Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [234,2,Mod(11,234)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(234, base_ring=CyclotomicField(12))
chi = DirichletCharacter(H, H._module([2, 7]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("234.11");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 234 = 2 \cdot 3^{2} \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 234.y (of order \(12\), degree \(4\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(1.86849940730\) |
Analytic rank: | \(0\) |
Dimension: | \(56\) |
Relative dimension: | \(14\) over \(\Q(\zeta_{12})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{12}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
11.1 | −0.707107 | + | 0.707107i | −1.69503 | − | 0.356189i | − | 1.00000i | −3.71422 | − | 0.995221i | 1.45043 | − | 0.946704i | 2.11355 | + | 0.566325i | 0.707107 | + | 0.707107i | 2.74626 | + | 1.20750i | 3.33007 | − | 1.92262i | |
11.2 | −0.707107 | + | 0.707107i | −1.57210 | + | 0.726972i | − | 1.00000i | 0.653109 | + | 0.175000i | 0.597599 | − | 1.62569i | −3.90017 | − | 1.04505i | 0.707107 | + | 0.707107i | 1.94302 | − | 2.28575i | −0.585562 | + | 0.338074i | |
11.3 | −0.707107 | + | 0.707107i | −1.04058 | + | 1.38462i | − | 1.00000i | 1.51706 | + | 0.406496i | −0.243274 | − | 1.71488i | 4.52587 | + | 1.21270i | 0.707107 | + | 0.707107i | −0.834373 | − | 2.88164i | −1.36016 | + | 0.785290i | |
11.4 | −0.707107 | + | 0.707107i | 0.0694742 | − | 1.73066i | − | 1.00000i | 0.339151 | + | 0.0908752i | 1.17463 | + | 1.27288i | 2.97685 | + | 0.797644i | 0.707107 | + | 0.707107i | −2.99035 | − | 0.240472i | −0.304074 | + | 0.175557i | |
11.5 | −0.707107 | + | 0.707107i | 1.09699 | + | 1.34038i | − | 1.00000i | 0.994452 | + | 0.266463i | −1.72348 | − | 0.172100i | 0.339163 | + | 0.0908784i | 0.707107 | + | 0.707107i | −0.593221 | + | 2.94076i | −0.891601 | + | 0.514766i | |
11.6 | −0.707107 | + | 0.707107i | 1.46728 | − | 0.920381i | − | 1.00000i | −3.62177 | − | 0.970449i | −0.386713 | + | 1.68833i | −3.13748 | − | 0.840685i | 0.707107 | + | 0.707107i | 1.30580 | − | 2.70091i | 3.24719 | − | 1.87476i | |
11.7 | −0.707107 | + | 0.707107i | 1.67398 | − | 0.444746i | − | 1.00000i | 3.83221 | + | 1.02684i | −0.869198 | + | 1.49816i | −1.55176 | − | 0.415793i | 0.707107 | + | 0.707107i | 2.60440 | − | 1.48899i | −3.43586 | + | 1.98370i | |
11.8 | 0.707107 | − | 0.707107i | −1.36513 | + | 1.06603i | − | 1.00000i | −3.36565 | − | 0.901822i | −0.211491 | + | 1.71909i | 0.0541850 | + | 0.0145188i | −0.707107 | − | 0.707107i | 0.727143 | − | 2.91054i | −3.01756 | + | 1.74219i | |
11.9 | 0.707107 | − | 0.707107i | −1.25339 | − | 1.19541i | − | 1.00000i | −0.670386 | − | 0.179629i | −1.73157 | + | 0.0409976i | −4.43374 | − | 1.18802i | −0.707107 | − | 0.707107i | 0.141980 | + | 2.99664i | −0.601052 | + | 0.347017i | |
11.10 | 0.707107 | − | 0.707107i | −0.870336 | + | 1.49750i | − | 1.00000i | 1.35053 | + | 0.361873i | 0.443474 | + | 1.67432i | 0.977097 | + | 0.261812i | −0.707107 | − | 0.707107i | −1.48503 | − | 2.60666i | 1.21085 | − | 0.699086i | |
11.11 | 0.707107 | − | 0.707107i | −0.539995 | − | 1.64572i | − | 1.00000i | 3.04921 | + | 0.817032i | −1.54554 | − | 0.781868i | 2.84235 | + | 0.761606i | −0.707107 | − | 0.707107i | −2.41681 | + | 1.77736i | 2.73384 | − | 1.57838i | |
11.12 | 0.707107 | − | 0.707107i | 1.04323 | + | 1.38263i | − | 1.00000i | 1.62665 | + | 0.435860i | 1.71534 | + | 0.239994i | 0.290365 | + | 0.0778030i | −0.707107 | − | 0.707107i | −0.823344 | + | 2.88481i | 1.45842 | − | 0.842018i | |
11.13 | 0.707107 | − | 0.707107i | 1.25580 | − | 1.19288i | − | 1.00000i | 0.650628 | + | 0.174335i | 0.0444876 | − | 1.73148i | −1.73068 | − | 0.463733i | −0.707107 | − | 0.707107i | 0.154059 | − | 2.99604i | 0.583337 | − | 0.336790i | |
11.14 | 0.707107 | − | 0.707107i | 1.72982 | + | 0.0878497i | − | 1.00000i | −2.64098 | − | 0.707650i | 1.28529 | − | 1.16105i | 3.36644 | + | 0.902034i | −0.707107 | − | 0.707107i | 2.98456 | + | 0.303929i | −2.36784 | + | 1.36707i | |
59.1 | −0.707107 | + | 0.707107i | −1.36368 | − | 1.06788i | − | 1.00000i | 0.763001 | + | 2.84756i | 1.71938 | − | 0.209163i | −0.504962 | − | 1.88454i | 0.707107 | + | 0.707107i | 0.719258 | + | 2.91250i | −2.55305 | − | 1.47400i | |
59.2 | −0.707107 | + | 0.707107i | −0.891650 | + | 1.48491i | − | 1.00000i | −0.491075 | − | 1.83272i | −0.419498 | − | 1.68048i | −0.530631 | − | 1.98034i | 0.707107 | + | 0.707107i | −1.40992 | − | 2.64804i | 1.64317 | + | 0.948684i | |
59.3 | −0.707107 | + | 0.707107i | −0.769968 | + | 1.55150i | − | 1.00000i | 0.891175 | + | 3.32591i | −0.552626 | − | 1.64153i | −0.00737496 | − | 0.0275237i | 0.707107 | + | 0.707107i | −1.81430 | − | 2.38921i | −2.98193 | − | 1.72162i | |
59.4 | −0.707107 | + | 0.707107i | −0.602491 | − | 1.62389i | − | 1.00000i | −0.594929 | − | 2.22031i | 1.57429 | + | 0.722235i | 0.404840 | + | 1.51089i | 0.707107 | + | 0.707107i | −2.27401 | + | 1.95675i | 1.99067 | + | 1.14931i | |
59.5 | −0.707107 | + | 0.707107i | 0.851088 | − | 1.50853i | − | 1.00000i | 0.517281 | + | 1.93052i | 0.464878 | + | 1.66850i | 0.686666 | + | 2.56267i | 0.707107 | + | 0.707107i | −1.55130 | − | 2.56778i | −1.73086 | − | 0.999310i | |
59.6 | −0.707107 | + | 0.707107i | 1.05720 | + | 1.37198i | − | 1.00000i | −0.772339 | − | 2.88241i | −1.71769 | − | 0.222585i | 0.751103 | + | 2.80315i | 0.707107 | + | 0.707107i | −0.764662 | + | 2.90091i | 2.58430 | + | 1.49204i | |
See all 56 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
117.x | even | 12 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 234.2.y.a | ✓ | 56 |
3.b | odd | 2 | 1 | 702.2.bb.a | 56 | ||
9.c | even | 3 | 1 | 702.2.bc.a | 56 | ||
9.d | odd | 6 | 1 | 234.2.z.a | yes | 56 | |
13.f | odd | 12 | 1 | 234.2.z.a | yes | 56 | |
39.k | even | 12 | 1 | 702.2.bc.a | 56 | ||
117.w | odd | 12 | 1 | 702.2.bb.a | 56 | ||
117.x | even | 12 | 1 | inner | 234.2.y.a | ✓ | 56 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
234.2.y.a | ✓ | 56 | 1.a | even | 1 | 1 | trivial |
234.2.y.a | ✓ | 56 | 117.x | even | 12 | 1 | inner |
234.2.z.a | yes | 56 | 9.d | odd | 6 | 1 | |
234.2.z.a | yes | 56 | 13.f | odd | 12 | 1 | |
702.2.bb.a | 56 | 3.b | odd | 2 | 1 | ||
702.2.bb.a | 56 | 117.w | odd | 12 | 1 | ||
702.2.bc.a | 56 | 9.c | even | 3 | 1 | ||
702.2.bc.a | 56 | 39.k | even | 12 | 1 |
Hecke kernels
This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(234, [\chi])\).