Properties

Label 234.2.z
Level $234$
Weight $2$
Character orbit 234.z
Rep. character $\chi_{234}(41,\cdot)$
Character field $\Q(\zeta_{12})$
Dimension $56$
Newform subspaces $1$
Sturm bound $84$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 234 = 2 \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 234.z (of order \(12\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 117 \)
Character field: \(\Q(\zeta_{12})\)
Newform subspaces: \( 1 \)
Sturm bound: \(84\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(234, [\chi])\).

Total New Old
Modular forms 184 56 128
Cusp forms 152 56 96
Eisenstein series 32 0 32

Trace form

\( 56 q - 8 q^{7} + O(q^{10}) \) \( 56 q - 8 q^{7} - 24 q^{11} + 28 q^{16} - 8 q^{19} - 24 q^{21} + 36 q^{27} - 4 q^{28} - 24 q^{30} - 4 q^{31} + 60 q^{33} - 24 q^{35} - 4 q^{37} + 36 q^{38} - 48 q^{41} - 36 q^{42} - 84 q^{45} - 36 q^{47} - 24 q^{50} + 8 q^{52} - 36 q^{54} + 36 q^{57} + 24 q^{60} - 48 q^{63} - 36 q^{65} + 28 q^{67} + 84 q^{69} - 24 q^{71} - 24 q^{72} + 28 q^{73} + 4 q^{76} + 24 q^{77} - 60 q^{78} - 24 q^{79} + 24 q^{81} - 96 q^{83} - 72 q^{85} + 4 q^{91} - 24 q^{92} - 36 q^{93} - 52 q^{97} + 48 q^{98} + 60 q^{99} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(234, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
234.2.z.a 234.z 117.ac $56$ $1.868$ None 234.2.y.a \(0\) \(0\) \(0\) \(-8\) $\mathrm{SU}(2)[C_{12}]$

Decomposition of \(S_{2}^{\mathrm{old}}(234, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(234, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(117, [\chi])\)\(^{\oplus 2}\)