Properties

Label 234.2.z.a
Level $234$
Weight $2$
Character orbit 234.z
Analytic conductor $1.868$
Analytic rank $0$
Dimension $56$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [234,2,Mod(41,234)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(234, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([10, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("234.41");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 234 = 2 \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 234.z (of order \(12\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.86849940730\)
Analytic rank: \(0\)
Dimension: \(56\)
Relative dimension: \(14\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

$q$-expansion

The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 56 q - 8 q^{7}+O(q^{10}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q) = \) \( 56 q - 8 q^{7} - 24 q^{11} + 28 q^{16} - 8 q^{19} - 24 q^{21} + 36 q^{27} - 4 q^{28} - 24 q^{30} - 4 q^{31} + 60 q^{33} - 24 q^{35} - 4 q^{37} + 36 q^{38} - 48 q^{41} - 36 q^{42} - 84 q^{45} - 36 q^{47} - 24 q^{50} + 8 q^{52} - 36 q^{54} + 36 q^{57} + 24 q^{60} - 48 q^{63} - 36 q^{65} + 28 q^{67} + 84 q^{69} - 24 q^{71} - 24 q^{72} + 28 q^{73} + 4 q^{76} + 24 q^{77} - 60 q^{78} - 24 q^{79} + 24 q^{81} - 96 q^{83} - 72 q^{85} + 4 q^{91} - 24 q^{92} - 36 q^{93} - 52 q^{97} + 48 q^{98} + 60 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
41.1 −0.965926 + 0.258819i −1.71677 + 0.229570i 0.866025 0.500000i −2.88241 + 0.772339i 1.59885 0.666081i 2.05205 + 2.05205i −0.707107 + 0.707107i 2.89459 0.788239i 2.58430 1.49204i
41.2 −0.965926 + 0.258819i −0.958654 1.44256i 0.866025 0.500000i 3.32591 0.891175i 1.29935 + 1.14529i −0.0201488 0.0201488i −0.707107 + 0.707107i −1.16197 + 2.76583i −2.98193 + 1.72162i
41.3 −0.965926 + 0.258819i −0.840145 1.51465i 0.866025 0.500000i −1.83272 + 0.491075i 1.20354 + 1.24559i −1.44971 1.44971i −0.707107 + 0.707107i −1.58831 + 2.54505i 1.64317 0.948684i
41.4 −0.965926 + 0.258819i −0.679534 + 1.59318i 0.866025 0.500000i −1.16856 + 0.313114i 0.244033 1.71477i −3.18466 3.18466i −0.707107 + 0.707107i −2.07647 2.16525i 1.04770 0.604889i
41.5 −0.965926 + 0.258819i 0.880877 + 1.49133i 0.866025 0.500000i 1.93052 0.517281i −1.23685 1.21252i 1.87601 + 1.87601i −0.707107 + 0.707107i −1.44811 + 2.62735i −1.73086 + 0.999310i
41.6 −0.965926 + 0.258819i 1.60665 0.647043i 0.866025 0.500000i 2.84756 0.763001i −1.38444 + 1.04083i −1.37958 1.37958i −0.707107 + 0.707107i 2.16267 2.07915i −2.55305 + 1.47400i
41.7 −0.965926 + 0.258819i 1.70757 + 0.290170i 0.866025 0.500000i −2.22031 + 0.594929i −1.72449 + 0.161669i 1.10604 + 1.10604i −0.707107 + 0.707107i 2.83160 + 0.990974i 1.99067 1.14931i
41.8 0.965926 0.258819i −1.70264 + 0.317829i 0.866025 0.500000i 1.48652 0.398313i −1.56236 + 0.747675i 1.01155 + 1.01155i 0.707107 0.707107i 2.79797 1.08230i 1.33278 0.769482i
41.9 0.965926 0.258819i −1.09566 1.34146i 0.866025 0.500000i −3.60132 + 0.964970i −1.40553 1.01217i −2.35233 2.35233i 0.707107 0.707107i −0.599043 + 2.93958i −3.22885 + 1.86418i
41.10 0.965926 0.258819i −0.125978 1.72746i 0.866025 0.500000i 1.13912 0.305227i −0.568786 1.63600i 2.54027 + 2.54027i 0.707107 0.707107i −2.96826 + 0.435246i 1.02131 0.589653i
41.11 0.965926 0.258819i 0.0473290 + 1.73140i 0.866025 0.500000i 3.94593 1.05731i 0.493837 + 1.66016i −2.29775 2.29775i 0.707107 0.707107i −2.99552 + 0.163891i 3.53782 2.04256i
41.12 0.965926 0.258819i 0.161445 + 1.72451i 0.866025 0.500000i −2.21510 + 0.593533i 0.602280 + 1.62396i 2.94637 + 2.94637i 0.707107 0.707107i −2.94787 + 0.556826i −1.98600 + 1.14662i
41.13 0.965926 0.258819i 1.10250 1.33585i 0.866025 0.500000i −0.00707659 + 0.00189617i 0.719190 1.57568i −2.39172 2.39172i 0.707107 0.707107i −0.568989 2.94555i −0.00634470 + 0.00366311i
41.14 0.965926 0.258819i 1.61301 + 0.631032i 0.866025 0.500000i −0.748082 + 0.200448i 1.72137 + 0.192053i −0.456400 0.456400i 0.707107 0.707107i 2.20360 + 2.03572i −0.670712 + 0.387236i
137.1 −0.965926 0.258819i −1.71677 0.229570i 0.866025 + 0.500000i −2.88241 0.772339i 1.59885 + 0.666081i 2.05205 2.05205i −0.707107 0.707107i 2.89459 + 0.788239i 2.58430 + 1.49204i
137.2 −0.965926 0.258819i −0.958654 + 1.44256i 0.866025 + 0.500000i 3.32591 + 0.891175i 1.29935 1.14529i −0.0201488 + 0.0201488i −0.707107 0.707107i −1.16197 2.76583i −2.98193 1.72162i
137.3 −0.965926 0.258819i −0.840145 + 1.51465i 0.866025 + 0.500000i −1.83272 0.491075i 1.20354 1.24559i −1.44971 + 1.44971i −0.707107 0.707107i −1.58831 2.54505i 1.64317 + 0.948684i
137.4 −0.965926 0.258819i −0.679534 1.59318i 0.866025 + 0.500000i −1.16856 0.313114i 0.244033 + 1.71477i −3.18466 + 3.18466i −0.707107 0.707107i −2.07647 + 2.16525i 1.04770 + 0.604889i
137.5 −0.965926 0.258819i 0.880877 1.49133i 0.866025 + 0.500000i 1.93052 + 0.517281i −1.23685 + 1.21252i 1.87601 1.87601i −0.707107 0.707107i −1.44811 2.62735i −1.73086 0.999310i
137.6 −0.965926 0.258819i 1.60665 + 0.647043i 0.866025 + 0.500000i 2.84756 + 0.763001i −1.38444 1.04083i −1.37958 + 1.37958i −0.707107 0.707107i 2.16267 + 2.07915i −2.55305 1.47400i
See all 56 embeddings
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 41.14
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
117.bc even 12 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 234.2.z.a yes 56
3.b odd 2 1 702.2.bc.a 56
9.c even 3 1 702.2.bb.a 56
9.d odd 6 1 234.2.y.a 56
13.f odd 12 1 234.2.y.a 56
39.k even 12 1 702.2.bb.a 56
117.bb odd 12 1 702.2.bc.a 56
117.bc even 12 1 inner 234.2.z.a yes 56
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
234.2.y.a 56 9.d odd 6 1
234.2.y.a 56 13.f odd 12 1
234.2.z.a yes 56 1.a even 1 1 trivial
234.2.z.a yes 56 117.bc even 12 1 inner
702.2.bb.a 56 9.c even 3 1
702.2.bb.a 56 39.k even 12 1
702.2.bc.a 56 3.b odd 2 1
702.2.bc.a 56 117.bb odd 12 1

Hecke kernels

This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(234, [\chi])\).