Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [234,2,Mod(41,234)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(234, base_ring=CyclotomicField(12))
chi = DirichletCharacter(H, H._module([10, 1]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("234.41");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 234 = 2 \cdot 3^{2} \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 234.z (of order \(12\), degree \(4\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(1.86849940730\) |
Analytic rank: | \(0\) |
Dimension: | \(56\) |
Relative dimension: | \(14\) over \(\Q(\zeta_{12})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{12}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
41.1 | −0.965926 | + | 0.258819i | −1.71677 | + | 0.229570i | 0.866025 | − | 0.500000i | −2.88241 | + | 0.772339i | 1.59885 | − | 0.666081i | 2.05205 | + | 2.05205i | −0.707107 | + | 0.707107i | 2.89459 | − | 0.788239i | 2.58430 | − | 1.49204i |
41.2 | −0.965926 | + | 0.258819i | −0.958654 | − | 1.44256i | 0.866025 | − | 0.500000i | 3.32591 | − | 0.891175i | 1.29935 | + | 1.14529i | −0.0201488 | − | 0.0201488i | −0.707107 | + | 0.707107i | −1.16197 | + | 2.76583i | −2.98193 | + | 1.72162i |
41.3 | −0.965926 | + | 0.258819i | −0.840145 | − | 1.51465i | 0.866025 | − | 0.500000i | −1.83272 | + | 0.491075i | 1.20354 | + | 1.24559i | −1.44971 | − | 1.44971i | −0.707107 | + | 0.707107i | −1.58831 | + | 2.54505i | 1.64317 | − | 0.948684i |
41.4 | −0.965926 | + | 0.258819i | −0.679534 | + | 1.59318i | 0.866025 | − | 0.500000i | −1.16856 | + | 0.313114i | 0.244033 | − | 1.71477i | −3.18466 | − | 3.18466i | −0.707107 | + | 0.707107i | −2.07647 | − | 2.16525i | 1.04770 | − | 0.604889i |
41.5 | −0.965926 | + | 0.258819i | 0.880877 | + | 1.49133i | 0.866025 | − | 0.500000i | 1.93052 | − | 0.517281i | −1.23685 | − | 1.21252i | 1.87601 | + | 1.87601i | −0.707107 | + | 0.707107i | −1.44811 | + | 2.62735i | −1.73086 | + | 0.999310i |
41.6 | −0.965926 | + | 0.258819i | 1.60665 | − | 0.647043i | 0.866025 | − | 0.500000i | 2.84756 | − | 0.763001i | −1.38444 | + | 1.04083i | −1.37958 | − | 1.37958i | −0.707107 | + | 0.707107i | 2.16267 | − | 2.07915i | −2.55305 | + | 1.47400i |
41.7 | −0.965926 | + | 0.258819i | 1.70757 | + | 0.290170i | 0.866025 | − | 0.500000i | −2.22031 | + | 0.594929i | −1.72449 | + | 0.161669i | 1.10604 | + | 1.10604i | −0.707107 | + | 0.707107i | 2.83160 | + | 0.990974i | 1.99067 | − | 1.14931i |
41.8 | 0.965926 | − | 0.258819i | −1.70264 | + | 0.317829i | 0.866025 | − | 0.500000i | 1.48652 | − | 0.398313i | −1.56236 | + | 0.747675i | 1.01155 | + | 1.01155i | 0.707107 | − | 0.707107i | 2.79797 | − | 1.08230i | 1.33278 | − | 0.769482i |
41.9 | 0.965926 | − | 0.258819i | −1.09566 | − | 1.34146i | 0.866025 | − | 0.500000i | −3.60132 | + | 0.964970i | −1.40553 | − | 1.01217i | −2.35233 | − | 2.35233i | 0.707107 | − | 0.707107i | −0.599043 | + | 2.93958i | −3.22885 | + | 1.86418i |
41.10 | 0.965926 | − | 0.258819i | −0.125978 | − | 1.72746i | 0.866025 | − | 0.500000i | 1.13912 | − | 0.305227i | −0.568786 | − | 1.63600i | 2.54027 | + | 2.54027i | 0.707107 | − | 0.707107i | −2.96826 | + | 0.435246i | 1.02131 | − | 0.589653i |
41.11 | 0.965926 | − | 0.258819i | 0.0473290 | + | 1.73140i | 0.866025 | − | 0.500000i | 3.94593 | − | 1.05731i | 0.493837 | + | 1.66016i | −2.29775 | − | 2.29775i | 0.707107 | − | 0.707107i | −2.99552 | + | 0.163891i | 3.53782 | − | 2.04256i |
41.12 | 0.965926 | − | 0.258819i | 0.161445 | + | 1.72451i | 0.866025 | − | 0.500000i | −2.21510 | + | 0.593533i | 0.602280 | + | 1.62396i | 2.94637 | + | 2.94637i | 0.707107 | − | 0.707107i | −2.94787 | + | 0.556826i | −1.98600 | + | 1.14662i |
41.13 | 0.965926 | − | 0.258819i | 1.10250 | − | 1.33585i | 0.866025 | − | 0.500000i | −0.00707659 | + | 0.00189617i | 0.719190 | − | 1.57568i | −2.39172 | − | 2.39172i | 0.707107 | − | 0.707107i | −0.568989 | − | 2.94555i | −0.00634470 | + | 0.00366311i |
41.14 | 0.965926 | − | 0.258819i | 1.61301 | + | 0.631032i | 0.866025 | − | 0.500000i | −0.748082 | + | 0.200448i | 1.72137 | + | 0.192053i | −0.456400 | − | 0.456400i | 0.707107 | − | 0.707107i | 2.20360 | + | 2.03572i | −0.670712 | + | 0.387236i |
137.1 | −0.965926 | − | 0.258819i | −1.71677 | − | 0.229570i | 0.866025 | + | 0.500000i | −2.88241 | − | 0.772339i | 1.59885 | + | 0.666081i | 2.05205 | − | 2.05205i | −0.707107 | − | 0.707107i | 2.89459 | + | 0.788239i | 2.58430 | + | 1.49204i |
137.2 | −0.965926 | − | 0.258819i | −0.958654 | + | 1.44256i | 0.866025 | + | 0.500000i | 3.32591 | + | 0.891175i | 1.29935 | − | 1.14529i | −0.0201488 | + | 0.0201488i | −0.707107 | − | 0.707107i | −1.16197 | − | 2.76583i | −2.98193 | − | 1.72162i |
137.3 | −0.965926 | − | 0.258819i | −0.840145 | + | 1.51465i | 0.866025 | + | 0.500000i | −1.83272 | − | 0.491075i | 1.20354 | − | 1.24559i | −1.44971 | + | 1.44971i | −0.707107 | − | 0.707107i | −1.58831 | − | 2.54505i | 1.64317 | + | 0.948684i |
137.4 | −0.965926 | − | 0.258819i | −0.679534 | − | 1.59318i | 0.866025 | + | 0.500000i | −1.16856 | − | 0.313114i | 0.244033 | + | 1.71477i | −3.18466 | + | 3.18466i | −0.707107 | − | 0.707107i | −2.07647 | + | 2.16525i | 1.04770 | + | 0.604889i |
137.5 | −0.965926 | − | 0.258819i | 0.880877 | − | 1.49133i | 0.866025 | + | 0.500000i | 1.93052 | + | 0.517281i | −1.23685 | + | 1.21252i | 1.87601 | − | 1.87601i | −0.707107 | − | 0.707107i | −1.44811 | − | 2.62735i | −1.73086 | − | 0.999310i |
137.6 | −0.965926 | − | 0.258819i | 1.60665 | + | 0.647043i | 0.866025 | + | 0.500000i | 2.84756 | + | 0.763001i | −1.38444 | − | 1.04083i | −1.37958 | + | 1.37958i | −0.707107 | − | 0.707107i | 2.16267 | + | 2.07915i | −2.55305 | − | 1.47400i |
See all 56 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
117.bc | even | 12 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 234.2.z.a | yes | 56 |
3.b | odd | 2 | 1 | 702.2.bc.a | 56 | ||
9.c | even | 3 | 1 | 702.2.bb.a | 56 | ||
9.d | odd | 6 | 1 | 234.2.y.a | ✓ | 56 | |
13.f | odd | 12 | 1 | 234.2.y.a | ✓ | 56 | |
39.k | even | 12 | 1 | 702.2.bb.a | 56 | ||
117.bb | odd | 12 | 1 | 702.2.bc.a | 56 | ||
117.bc | even | 12 | 1 | inner | 234.2.z.a | yes | 56 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
234.2.y.a | ✓ | 56 | 9.d | odd | 6 | 1 | |
234.2.y.a | ✓ | 56 | 13.f | odd | 12 | 1 | |
234.2.z.a | yes | 56 | 1.a | even | 1 | 1 | trivial |
234.2.z.a | yes | 56 | 117.bc | even | 12 | 1 | inner |
702.2.bb.a | 56 | 9.c | even | 3 | 1 | ||
702.2.bb.a | 56 | 39.k | even | 12 | 1 | ||
702.2.bc.a | 56 | 3.b | odd | 2 | 1 | ||
702.2.bc.a | 56 | 117.bb | odd | 12 | 1 |
Hecke kernels
This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(234, [\chi])\).