 0.0294102i 0.525254 0.850946i \(-0.323970\pi\)
−0.474314 + 0.880356i \(0.657304\pi\)
\(284\) 207.779 55.6743i 0.731618 0.196036i
\(285\) 0 0
\(286\) −163.650 94.4833i −0.572203 0.330361i
\(287\) −249.282 −0.868579
\(288\) 0 0
\(289\) 34.6384 59.9955i 0.119856 0.207597i
\(290\) 38.0385 21.9615i 0.131167 0.0757294i
\(291\) 0 0
\(292\) 184.191 + 49.3538i 0.630791 + 0.169020i
\(293\) −48.4885 + 180.962i −0.165490 + 0.617616i 0.832487 + 0.554044i \(0.186916\pi\)
−0.997977 + 0.0635723i \(0.979751\pi\)
\(294\) 0 0
\(295\) −59.2539 102.631i −0.200861 0.347901i
\(296\) −90.6795 52.3538i −0.306350 0.176871i
\(297\) 0 0
\(298\) 80.4205i 0.269867i
\(299\) −53.8667 −0.180156
\(300\) 0 0
\(301\) −38.3494 143.122i −0.127407 0.475488i
\(302\) −55.0385 + 95.3294i −0.182247 + 0.315660i
\(303\) 0 0
\(304\) 93.5692 93.5692i 0.307793 0.307793i
\(305\) 12.6462 + 3.38853i 0.0414629 + 0.0111099i
\(306\) 0 0
\(307\) 375.069 + 375.069i 1.22172 + 1.22172i 0.967020 + 0.254702i \(0.0819774\pi\)
0.254702 + 0.967020i \(0.418023\pi\)
\(308\) 99.2820 + 171.962i 0.322344 + 0.558317i
\(309\) 0 0
\(310\) −76.7987 + 20.5781i −0.247738 + 0.0663811i
\(311\) 296.238i 0.952535i −0.879300 0.476268i \(-0.841989\pi\)
0.879300 0.476268i \(-0.158011\pi\)
\(312\) 0 0
\(313\) 118.286 0.377910 0.188955 0.981986i \(-0.439490\pi\)
0.188955 + 0.981986i \(0.439490\pi\)
\(314\) −20.2891 75.7199i −0.0646149 0.241146i
\(315\) 0 0
\(316\) −20.5692 + 11.8756i −0.0650925 + 0.0375812i
\(317\) 280.708 280.708i 0.885513 0.885513i −0.108575 0.994088i \(-0.534629\pi\)
0.994088 + 0.108575i \(0.0346288\pi\)
\(318\) 0 0
\(319\) 46.0770 171.962i 0.144442 0.539064i
\(320\) 10.1436 + 10.1436i 0.0316987 + 0.0316987i
\(321\) 0 0
\(322\) 49.0192 + 28.3013i 0.152234 + 0.0878921i
\(323\) −604.841 + 162.067i −1.87257 + 0.501754i
\(324\) 0 0
\(325\) −141.600 245.258i −0.435692 0.754641i
\(326\) 289.306 0.887443
\(327\) 0 0
\(328\) −36.4974 + 63.2154i −0.111273 + 0.192730i
\(329\) 83.0385 47.9423i 0.252397 0.145721i
\(330\) 0 0
\(331\) −137.454 36.8308i −0.415270 0.111271i 0.0451334 0.998981i \(-0.485629\pi\)
−0.460404 + 0.887710i \(0.652295\pi\)
\(332\) 81.2820 303.349i 0.244825 0.913701i
\(333\) 0 0
\(334\) −114.431 198.200i −0.342607 0.593413i
\(335\) −60.9193 35.1718i −0.181849 0.104990i
\(336\) 0 0
\(337\) 347.508i 1.03118i −0.856835 0.515590i \(-0.827573\pi\)
0.856835 0.515590i \(-0.172427\pi\)
\(338\) −230.858 61.8583i −0.683013 0.183013i
\(339\) 0 0
\(340\) −17.5692 65.5692i −0.0516742 0.192851i
\(341\) −161.130 + 279.084i −0.472521 + 0.818430i
\(342\) 0 0
\(343\) −32.0929 + 32.0929i −0.0935654 + 0.0935654i
\(344\) −41.9090 11.2295i −0.121828 0.0326438i
\(345\) 0 0
\(346\) 268.459 + 268.459i 0.775893 + 0.775893i
\(347\) 218.851 + 379.061i 0.630695 + 1.09240i 0.987410 + 0.158183i \(0.0505635\pi\)
−0.356715 + 0.934213i \(0.616103\pi\)
\(348\) 0 0
\(349\) −432.889 + 115.992i −1.24037 + 0.332356i −0.818609 0.574351i \(-0.805254\pi\)
−0.421761 + 0.906707i \(0.638588\pi\)
\(350\) 297.583i 0.850238i
\(351\) 0 0
\(352\) 58.1436 0.165181
\(353\) 151.914 + 566.951i 0.430352 + 1.60609i 0.751951 + 0.659218i \(0.229113\pi\)
−0.321600 + 0.946876i \(0.604221\pi\)
\(354\) 0 0
\(355\) −167.023 + 96.4308i −0.470487 + 0.271636i
\(356\) 237.282 237.282i 0.666523 0.666523i
\(357\) 0 0
\(358\) 104.603 390.382i 0.292186 1.09045i
\(359\) −64.2769 64.2769i −0.179044 0.179044i 0.611895 0.790939i \(-0.290408\pi\)
−0.790939 + 0.611895i \(0.790408\pi\)
\(360\) 0 0
\(361\) 635.143 + 366.700i 1.75940 + 1.01579i
\(362\) −242.669 + 65.0230i −0.670357 + 0.179622i
\(363\) 0 0
\(364\) 177.583 + 177.583i 0.487866 + 0.487866i
\(365\) −170.967 −0.468402
\(366\) 0 0
\(367\) 108.892 188.607i 0.296709 0.513916i −0.678672 0.734442i \(-0.737444\pi\)
0.975381 + 0.220526i \(0.0707774\pi\)
\(368\) 14.3538 8.28719i 0.0390050 0.0225195i
\(369\) 0 0
\(370\) 90.6795 + 24.2975i 0.245080 + 0.0656689i
\(371\) −154.186 + 575.429i −0.415595 + 1.55102i
\(372\) 0 0
\(373\) 109.803 + 190.185i 0.294378 + 0.509878i 0.974840 0.222905i \(-0.0715541\pi\)
−0.680462 + 0.732784i \(0.738221\pi\)
\(374\) −238.277 137.569i −0.637104 0.367832i
\(375\) 0 0
\(376\) 28.0770i 0.0746727i
\(377\) 225.167i 0.597259i
\(378\) 0 0
\(379\) 50.1846 + 187.292i 0.132413 + 0.494173i 0.999995 0.00312126i \(-0.000993528\pi\)
−0.867582 + 0.497294i \(0.834327\pi\)
\(380\) −59.3205 + 102.746i −0.156107 + 0.270385i
\(381\) 0 0
\(382\) 197.321 197.321i 0.516546 0.516546i
\(383\) −188.172 50.4205i −0.491310 0.131646i 0.00465401 0.999989i \(-0.498519\pi\)
−0.495964 + 0.868343i \(0.665185\pi\)
\(384\) 0 0
\(385\) −125.885 125.885i −0.326973 0.326973i
\(386\) 14.8494 + 25.7199i 0.0384699 + 0.0666317i
\(387\) 0 0
\(388\) −300.492 + 80.5167i −0.774465 + 0.207517i
\(389\) 17.7513i 0.0456331i −0.999740 0.0228166i \(-0.992737\pi\)
0.999740 0.0228166i \(-0.00726337\pi\)
\(390\) 0 0
\(391\) −78.4308 −0.200590
\(392\) −32.4308 121.033i −0.0827316 0.308758i
\(393\) 0 0
\(394\) −185.254 + 106.956i −0.470187 + 0.271463i
\(395\) 15.0577 15.0577i 0.0381208 0.0381208i
\(396\) 0 0
\(397\) −87.3494 + 325.992i −0.220024 + 0.821139i 0.764314 + 0.644844i \(0.223078\pi\)
−0.984337 + 0.176295i \(0.943589\pi\)
\(398\) −22.2154 22.2154i −0.0558176 0.0558176i
\(399\) 0 0
\(400\) 75.4641 + 43.5692i 0.188660 + 0.108923i
\(401\) 496.435 133.019i 1.23799 0.331719i 0.420305 0.907383i \(-0.361923\pi\)
0.817686 + 0.575664i \(0.195256\pi\)
\(402\) 0 0
\(403\) −105.492 + 393.700i −0.261766 + 0.976923i
\(404\) −373.626 −0.924816
\(405\) 0 0
\(406\) −118.301 + 204.904i −0.291382 + 0.504689i
\(407\) 329.527 190.252i 0.809649 0.467451i
\(408\) 0 0
\(409\) −562.838 150.812i −1.37613 0.368734i −0.506418 0.862288i \(-0.669031\pi\)
−0.869715 + 0.493554i \(0.835697\pi\)
\(410\) 16.9385 63.2154i 0.0413134 0.154184i
\(411\) 0 0
\(412\) 83.2628 + 144.215i 0.202094 + 0.350037i
\(413\) 552.846 + 319.186i 1.33861 + 0.772847i
\(414\) 0 0
\(415\) 281.569i 0.678480i
\(416\) 71.0333 19.0333i 0.170753 0.0457532i
\(417\) 0 0
\(418\) 124.459 + 464.487i 0.297749 + 1.11121i
\(419\) −391.177 + 677.538i −0.933596 + 1.61704i −0.156479 + 0.987681i \(0.550014\pi\)
−0.777118 + 0.629355i \(0.783319\pi\)
\(420\) 0 0
\(421\) −27.0352 + 27.0352i −0.0642166 + 0.0642166i −0.738486 0.674269i \(-0.764459\pi\)
0.674269 + 0.738486i \(0.264459\pi\)
\(422\) 87.7006 + 23.4993i 0.207821 + 0.0556856i
\(423\) 0 0
\(424\) 123.349 + 123.349i 0.290917 + 0.290917i
\(425\) −206.172 357.100i −0.485110 0.840235i
\(426\) 0 0
\(427\) −68.1218 + 18.2532i −0.159536 + 0.0427475i
\(428\) 204.995i 0.478960i
\(429\) 0 0
\(430\) 38.9000 0.0904652
\(431\) −162.995 608.305i −0.378178 1.41138i −0.848645 0.528963i \(-0.822581\pi\)
0.470467 0.882418i \(-0.344086\pi\)
\(432\) 0 0
\(433\) −205.928 + 118.892i −0.475583 + 0.274578i −0.718574 0.695451i \(-0.755205\pi\)
0.242991 + 0.970029i \(0.421872\pi\)
\(434\) 302.846 302.846i 0.697802 0.697802i
\(435\) 0 0
\(436\) −35.2769 + 131.655i −0.0809103 + 0.301961i
\(437\) 96.9282 + 96.9282i 0.221804 + 0.221804i
\(438\) 0 0
\(439\) 597.092 + 344.731i 1.36012 + 0.785265i 0.989639 0.143576i \(-0.0458600\pi\)
0.370480 + 0.928841i \(0.379193\pi\)
\(440\) −50.3538 + 13.4923i −0.114441 + 0.0306642i
\(441\) 0 0
\(442\) −336.133 90.0666i −0.760483 0.203771i
\(443\) 304.028 0.686294 0.343147 0.939282i \(-0.388507\pi\)
0.343147 + 0.939282i \(0.388507\pi\)
\(444\) 0 0
\(445\) −150.431 + 260.554i −0.338047 + 0.585514i
\(446\) −267.655 + 154.531i −0.600124 + 0.346481i
\(447\) 0 0
\(448\) −74.6410 20.0000i −0.166609 0.0446429i
\(449\) 73.4589 274.153i 0.163606 0.610585i −0.834608 0.550844i \(-0.814306\pi\)
0.998214 0.0597407i \(-0.0190274\pi\)
\(450\) 0 0
\(451\) −132.631 229.723i −0.294081 0.509364i
\(452\) 78.3154 + 45.2154i 0.173264 + 0.100034i
\(453\) 0 0
\(454\) 91.4256i 0.201378i
\(455\) −195.000 112.583i −0.428571 0.247436i
\(456\) 0 0
\(457\) −37.1584 138.677i −0.0813093 0.303451i 0.913280 0.407331i \(-0.133541\pi\)
−0.994590 + 0.103881i \(0.966874\pi\)
\(458\) 58.6846 101.645i 0.128132 0.221932i
\(459\) 0 0
\(460\) −10.5077 + 10.5077i −0.0228429 + 0.0228429i
\(461\) −568.435 152.312i −1.23305 0.330394i −0.417282 0.908777i \(-0.637017\pi\)
−0.815765 + 0.578383i \(0.803684\pi\)
\(462\) 0 0
\(463\) −169.599 169.599i −0.366305 0.366305i 0.499823 0.866128i \(-0.333399\pi\)
−0.866128 + 0.499823i \(0.833399\pi\)
\(464\) 34.6410 + 60.0000i 0.0746574 + 0.129310i
\(465\) 0 0
\(466\) 520.004 139.335i 1.11589 0.299001i
\(467\) 732.649i 1.56884i 0.620230 + 0.784420i \(0.287039\pi\)
−0.620230 + 0.784420i \(0.712961\pi\)
\(468\) 0 0
\(469\) 378.923 0.807938
\(470\) 6.51528 + 24.3154i 0.0138623 + 0.0517348i
\(471\) 0 0
\(472\) 161.885 93.4641i 0.342976 0.198017i
\(473\) 111.488 111.488i 0.235705 0.235705i
\(474\) 0 0
\(475\) −186.524 + 696.116i −0.392681 + 1.46551i
\(476\) 258.564 + 258.564i 0.543202 + 0.543202i
\(477\) 0 0
\(478\) −289.492 167.138i −0.605632 0.349662i
\(479\) 357.167 95.7025i 0.745651 0.199796i 0.134063 0.990973i \(-0.457198\pi\)
0.611588 + 0.791176i \(0.290531\pi\)
\(480\) 0 0
\(481\) 340.300 340.300i 0.707484 0.707484i
\(482\) −4.35383 −0.00903284
\(483\) 0 0
\(484\) 15.3538 26.5936i 0.0317228 0.0549455i
\(485\) 241.550 139.459i 0.498041 0.287544i
\(486\) 0 0
\(487\) 187.145 + 50.1455i 0.384282 + 0.102968i 0.445788 0.895139i \(-0.352924\pi\)
−0.0615056 + 0.998107i \(0.519590\pi\)
\(488\) −5.34490 + 19.9474i −0.0109527 + 0.0408759i
\(489\) 0 0
\(490\) 56.1718 + 97.2923i 0.114636 + 0.198556i
\(491\) 31.9808 + 18.4641i 0.0651339 + 0.0376051i 0.532213 0.846610i \(-0.321360\pi\)
−0.467079 + 0.884215i \(0.654694\pi\)
\(492\) 0 0
\(493\) 327.846i 0.665002i
\(494\) 304.100 + 526.717i 0.615587 + 1.06623i
\(495\) 0 0
\(496\) −32.4589 121.138i −0.0654414 0.244231i
\(497\) 519.449 899.711i 1.04517 1.81028i
\(498\) 0 0
\(499\) 462.769 462.769i 0.927393 0.927393i −0.0701438 0.997537i \(-0.522346\pi\)
0.997537 + 0.0701438i \(0.0223458\pi\)
\(500\) −162.067 43.4256i −0.324133 0.0868513i
\(501\) 0 0
\(502\) −208.708 208.708i −0.415752 0.415752i
\(503\) −179.378 310.692i −0.356617 0.617678i 0.630777 0.775965i \(-0.282736\pi\)
−0.987393 + 0.158286i \(0.949403\pi\)
\(504\) 0 0
\(505\) 323.569 86.7001i 0.640731 0.171683i
\(506\) 60.2309i 0.119033i
\(507\) 0 0
\(508\) −473.692 −0.932465
\(509\) 190.972 + 712.717i 0.375190 + 1.40023i 0.853067 + 0.521802i \(0.174740\pi\)
−0.477876 + 0.878427i \(0.658593\pi\)
\(510\) 0 0
\(511\) 797.570 460.477i 1.56080 0.901130i
\(512\) −16.0000 + 16.0000i −0.0312500 + 0.0312500i
\(513\) 0 0
\(514\) −27.1666 + 101.387i −0.0528533 + 0.197251i
\(515\) −105.573 105.573i −0.204996 0.204996i
\(516\) 0 0
\(517\) 88.3614 + 51.0155i 0.170912 + 0.0986759i
\(518\) −488.468 + 130.885i −0.942988 + 0.252673i
\(519\) 0 0
\(520\) −57.1000 + 32.9667i −0.109808 + 0.0633975i
\(521\) −156.049 −0.299518 −0.149759 0.988723i \(-0.547850\pi\)
−0.149759 + 0.988723i \(0.547850\pi\)
\(522\) 0 0
\(523\) −20.9615 + 36.3064i −0.0400794 + 0.0694196i −0.885369 0.464888i \(-0.846094\pi\)
0.845290 + 0.534308i \(0.179428\pi\)
\(524\) −363.100 + 209.636i −0.692939 + 0.400068i
\(525\) 0 0
\(526\) 33.2820 + 8.91789i 0.0632738 + 0.0169542i
\(527\) −153.597 + 573.233i −0.291456 + 1.08773i
\(528\) 0 0
\(529\) −255.915 443.258i −0.483772 0.837917i
\(530\) −135.446 78.1999i −0.255559 0.147547i
\(531\) 0 0
\(532\) 639.090i 1.20130i
\(533\) −237.233 237.233i −0.445091 0.445091i
\(534\) 0 0
\(535\) −47.5692 177.531i −0.0889144 0.331833i
\(536\) 55.4782 96.0910i 0.103504 0.179274i
\(537\) 0 0
\(538\) −175.741 + 175.741i −0.326656 + 0.326656i
\(539\) 439.832 + 117.853i 0.816015 + 0.218651i
\(540\) 0 0
\(541\) −4.44298 4.44298i −0.00821253 0.00821253i 0.702989 0.711201i \(-0.251848\pi\)
−0.711201 + 0.702989i \(0.751848\pi\)
\(542\) −197.046 341.293i −0.363553 0.629692i
\(543\) 0 0
\(544\) 103.426 27.7128i 0.190121 0.0509427i
\(545\) 122.203i 0.224225i
\(546\) 0 0
\(547\) −101.508 −0.185572 −0.0927859 0.995686i \(-0.529577\pi\)
−0.0927859 + 0.995686i \(0.529577\pi\)
\(548\) −58.9564 220.028i −0.107585 0.401511i
\(549\) 0 0
\(550\) −274.235 + 158.329i −0.498608 + 0.287872i
\(551\) −405.167 + 405.167i −0.735330 + 0.735330i
\(552\) 0 0
\(553\) −29.6891 + 110.801i −0.0536874 + 0.200364i
\(554\) 446.985 + 446.985i 0.806831 + 0.806831i
\(555\) 0 0
\(556\) −165.771 95.7077i −0.298148 0.172136i
\(557\) 636.358 170.512i 1.14247 0.306125i 0.362528 0.931973i \(-0.381914\pi\)
0.779945 + 0.625848i \(0.215247\pi\)
\(558\) 0 0
\(559\) 99.7083 172.700i 0.178369 0.308944i
\(560\) 69.2820 0.123718
\(561\) 0 0
\(562\) 5.54483 9.60392i 0.00986624 0.0170888i
\(563\) −76.8385 + 44.3628i −0.136481 + 0.0787971i −0.566686 0.823934i \(-0.691775\pi\)
0.430205 + 0.902731i \(0.358441\pi\)
\(564\) 0 0
\(565\) −78.3154 20.9845i −0.138611 0.0371408i
\(566\) 6.09292 22.7391i 0.0107649 0.0401751i
\(567\) 0 0
\(568\) −152.105 263.454i −0.267791 0.463827i
\(569\) 373.750 + 215.785i 0.656854 + 0.379235i 0.791077 0.611716i \(-0.209521\pi\)
−0.134223 + 0.990951i \(0.542854\pi\)
\(570\) 0 0
\(571\) 959.892i 1.68107i 0.541756 + 0.840536i \(0.317760\pi\)
−0.541756 + 0.840536i \(0.682240\pi\)
\(572\) −69.1666 + 258.133i −0.120921 + 0.451282i
\(573\) 0 0
\(574\) 91.2436 + 340.526i 0.158961 + 0.593250i
\(575\) −45.1333 + 78.1731i −0.0784927 + 0.135953i
\(576\) 0 0
\(577\) −313.669 + 313.669i −0.543621 + 0.543621i −0.924588 0.380968i \(-0.875591\pi\)
0.380968 + 0.924588i \(0.375591\pi\)
\(578\) −94.6340 25.3571i −0.163727 0.0438704i
\(579\) 0 0
\(580\) −43.9230 43.9230i −0.0757294 0.0757294i
\(581\) −758.372 1313.54i −1.30529 2.26082i
\(582\) 0 0
\(583\) −612.315 + 164.069i −1.05028 + 0.281423i
\(584\) 269.674i 0.461771i
\(585\) 0 0
\(586\) 264.946 0.452126
\(587\) 58.5654 + 218.569i 0.0997708 + 0.372350i 0.997700 0.0677912i \(-0.0215952\pi\)
−0.897929 + 0.440141i \(0.854929\pi\)
\(588\) 0 0
\(589\) 898.249 518.604i 1.52504 0.880483i
\(590\) −118.508 + 118.508i −0.200861 + 0.200861i
\(591\) 0 0
\(592\) −38.3257 + 143.033i −0.0647393 + 0.241610i
\(593\) −335.229 335.229i −0.565311 0.565311i 0.365500 0.930811i \(-0.380898\pi\)
−0.930811 + 0.365500i \(0.880898\pi\)
\(594\) 0 0
\(595\) −283.923 163.923i −0.477182 0.275501i
\(596\) −109.856 + 29.4359i −0.184323 + 0.0493892i
\(597\) 0 0
\(598\) 19.7166 + 73.5833i 0.0329709 + 0.123049i
\(599\) −136.908 −0.228560 −0.114280 0.993449i \(-0.536456\pi\)
−0.114280 + 0.993449i \(0.536456\pi\)
\(600\) 0 0
\(601\) 8.78461 15.2154i 0.0146167 0.0253168i −0.858625 0.512605i \(-0.828681\pi\)
0.873241 + 0.487288i \(0.162014\pi\)
\(602\) −181.471 + 104.772i −0.301447 + 0.174041i
\(603\) 0 0
\(604\) 150.368 + 40.2910i 0.248953 + 0.0667069i
\(605\) −7.12574 + 26.5936i −0.0117781 + 0.0439564i
\(606\) 0 0
\(607\) −422.300 731.445i −0.695716 1.20502i −0.969939 0.243350i \(-0.921754\pi\)
0.274222 0.961666i \(-0.411580\pi\)
\(608\) −162.067 93.5692i −0.266557 0.153897i
\(609\) 0 0
\(610\) 18.5153i 0.0303529i
\(611\) 124.650 + 33.3999i 0.204010 + 0.0546642i
\(612\) 0 0
\(613\) −163.158 608.915i −0.266164 0.993337i −0.961534 0.274685i \(-0.911426\pi\)
0.695370 0.718651i \(-0.255240\pi\)
\(614\) 375.069 649.638i 0.610861 1.05804i
\(615\) 0 0
\(616\) 198.564 198.564i 0.322344 0.322344i
\(617\) −107.014 28.6743i −0.173443 0.0464738i 0.171053 0.985262i \(-0.445283\pi\)
−0.344495 + 0.938788i \(0.611950\pi\)
\(618\) 0 0
\(619\) −111.970 111.970i −0.180888 0.180888i 0.610854 0.791743i \(-0.290826\pi\)
−0.791743 + 0.610854i \(0.790826\pi\)
\(620\) 56.2205 + 97.3768i 0.0906783 + 0.157059i
\(621\) 0 0
\(622\) −404.669 + 108.431i −0.650594 + 0.174326i
\(623\) 1620.67i 2.60139i
\(624\) 0 0
\(625\) −394.184 −0.630695
\(626\) −43.2956 161.581i −0.0691623 0.258117i
\(627\) 0 0
\(628\) −96.0089 + 55.4308i −0.152880 + 0.0882656i
\(629\) 495.482 495.482i 0.787730 0.787730i
\(630\) 0 0
\(631\) 283.101 1056.55i 0.448654 1.67440i −0.257450 0.966292i \(-0.582882\pi\)
0.706104 0.708108i \(-0.250451\pi\)
\(632\) 23.7513 + 23.7513i 0.0375812 + 0.0375812i
\(633\) 0 0
\(634\) −486.200 280.708i −0.766877 0.442757i
\(635\) 410.229 109.921i 0.646031 0.173103i
\(636\) 0 0
\(637\) 575.917 0.904108
\(638\) −251.769 −0.394622
\(639\) 0 0
\(640\) 10.1436 17.5692i 0.0158494 0.0274519i
\(641\) 353.869 204.306i 0.552058 0.318731i −0.197894 0.980223i \(-0.563410\pi\)
0.749952 + 0.661493i \(0.230077\pi\)
\(642\) 0 0
\(643\) −432.661 115.931i −0.672879 0.180297i −0.0938279 0.995588i \(-0.529910\pi\)
−0.579052 + 0.815291i \(0.696577\pi\)
\(644\) 20.7180 77.3205i 0.0321708 0.120063i
\(645\) 0 0
\(646\) 442.774 + 766.908i 0.685409 + 1.18716i
\(647\) 279.588 + 161.420i 0.432131 + 0.249491i 0.700254 0.713894i \(-0.253070\pi\)
−0.268123 + 0.963385i \(0.586403\pi\)
\(648\) 0 0
\(649\) 679.292i 1.04668i
\(650\) −283.200 + 283.200i −0.435692 + 0.435692i
\(651\) 0 0
\(652\) −105.894 395.200i −0.162413 0.606135i
\(653\) −510.424 + 884.081i −0.781660 + 1.35388i 0.149314 + 0.988790i \(0.452294\pi\)
−0.930974 + 0.365086i \(0.881040\pi\)
\(654\) 0 0
\(655\) 265.808 265.808i 0.405813 0.405813i
\(656\) 99.7128 + 26.7180i 0.152001 + 0.0407286i
\(657\) 0 0
\(658\) −95.8846 95.8846i −0.145721 0.145721i
\(659\) 113.842 + 197.181i 0.172750 + 0.299212i 0.939380 0.342877i \(-0.111401\pi\)
−0.766630 + 0.642089i \(0.778068\pi\)
\(660\) 0 0
\(661\) 146.181 39.1692i 0.221152 0.0592575i −0.146542 0.989205i \(-0.546814\pi\)
0.367693 + 0.929947i \(0.380148\pi\)
\(662\) 201.247i 0.303999i
\(663\) 0 0
\(664\) −444.133 −0.668875
\(665\) 148.301 + 553.468i 0.223009 + 0.832283i
\(666\) 0 0
\(667\) −62.1539 + 35.8846i −0.0931843 + 0.0538000i
\(668\) −228.862 + 228.862i −0.342607 + 0.342607i
\(669\) 0 0
\(670\) −25.7475 + 96.0910i −0.0384291 + 0.143419i
\(671\) −53.0653 53.0653i −0.0790838 0.0790838i
\(672\) 0 0
\(673\) −613.138 353.996i −0.911052 0.525996i −0.0302828 0.999541i \(-0.509641\pi\)
−0.880770 + 0.473545i \(0.842974\pi\)
\(674\) −474.704 + 127.197i −0.704309 + 0.188719i
\(675\) 0 0
\(676\) 338.000i 0.500000i
\(677\) 754.592 1.11461 0.557306 0.830307i \(-0.311835\pi\)
0.557306 + 0.830307i \(0.311835\pi\)
\(678\) 0 0
\(679\) −751.231 + 1301.17i −1.10638 + 1.91630i
\(680\) −83.1384 + 48.0000i −0.122262 + 0.0705882i
\(681\) 0 0
\(682\) 440.214 + 117.955i 0.645475 + 0.172955i
\(683\) 37.2168 138.895i 0.0544901 0.203360i −0.933314 0.359061i \(-0.883097\pi\)
0.987804 + 0.155701i \(0.0497636\pi\)
\(684\) 0 0
\(685\) 102.115 + 176.869i 0.149074 + 0.258203i
\(686\) 55.5866 + 32.0929i 0.0810300 + 0.0467827i
\(687\) 0 0
\(688\) 61.3590i 0.0891846i
\(689\) −694.350 + 400.883i −1.00776 + 0.581833i
\(690\) 0 0
\(691\) 140.931 + 525.961i 0.203952 + 0.761159i 0.989766 + 0.142697i \(0.0455774\pi\)
−0.785815 + 0.618462i \(0.787756\pi\)
\(692\) 268.459 464.985i 0.387946 0.671943i
\(693\) 0 0
\(694\) 437.703 437.703i 0.630695 0.630695i
\(695\) 165.771 + 44.4181i 0.238519 + 0.0639109i
\(696\) 0 0
\(697\) −345.415 345.415i −0.495574 0.495574i
\(698\) 316.897 + 548.881i 0.454007 + 0.786363i
\(699\) 0 0
\(700\) 406.506 108.923i 0.580723 0.155604i
\(701\) 568.344i 0.810761i −0.914148 0.405381i \(-0.867139\pi\)
0.914148 0.405381i \(-0.132861\pi\)
\(702\) 0 0
\(703\) −1224.68 −1.74207
\(704\) −21.2820 79.4256i −0.0302302 0.112820i
\(705\) 0 0
\(706\) 718.865 415.037i 1.01822 0.587871i
\(707\) −1275.95 + 1275.95i −1.80475 + 1.80475i
\(708\) 0 0
\(709\) 94.9538 354.372i 0.133926 0.499820i −0.866074 0.499916i \(-0.833364\pi\)
1.00000 9.64632e-5i \(3.07052e-5\pi\)
\(710\) 192.862 + 192.862i 0.271636 + 0.271636i
\(711\) 0 0
\(712\) −410.985 237.282i −0.577225 0.333261i
\(713\) 125.487 33.6242i 0.175999 0.0471587i
\(714\) 0 0
\(715\) 239.600i 0.335105i
\(716\) −571.559 −0.798267
\(717\) 0 0
\(718\) −64.2769 + 111.331i −0.0895221 + 0.155057i
\(719\) −228.215 + 131.760i −0.317407 + 0.183255i −0.650236 0.759732i \(-0.725330\pi\)
0.332829 + 0.942987i \(0.391997\pi\)
\(720\) 0 0
\(721\) 776.852 + 208.157i 1.07747 + 0.288706i
\(722\) 268.443 1001.84i 0.371805 1.38759i
\(723\) 0 0
\(724\) 177.646 + 307.692i 0.245368 + 0.424989i
\(725\) −326.769 188.660i −0.450716 0.260221i
\(726\) 0 0
\(727\) 878.415i 1.20827i 0.796880 + 0.604137i \(0.206482\pi\)
−0.796880 + 0.604137i \(0.793518\pi\)
\(728\) 177.583 307.583i 0.243933 0.422505i
\(729\) 0 0
\(730\) 62.5781 + 233.545i 0.0857235 + 0.319924i
\(731\) 145.177 251.454i 0.198600 0.343986i
\(732\) 0 0
\(733\) −146.627 + 146.627i −0.200037 + 0.200037i −0.800016 0.599979i \(-0.795176\pi\)
0.599979 + 0.800016i \(0.295176\pi\)
\(734\) −297.499 79.7147i −0.405312 0.108603i
\(735\) 0 0
\(736\) −16.5744 16.5744i −0.0225195 0.0225195i
\(737\) 201.606 + 349.192i 0.273550 + 0.473802i
\(738\) 0 0
\(739\) 621.762 166.601i 0.841356 0.225441i 0.187694 0.982227i \(-0.439899\pi\)
0.653662 + 0.756787i \(0.273232\pi\)
\(740\) 132.764i 0.179411i
\(741\) 0 0
\(742\) 842.487 1.13543
\(743\) 3.52835 + 13.1680i 0.00474879 + 0.0177227i 0.968260 0.249947i \(-0.0804131\pi\)
−0.963511 + 0.267670i \(0.913746\pi\)
\(744\) 0 0
\(745\) 88.3078 50.9845i 0.118534 0.0684356i
\(746\) 219.606 219.606i 0.294378 0.294378i
\(747\) 0 0
\(748\) −100.708 + 375.846i −0.134636 + 0.502468i
\(749\) 700.070 + 700.070i 0.934673 + 0.934673i
\(750\) 0 0
\(751\) −138.631 80.0385i −0.184595 0.106576i 0.404855 0.914381i \(-0.367322\pi\)
−0.589450 + 0.807805i \(0.700655\pi\)
\(752\) −38.3538 + 10.2769i −0.0510024 + 0.0136661i
\(753\) 0 0
\(754\) −307.583 + 82.4167i −0.407935 + 0.109306i
\(755\) −139.572 −0.184864
\(756\) 0 0
\(757\) 733.692 1270.79i 0.969210 1.67872i 0.271360 0.962478i \(-0.412527\pi\)
0.697850 0.716244i \(-0.254140\pi\)
\(758\) 237.476 137.107i 0.313293 0.180880i
\(759\) 0 0
\(760\) 162.067 + 43.4256i 0.213246 + 0.0571390i
\(761\) −47.3514 + 176.718i −0.0622227 + 0.232218i −0.990033 0.140833i \(-0.955022\pi\)
0.927811 + 0.373051i \(0.121688\pi\)
\(762\) 0 0
\(763\) 329.138 + 570.083i 0.431373 + 0.747160i
\(764\) −341.769 197.321i −0.447342 0.258273i
\(765\) 0 0
\(766\) 275.503i 0.359664i
\(767\) 222.367 + 829.883i 0.289917 + 1.08199i
\(768\) 0 0
\(769\) 351.866 + 1313.18i 0.457563 + 1.70765i 0.680442 + 0.732802i \(0.261788\pi\)
−0.222879 + 0.974846i \(0.571546\pi\)
\(770\) −125.885 + 218.038i −0.163486 + 0.283167i
\(771\) 0 0
\(772\) 29.6987 29.6987i 0.0384699 0.0384699i
\(773\) −945.606 253.374i −1.22329 0.327781i −0.411329 0.911487i \(-0.634935\pi\)
−0.811965 + 0.583706i \(0.801602\pi\)
\(774\) 0 0
\(775\) 482.962 + 482.962i 0.623177 + 0.623177i
\(776\) 219.976 + 381.009i 0.283474 + 0.490991i
\(777\) 0 0
\(778\) −24.2487 + 6.49742i −0.0311680 + 0.00835144i
\(779\) 853.759i 1.09597i
\(780\) 0 0
\(781\) 1105.49 1.41548
\(782\) 28.7077 + 107.138i 0.0367106 + 0.137006i
\(783\) 0 0
\(784\) −153.464 + 88.6025i −0.195745 + 0.113013i
\(785\) 70.2834 70.2834i 0.0895330 0.0895330i
\(786\) 0 0
\(787\) 30.5460 113.999i 0.0388132 0.144853i −0.943800 0.330517i \(-0.892777\pi\)
0.982613 + 0.185664i \(0.0594436\pi\)
\(788\) 213.913 + 213.913i 0.271463 + 0.271463i
\(789\) 0 0
\(790\) −26.0807 15.0577i −0.0330136 0.0190604i
\(791\) 421.865 113.038i 0.533332 0.142906i
\(792\) 0 0
\(793\) −82.2001 47.4583i −0.103657 0.0598465i
\(794\) 477.286 0.601116
\(795\) 0 0
\(796\) −22.2154 + 38.4782i −0.0279088 + 0.0483394i
\(797\) −491.138 + 283.559i −0.616234 + 0.355783i −0.775401 0.631469i \(-0.782452\pi\)
0.159167 + 0.987252i \(0.449119\pi\)
\(798\) 0 0
\(799\) 181.492 + 48.6307i 0.227149 + 0.0608645i
\(800\) 31.8949 119.033i 0.0398686 0.148792i
\(801\) 0 0
\(802\) −363.415 629.454i −0.453136 0.784855i
\(803\) 848.696 + 489.995i 1.05691 + 0.610205i
\(804\) 0 0
\(805\) 71.7691i 0.0891542i
\(806\) 576.417 0.715157
\(807\) 0 0
\(808\) 136.756 + 510.382i 0.169253 + 0.631661i
\(809\) 43.7231 75.7307i 0.0540459 0.0936102i −0.837737 0.546074i \(-0.816122\pi\)
0.891783 + 0.452464i \(0.149455\pi\)
\(810\) 0 0
\(811\) −519.193 + 519.193i −0.640189 + 0.640189i −0.950602 0.310413i \(-0.899533\pi\)
0.310413 + 0.950602i \(0.399533\pi\)
\(812\) 323.205 + 86.6025i 0.398036 + 0.106653i
\(813\) 0 0
\(814\) −380.505 380.505i −0.467451 0.467451i
\(815\) 183.413 + 317.681i 0.225047 + 0.389792i
\(816\) 0 0
\(817\) −490.174 + 131.342i −0.599968 + 0.160761i
\(818\) 824.053i 1.00740i
\(819\) 0 0
\(820\) −92.5538 −0.112870
\(821\) −148.881 555.631i −0.181341 0.676773i −0.995384 0.0959692i \(-0.969405\pi\)
0.814044 0.580804i \(-0.197262\pi\)
\(822\) 0 0
\(823\) −285.069 + 164.585i −0.346378 + 0.199981i −0.663089 0.748541i \(-0.730755\pi\)
0.316711 + 0.948522i \(0.397422\pi\)
\(824\) 166.526 166.526i 0.202094 0.202094i
\(825\) 0 0
\(826\) 233.660 872.032i 0.282882 1.05573i
\(827\) −514.410 514.410i −0.622020 0.622020i 0.324028 0.946048i \(-0.394963\pi\)
−0.946048 + 0.324028i \(0.894963\pi\)
\(828\) 0 0
\(829\) −816.742 471.546i −0.985213 0.568813i −0.0813731 0.996684i \(-0.525931\pi\)
−0.903840 + 0.427871i \(0.859264\pi\)
\(830\) 384.631 103.061i 0.463410 0.124170i
\(831\) 0 0
\(832\) −52.0000 90.0666i −0.0625000 0.108253i
\(833\) 838.543 1.00665
\(834\) 0 0
\(835\) 145.092 251.307i 0.173763 0.300967i
\(836\) 588.946 340.028i 0.704481 0.406732i
\(837\) 0 0
\(838\) 1068.72 + 286.361i 1.27532 + 0.341720i
\(839\) 203.536 759.606i 0.242593 0.905371i −0.731984 0.681321i \(-0.761406\pi\)
0.974578 0.224050i \(-0.0719278\pi\)
\(840\) 0 0
\(841\) 270.500 + 468.520i 0.321641 + 0.557098i
\(842\) 46.8264 + 27.0352i 0.0556132 + 0.0321083i
\(843\) 0 0
\(844\) 128.403i 0.152136i
\(845\) −78.4332 292.717i −0.0928203 0.346410i
\(846\) 0 0
\(847\) −38.3846 143.253i −0.0453183 0.169130i
\(848\) 123.349 213.646i 0.145458 0.251941i
\(849\) 0 0
\(850\) −412.344 + 412.344i −0.485110 + 0.485110i
\(851\) −148.168 39.7015i −0.174110 0.0466528i
\(852\) 0 0
\(853\) 472.527 + 472.527i 0.553960 + 0.553960i 0.927581 0.373622i \(-0.121884\pi\)
−0.373622 + 0.927581i \(0.621884\pi\)
\(854\) 49.8686 + 86.3750i 0.0583941 + 0.101142i
\(855\) 0 0
\(856\) 280.028 75.0333i 0.327136 0.0876557i
\(857\) 436.543i 0.509386i −0.967022 0.254693i \(-0.918026\pi\)
0.967022 0.254693i \(-0.0819743\pi\)
\(858\) 0 0
\(859\) −1238.40 −1.44167 −0.720837 0.693104i \(-0.756243\pi\)
−0.720837 + 0.693104i \(0.756243\pi\)
\(860\) −14.2384 53.1384i −0.0165563 0.0617889i
\(861\) 0 0
\(862\) −771.300 + 445.310i −0.894779 + 0.516601i
\(863\) −729.373 + 729.373i −0.845160 + 0.845160i −0.989525 0.144365i \(-0.953886\pi\)
0.144365 + 0.989525i \(0.453886\pi\)
\(864\) 0 0
\(865\) −124.592 + 464.985i −0.144037 + 0.537554i
\(866\) 237.785 + 237.785i 0.274578 + 0.274578i
\(867\) 0 0
\(868\) −524.545 302.846i −0.604314 0.348901i
\(869\) −117.904 + 31.5922i −0.135678 + 0.0363547i
\(870\) 0 0
\(871\) 360.608 + 360.608i 0.414016 + 0.414016i
\(872\) 192.756 0.221051
\(873\) 0 0
\(874\) 96.9282 167.885i 0.110902 0.192088i
\(875\) −701.769 + 405.167i −0.802022 + 0.463048i
\(876\) 0 0
\(877\) 1314.21 + 352.142i 1.49853 + 0.401530i 0.912607 0.408837i \(-0.134066\pi\)
0.585923 + 0.810367i \(0.300732\pi\)
\(878\) 252.361 941.824i 0.287427 1.07269i
\(879\) 0 0
\(880\) 36.8616 + 63.8461i 0.0418881 + 0.0725524i
\(881\) −1354.17 781.832i −1.53709 0.887437i −0.999007 0.0445423i \(-0.985817\pi\)
−0.538079 0.842895i \(-0.680850\pi\)
\(882\) 0 0
\(883\) 452.723i 0.512710i 0.966583 + 0.256355i \(0.0825216\pi\)
−0.966583 + 0.256355i \(0.917478\pi\)
\(884\) 492.133i 0.556712i
\(885\) 0 0
\(886\) −111.282 415.310i −0.125600 0.468747i
\(887\) 455.469 788.896i 0.513494 0.889398i −0.486383 0.873745i \(-0.661684\pi\)
0.999877 0.0156524i \(-0.00498250\pi\)
\(888\) 0 0
\(889\) −1617.69 + 1617.69i −1.81967 + 1.81967i
\(890\) 410.985 + 110.123i 0.461780 + 0.123734i
\(891\) 0 0
\(892\) 309.061 + 309.061i 0.346481 + 0.346481i
\(893\) −164.196 284.396i −0.183870 0.318473i
\(894\) 0 0
\(895\) 494.985 132.631i 0.553055 0.148191i
\(896\) 109.282i 0.121967i
\(897\) 0 0
\(898\) −401.387 −0.446979
\(899\) 140.551 + 524.545i 0.156342 + 0.583476i
\(900\) 0 0
\(901\) −1010.98 + 583.692i −1.12207 + 0.647827i
\(902\) −265.261 + 265.261i −0.294081 + 0.294081i
\(903\) 0 0
\(904\) 33.1000 123.531i 0.0366150 0.136649i
\(905\) −225.246 225.246i −0.248891 0.248891i
\(906\) 0 0
\(907\) 385.501 + 222.569i 0.425029 + 0.245391i 0.697227 0.716851i \(-0.254417\pi\)
−0.272198 + 0.962241i \(0.587750\pi\)
\(908\) 124.890 33.4641i 0.137544 0.0368547i
\(909\) 0 0
\(910\) −82.4167 + 307.583i −0.0905678 + 0.338004i
\(911\) −717.233 −0.787303 −0.393652 0.919260i \(-0.628788\pi\)
−0.393652 + 0.919260i \(0.628788\pi\)
\(912\) 0 0
\(913\) 806.985 1397.74i 0.883882 1.53093i
\(914\) −175.835 + 101.519i −0.192380 + 0.111071i
\(915\) 0 0
\(916\) −160.329 42.9601i −0.175032 0.0468997i
\(917\) −524.090 + 1955.93i −0.571526 + 2.13297i
\(918\) 0 0
\(919\) −371.569 643.577i −0.404319 0.700301i 0.589923 0.807460i \(-0.299158\pi\)
−0.994242 + 0.107158i \(0.965825\pi\)
\(920\) 18.1999 + 10.5077i 0.0197825 + 0.0114214i
\(921\) 0 0
\(922\) 832.246i 0.902653i
\(923\) 1350.57 361.883i 1.46324 0.392073i
\(924\) 0 0
\(925\) −208.727 778.981i −0.225651 0.842142i
\(926\) −169.599 + 293.755i −0.183153 + 0.317230i
\(927\) 0 0
\(928\) 69.2820 69.2820i 0.0746574 0.0746574i
\(929\) −1424.14 381.597i −1.53298 0.410761i −0.608992 0.793176i \(-0.708426\pi\)
−0.923991 + 0.382415i \(0.875092\pi\)
\(930\) 0 0
\(931\) −1036.31 1036.31i −1.11311 1.11311i
\(932\) −380.669 659.338i −0.408443 0.707445i
\(933\) 0 0
\(934\) 1000.82 268.168i 1.07154 0.287118i
\(935\) 348.862i 0.373114i
\(936\) 0 0
\(937\) −172.477 −0.184073 −0.0920367 0.995756i \(-0.529338\pi\)
−0.0920367 + 0.995756i \(0.529338\pi\)
\(938\) −138.695 517.619i −0.147863 0.551832i
\(939\) 0 0
\(940\) 30.8306 17.8001i 0.0327985 0.0189362i
\(941\) −145.055 + 145.055i −0.154150 + 0.154150i −0.779969 0.625819i \(-0.784765\pi\)
0.625819 + 0.779969i \(0.284765\pi\)
\(942\) 0 0
\(943\) −27.6771 + 103.292i −0.0293501 + 0.109536i
\(944\) −186.928 186.928i −0.198017 0.198017i
\(945\) 0 0
\(946\) −193.104 111.488i −0.204127 0.117853i
\(947\) 665.902 178.428i 0.703170 0.188414i 0.110520 0.993874i \(-0.464748\pi\)
0.592650 + 0.805460i \(0.298082\pi\)
\(948\) 0 0
\(949\) 1197.24 + 320.800i 1.26158 + 0.338040i
\(950\) 1019.18 1.07283
\(951\) 0 0
\(952\) 258.564 447.846i 0.271601 0.470427i
\(953\) 1044.96 603.309i 1.09650 0.633063i 0.161198 0.986922i \(-0.448464\pi\)
0.935299 + 0.353859i \(0.115131\pi\)
\(954\) 0 0
\(955\) 341.769 + 91.5768i 0.357873 + 0.0958919i
\(956\) −122.354 + 456.631i −0.127985 + 0.477647i
\(957\) 0 0
\(958\) −261.464 452.869i −0.272927 0.472723i
\(959\) −952.750 550.070i −0.993483 0.573588i
\(960\) 0 0
\(961\) 22.0065i 0.0228996i
\(962\) −589.417 340.300i −0.612699 0.353742i
\(963\) 0 0
\(964\) 1.59361 + 5.94744i 0.00165312 + 0.00616954i
\(965\) −18.8282 + 32.6115i −0.0195111 + 0.0337943i
\(966\) 0 0
\(967\) −169.831 + 169.831i −0.175626 + 0.175626i −0.789446 0.613820i \(-0.789632\pi\)
0.613820 + 0.789446i \(0.289632\pi\)
\(968\) −41.9474 11.2398i −0.0433341 0.0116113i
\(969\) 0 0
\(970\) −278.918 278.918i −0.287544 0.287544i
\(971\) 373.850 + 647.527i 0.385015 + 0.666866i 0.991771 0.128022i \(-0.0408628\pi\)
−0.606756 + 0.794888i \(0.707529\pi\)
\(972\) 0 0
\(973\) −892.965 + 239.269i −0.917744 + 0.245909i
\(974\) 274.000i 0.281314i
\(975\) 0 0
\(976\) 29.2051 0.0299232
\(977\) 55.9897 + 208.956i 0.0573078 + 0.213876i 0.988642 0.150290i \(-0.0480208\pi\)
−0.931334 + 0.364166i \(0.881354\pi\)
\(978\) 0 0
\(979\) 1493.51 862.277i 1.52554 0.880773i
\(980\) 112.344 112.344i 0.114636 0.114636i
\(981\) 0 0
\(982\) 13.5167 50.4449i 0.0137644 0.0513695i
\(983\) −1367.93 1367.93i −1.39158 1.39158i −0.821783 0.569801i \(-0.807020\pi\)
−0.569801 0.821783i \(-0.692980\pi\)
\(984\) 0 0
\(985\) −234.892 135.615i −0.238470 0.137680i
\(986\) −447.846 + 120.000i −0.454205 + 0.121704i
\(987\) 0 0
\(988\) 608.200 608.200i 0.615587 0.615587i
\(989\) −63.5617 −0.0642686
\(990\) 0 0
\(991\) 935.631 1620.56i 0.944128 1.63528i 0.186640 0.982428i \(-0.440240\pi\)
0.757488 0.652849i \(-0.226426\pi\)
\(992\) −153.597 + 88.6795i −0.154836 + 0.0893946i
\(993\) 0 0
\(994\) −1419.16 380.263i −1.42773 0.382558i
\(995\) 10.3102 38.4782i 0.0103620 0.0386715i
\(996\) 0 0
\(997\) −768.584 1331.23i −0.770897 1.33523i −0.937072 0.349137i \(-0.886475\pi\)
0.166175 0.986096i \(-0.446858\pi\)
\(998\) −801.540 462.769i −0.803146 0.463697i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 234.3.bb.c.19.1 4
3.2 odd 2 78.3.l.a.19.1 4
13.11 odd 12 inner 234.3.bb.c.37.1 4
39.11 even 12 78.3.l.a.37.1 yes 4
39.17 odd 6 1014.3.f.d.577.2 4
39.20 even 12 1014.3.f.e.775.2 4
39.32 even 12 1014.3.f.d.775.2 4
39.35 odd 6 1014.3.f.e.577.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
78.3.l.a.19.1 4 3.2 odd 2
78.3.l.a.37.1 yes 4 39.11 even 12
234.3.bb.c.19.1 4 1.1 even 1 trivial
234.3.bb.c.37.1 4 13.11 odd 12 inner
1014.3.f.d.577.2 4 39.17 odd 6
1014.3.f.d.775.2 4 39.32 even 12
1014.3.f.e.577.2 4 39.35 odd 6
1014.3.f.e.775.2 4 39.20 even 12