Properties

Label 234.2.y.a
Level $234$
Weight $2$
Character orbit 234.y
Analytic conductor $1.868$
Analytic rank $0$
Dimension $56$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [234,2,Mod(11,234)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(234, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([2, 7]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("234.11");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 234 = 2 \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 234.y (of order \(12\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.86849940730\)
Analytic rank: \(0\)
Dimension: \(56\)
Relative dimension: \(14\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

$q$-expansion

The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 56 q + 4 q^{7}+O(q^{10}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q) = \) \( 56 q + 4 q^{7} + 24 q^{15} - 56 q^{16} - 8 q^{19} + 36 q^{27} - 4 q^{28} + 8 q^{31} - 36 q^{33} + 24 q^{35} - 24 q^{36} - 4 q^{37} - 36 q^{38} - 24 q^{39} - 48 q^{41} + 36 q^{42} + 12 q^{43} - 36 q^{45} + 60 q^{47} - 24 q^{50} - 4 q^{52} + 24 q^{57} - 60 q^{63} - 120 q^{65} - 56 q^{67} - 36 q^{69} + 24 q^{71} + 28 q^{73} + 48 q^{74} + 4 q^{76} - 24 q^{77} + 36 q^{78} - 24 q^{79} - 120 q^{81} - 60 q^{83} + 24 q^{84} + 48 q^{86} + 48 q^{87} + 4 q^{91} - 24 q^{92} + 20 q^{97} - 48 q^{98} - 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
11.1 −0.707107 + 0.707107i −1.69503 0.356189i 1.00000i −3.71422 0.995221i 1.45043 0.946704i 2.11355 + 0.566325i 0.707107 + 0.707107i 2.74626 + 1.20750i 3.33007 1.92262i
11.2 −0.707107 + 0.707107i −1.57210 + 0.726972i 1.00000i 0.653109 + 0.175000i 0.597599 1.62569i −3.90017 1.04505i 0.707107 + 0.707107i 1.94302 2.28575i −0.585562 + 0.338074i
11.3 −0.707107 + 0.707107i −1.04058 + 1.38462i 1.00000i 1.51706 + 0.406496i −0.243274 1.71488i 4.52587 + 1.21270i 0.707107 + 0.707107i −0.834373 2.88164i −1.36016 + 0.785290i
11.4 −0.707107 + 0.707107i 0.0694742 1.73066i 1.00000i 0.339151 + 0.0908752i 1.17463 + 1.27288i 2.97685 + 0.797644i 0.707107 + 0.707107i −2.99035 0.240472i −0.304074 + 0.175557i
11.5 −0.707107 + 0.707107i 1.09699 + 1.34038i 1.00000i 0.994452 + 0.266463i −1.72348 0.172100i 0.339163 + 0.0908784i 0.707107 + 0.707107i −0.593221 + 2.94076i −0.891601 + 0.514766i
11.6 −0.707107 + 0.707107i 1.46728 0.920381i 1.00000i −3.62177 0.970449i −0.386713 + 1.68833i −3.13748 0.840685i 0.707107 + 0.707107i 1.30580 2.70091i 3.24719 1.87476i
11.7 −0.707107 + 0.707107i 1.67398 0.444746i 1.00000i 3.83221 + 1.02684i −0.869198 + 1.49816i −1.55176 0.415793i 0.707107 + 0.707107i 2.60440 1.48899i −3.43586 + 1.98370i
11.8 0.707107 0.707107i −1.36513 + 1.06603i 1.00000i −3.36565 0.901822i −0.211491 + 1.71909i 0.0541850 + 0.0145188i −0.707107 0.707107i 0.727143 2.91054i −3.01756 + 1.74219i
11.9 0.707107 0.707107i −1.25339 1.19541i 1.00000i −0.670386 0.179629i −1.73157 + 0.0409976i −4.43374 1.18802i −0.707107 0.707107i 0.141980 + 2.99664i −0.601052 + 0.347017i
11.10 0.707107 0.707107i −0.870336 + 1.49750i 1.00000i 1.35053 + 0.361873i 0.443474 + 1.67432i 0.977097 + 0.261812i −0.707107 0.707107i −1.48503 2.60666i 1.21085 0.699086i
11.11 0.707107 0.707107i −0.539995 1.64572i 1.00000i 3.04921 + 0.817032i −1.54554 0.781868i 2.84235 + 0.761606i −0.707107 0.707107i −2.41681 + 1.77736i 2.73384 1.57838i
11.12 0.707107 0.707107i 1.04323 + 1.38263i 1.00000i 1.62665 + 0.435860i 1.71534 + 0.239994i 0.290365 + 0.0778030i −0.707107 0.707107i −0.823344 + 2.88481i 1.45842 0.842018i
11.13 0.707107 0.707107i 1.25580 1.19288i 1.00000i 0.650628 + 0.174335i 0.0444876 1.73148i −1.73068 0.463733i −0.707107 0.707107i 0.154059 2.99604i 0.583337 0.336790i
11.14 0.707107 0.707107i 1.72982 + 0.0878497i 1.00000i −2.64098 0.707650i 1.28529 1.16105i 3.36644 + 0.902034i −0.707107 0.707107i 2.98456 + 0.303929i −2.36784 + 1.36707i
59.1 −0.707107 + 0.707107i −1.36368 1.06788i 1.00000i 0.763001 + 2.84756i 1.71938 0.209163i −0.504962 1.88454i 0.707107 + 0.707107i 0.719258 + 2.91250i −2.55305 1.47400i
59.2 −0.707107 + 0.707107i −0.891650 + 1.48491i 1.00000i −0.491075 1.83272i −0.419498 1.68048i −0.530631 1.98034i 0.707107 + 0.707107i −1.40992 2.64804i 1.64317 + 0.948684i
59.3 −0.707107 + 0.707107i −0.769968 + 1.55150i 1.00000i 0.891175 + 3.32591i −0.552626 1.64153i −0.00737496 0.0275237i 0.707107 + 0.707107i −1.81430 2.38921i −2.98193 1.72162i
59.4 −0.707107 + 0.707107i −0.602491 1.62389i 1.00000i −0.594929 2.22031i 1.57429 + 0.722235i 0.404840 + 1.51089i 0.707107 + 0.707107i −2.27401 + 1.95675i 1.99067 + 1.14931i
59.5 −0.707107 + 0.707107i 0.851088 1.50853i 1.00000i 0.517281 + 1.93052i 0.464878 + 1.66850i 0.686666 + 2.56267i 0.707107 + 0.707107i −1.55130 2.56778i −1.73086 0.999310i
59.6 −0.707107 + 0.707107i 1.05720 + 1.37198i 1.00000i −0.772339 2.88241i −1.71769 0.222585i 0.751103 + 2.80315i 0.707107 + 0.707107i −0.764662 + 2.90091i 2.58430 + 1.49204i
See all 56 embeddings
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 11.14
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
117.x even 12 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 234.2.y.a 56
3.b odd 2 1 702.2.bb.a 56
9.c even 3 1 702.2.bc.a 56
9.d odd 6 1 234.2.z.a yes 56
13.f odd 12 1 234.2.z.a yes 56
39.k even 12 1 702.2.bc.a 56
117.w odd 12 1 702.2.bb.a 56
117.x even 12 1 inner 234.2.y.a 56
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
234.2.y.a 56 1.a even 1 1 trivial
234.2.y.a 56 117.x even 12 1 inner
234.2.z.a yes 56 9.d odd 6 1
234.2.z.a yes 56 13.f odd 12 1
702.2.bb.a 56 3.b odd 2 1
702.2.bb.a 56 117.w odd 12 1
702.2.bc.a 56 9.c even 3 1
702.2.bc.a 56 39.k even 12 1

Hecke kernels

This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(234, [\chi])\).