Properties

Label 234.3
Level 234
Weight 3
Dimension 786
Nonzero newspaces 15
Newform subspaces 32
Sturm bound 9072
Trace bound 11

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 234 = 2 \cdot 3^{2} \cdot 13 \)
Weight: \( k \) = \( 3 \)
Nonzero newspaces: \( 15 \)
Newform subspaces: \( 32 \)
Sturm bound: \(9072\)
Trace bound: \(11\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(\Gamma_1(234))\).

Total New Old
Modular forms 3216 786 2430
Cusp forms 2832 786 2046
Eisenstein series 384 0 384

Trace form

\( 786 q + 36 q^{5} + 24 q^{6} - 8 q^{7} - 12 q^{8} - 24 q^{9} - 54 q^{10} - 48 q^{11} - 24 q^{12} + 18 q^{13} - 48 q^{14} - 36 q^{15} + 16 q^{16} + 36 q^{17} + 48 q^{18} + 184 q^{19} + 96 q^{20} + 84 q^{21}+ \cdots - 2700 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{3}^{\mathrm{new}}(\Gamma_1(234))\)

We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
234.3.c \(\chi_{234}(53, \cdot)\) 234.3.c.a 4 1
234.3.c.b 4
234.3.d \(\chi_{234}(233, \cdot)\) 234.3.d.a 4 1
234.3.d.b 4
234.3.d.c 4
234.3.i \(\chi_{234}(73, \cdot)\) 234.3.i.a 2 2
234.3.i.b 4
234.3.i.c 6
234.3.i.d 6
234.3.i.e 8
234.3.k \(\chi_{234}(35, \cdot)\) 234.3.k.a 4 2
234.3.k.b 12
234.3.m \(\chi_{234}(23, \cdot)\) 234.3.m.a 56 2
234.3.n \(\chi_{234}(77, \cdot)\) 234.3.n.a 56 2
234.3.o \(\chi_{234}(95, \cdot)\) 234.3.o.a 56 2
234.3.q \(\chi_{234}(29, \cdot)\) 234.3.q.a 56 2
234.3.r \(\chi_{234}(131, \cdot)\) 234.3.r.a 48 2
234.3.u \(\chi_{234}(185, \cdot)\) 234.3.u.a 56 2
234.3.v \(\chi_{234}(17, \cdot)\) 234.3.v.a 16 2
234.3.w \(\chi_{234}(31, \cdot)\) 234.3.w.a 56 4
234.3.w.b 56
234.3.ba \(\chi_{234}(7, \cdot)\) 234.3.ba.a 56 4
234.3.ba.b 56
234.3.bb \(\chi_{234}(19, \cdot)\) 234.3.bb.a 4 4
234.3.bb.b 4
234.3.bb.c 4
234.3.bb.d 8
234.3.bb.e 8
234.3.bb.f 8
234.3.bb.g 8
234.3.bc \(\chi_{234}(85, \cdot)\) 234.3.bc.a 56 4
234.3.bc.b 56

Decomposition of \(S_{3}^{\mathrm{old}}(\Gamma_1(234))\) into lower level spaces

\( S_{3}^{\mathrm{old}}(\Gamma_1(234)) \cong \) \(S_{3}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 12}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 8}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(9))\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(13))\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(18))\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(26))\)\(^{\oplus 3}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(39))\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(78))\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(117))\)\(^{\oplus 2}\)