Properties

Label 234.2.t.a.103.4
Level $234$
Weight $2$
Character 234.103
Analytic conductor $1.868$
Analytic rank $0$
Dimension $28$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [234,2,Mod(25,234)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(234, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([4, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("234.25");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 234 = 2 \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 234.t (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.86849940730\)
Analytic rank: \(0\)
Dimension: \(28\)
Relative dimension: \(14\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 103.4
Character \(\chi\) \(=\) 234.103
Dual form 234.2.t.a.25.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.866025 + 0.500000i) q^{2} +(-0.215223 - 1.71863i) q^{3} +(0.500000 - 0.866025i) q^{4} +(-2.40542 - 1.38877i) q^{5} +(1.04570 + 1.38076i) q^{6} +(-0.759011 + 0.438215i) q^{7} +1.00000i q^{8} +(-2.90736 + 0.739776i) q^{9} +2.77754 q^{10} +(-1.92848 + 1.11341i) q^{11} +(-1.59599 - 0.672925i) q^{12} +(0.180130 + 3.60105i) q^{13} +(0.438215 - 0.759011i) q^{14} +(-1.86908 + 4.43292i) q^{15} +(-0.500000 - 0.866025i) q^{16} -3.80878 q^{17} +(2.14796 - 2.09434i) q^{18} -2.22681i q^{19} +(-2.40542 + 1.38877i) q^{20} +(0.916486 + 1.21014i) q^{21} +(1.11341 - 1.92848i) q^{22} +(0.259586 - 0.449617i) q^{23} +(1.71863 - 0.215223i) q^{24} +(1.35738 + 2.35105i) q^{25} +(-1.95652 - 3.02853i) q^{26} +(1.89713 + 4.83745i) q^{27} +0.876431i q^{28} +(-3.81355 - 6.60527i) q^{29} +(-0.597791 - 4.77356i) q^{30} +(-4.97617 - 2.87299i) q^{31} +(0.866025 + 0.500000i) q^{32} +(2.32858 + 3.07470i) q^{33} +(3.29850 - 1.90439i) q^{34} +2.43433 q^{35} +(-0.813014 + 2.88773i) q^{36} -11.3538i q^{37} +(1.11341 + 1.92848i) q^{38} +(6.15009 - 1.08460i) q^{39} +(1.38877 - 2.40542i) q^{40} +(-3.52286 - 2.03392i) q^{41} +(-1.39877 - 0.589772i) q^{42} +(2.81683 + 4.87889i) q^{43} +2.22681i q^{44} +(8.02081 + 2.25818i) q^{45} +0.519173i q^{46} +(0.920402 - 0.531395i) q^{47} +(-1.38076 + 1.04570i) q^{48} +(-3.11593 + 5.39696i) q^{49} +(-2.35105 - 1.35738i) q^{50} +(0.819736 + 6.54587i) q^{51} +(3.20866 + 1.64453i) q^{52} +7.29301 q^{53} +(-4.06169 - 3.24079i) q^{54} +6.18508 q^{55} +(-0.438215 - 0.759011i) q^{56} +(-3.82706 + 0.479262i) q^{57} +(6.60527 + 3.81355i) q^{58} +(3.52376 + 2.03444i) q^{59} +(2.90448 + 3.83513i) q^{60} +(-3.94905 - 6.83995i) q^{61} +5.74599 q^{62} +(1.88254 - 1.83555i) q^{63} -1.00000 q^{64} +(4.56775 - 8.91221i) q^{65} +(-3.55397 - 1.49848i) q^{66} +(5.95399 + 3.43754i) q^{67} +(-1.90439 + 3.29850i) q^{68} +(-0.828593 - 0.349364i) q^{69} +(-2.10819 + 1.21716i) q^{70} +15.9569i q^{71} +(-0.739776 - 2.90736i) q^{72} -5.24797i q^{73} +(5.67689 + 9.83267i) q^{74} +(3.74843 - 2.83883i) q^{75} +(-1.92848 - 1.11341i) q^{76} +(0.975824 - 1.69018i) q^{77} +(-4.78383 + 4.01434i) q^{78} +(-7.09690 - 12.2922i) q^{79} +2.77754i q^{80} +(7.90546 - 4.30159i) q^{81} +4.06784 q^{82} +(-0.641385 + 0.370304i) q^{83} +(1.50626 - 0.188628i) q^{84} +(9.16172 + 5.28952i) q^{85} +(-4.87889 - 2.81683i) q^{86} +(-10.5312 + 7.97568i) q^{87} +(-1.11341 - 1.92848i) q^{88} -9.89914i q^{89} +(-8.07532 + 2.05476i) q^{90} +(-1.71476 - 2.65430i) q^{91} +(-0.259586 - 0.449617i) q^{92} +(-3.86662 + 9.17052i) q^{93} +(-0.531395 + 0.920402i) q^{94} +(-3.09254 + 5.35643i) q^{95} +(0.672925 - 1.59599i) q^{96} +(-13.6212 + 7.86418i) q^{97} -6.23187i q^{98} +(4.78310 - 4.66372i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 28 q + 14 q^{4} - 16 q^{9} + 2 q^{13} + 8 q^{14} - 14 q^{16} + 16 q^{17} - 8 q^{23} + 14 q^{25} + 8 q^{26} + 18 q^{27} - 16 q^{29} - 8 q^{30} - 68 q^{35} - 8 q^{36} - 8 q^{39} - 10 q^{42} - 4 q^{43} + 10 q^{49}+ \cdots + 8 q^{92}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/234\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(209\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.866025 + 0.500000i −0.612372 + 0.353553i
\(3\) −0.215223 1.71863i −0.124259 0.992250i
\(4\) 0.500000 0.866025i 0.250000 0.433013i
\(5\) −2.40542 1.38877i −1.07574 0.621078i −0.145995 0.989285i \(-0.546638\pi\)
−0.929744 + 0.368207i \(0.879972\pi\)
\(6\) 1.04570 + 1.38076i 0.426906 + 0.563694i
\(7\) −0.759011 + 0.438215i −0.286879 + 0.165630i −0.636534 0.771249i \(-0.719632\pi\)
0.349654 + 0.936879i \(0.386299\pi\)
\(8\) 1.00000i 0.353553i
\(9\) −2.90736 + 0.739776i −0.969119 + 0.246592i
\(10\) 2.77754 0.878337
\(11\) −1.92848 + 1.11341i −0.581458 + 0.335705i −0.761713 0.647915i \(-0.775641\pi\)
0.180255 + 0.983620i \(0.442308\pi\)
\(12\) −1.59599 0.672925i −0.460722 0.194257i
\(13\) 0.180130 + 3.60105i 0.0499590 + 0.998751i
\(14\) 0.438215 0.759011i 0.117118 0.202854i
\(15\) −1.86908 + 4.43292i −0.482594 + 1.14458i
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) −3.80878 −0.923764 −0.461882 0.886941i \(-0.652826\pi\)
−0.461882 + 0.886941i \(0.652826\pi\)
\(18\) 2.14796 2.09434i 0.506279 0.493642i
\(19\) 2.22681i 0.510866i −0.966827 0.255433i \(-0.917782\pi\)
0.966827 0.255433i \(-0.0822181\pi\)
\(20\) −2.40542 + 1.38877i −0.537869 + 0.310539i
\(21\) 0.916486 + 1.21014i 0.199994 + 0.264075i
\(22\) 1.11341 1.92848i 0.237379 0.411153i
\(23\) 0.259586 0.449617i 0.0541275 0.0937516i −0.837692 0.546143i \(-0.816096\pi\)
0.891820 + 0.452391i \(0.149429\pi\)
\(24\) 1.71863 0.215223i 0.350813 0.0439322i
\(25\) 1.35738 + 2.35105i 0.271476 + 0.470209i
\(26\) −1.95652 3.02853i −0.383705 0.593945i
\(27\) 1.89713 + 4.83745i 0.365103 + 0.930967i
\(28\) 0.876431i 0.165630i
\(29\) −3.81355 6.60527i −0.708159 1.22657i −0.965539 0.260257i \(-0.916193\pi\)
0.257381 0.966310i \(-0.417141\pi\)
\(30\) −0.597791 4.77356i −0.109141 0.871530i
\(31\) −4.97617 2.87299i −0.893747 0.516005i −0.0185805 0.999827i \(-0.505915\pi\)
−0.875166 + 0.483822i \(0.839248\pi\)
\(32\) 0.866025 + 0.500000i 0.153093 + 0.0883883i
\(33\) 2.32858 + 3.07470i 0.405355 + 0.535237i
\(34\) 3.29850 1.90439i 0.565688 0.326600i
\(35\) 2.43433 0.411476
\(36\) −0.813014 + 2.88773i −0.135502 + 0.481289i
\(37\) 11.3538i 1.86655i −0.359161 0.933276i \(-0.616937\pi\)
0.359161 0.933276i \(-0.383063\pi\)
\(38\) 1.11341 + 1.92848i 0.180619 + 0.312840i
\(39\) 6.15009 1.08460i 0.984803 0.173676i
\(40\) 1.38877 2.40542i 0.219584 0.380331i
\(41\) −3.52286 2.03392i −0.550178 0.317645i 0.199016 0.979996i \(-0.436225\pi\)
−0.749194 + 0.662351i \(0.769559\pi\)
\(42\) −1.39877 0.589772i −0.215835 0.0910038i
\(43\) 2.81683 + 4.87889i 0.429562 + 0.744023i 0.996834 0.0795072i \(-0.0253347\pi\)
−0.567272 + 0.823530i \(0.692001\pi\)
\(44\) 2.22681i 0.335705i
\(45\) 8.02081 + 2.25818i 1.19567 + 0.336630i
\(46\) 0.519173i 0.0765479i
\(47\) 0.920402 0.531395i 0.134254 0.0775119i −0.431368 0.902176i \(-0.641969\pi\)
0.565623 + 0.824664i \(0.308636\pi\)
\(48\) −1.38076 + 1.04570i −0.199296 + 0.150934i
\(49\) −3.11593 + 5.39696i −0.445133 + 0.770994i
\(50\) −2.35105 1.35738i −0.332488 0.191962i
\(51\) 0.819736 + 6.54587i 0.114786 + 0.916605i
\(52\) 3.20866 + 1.64453i 0.444962 + 0.228055i
\(53\) 7.29301 1.00177 0.500886 0.865513i \(-0.333008\pi\)
0.500886 + 0.865513i \(0.333008\pi\)
\(54\) −4.06169 3.24079i −0.552725 0.441015i
\(55\) 6.18508 0.833996
\(56\) −0.438215 0.759011i −0.0585590 0.101427i
\(57\) −3.82706 + 0.479262i −0.506907 + 0.0634797i
\(58\) 6.60527 + 3.81355i 0.867314 + 0.500744i
\(59\) 3.52376 + 2.03444i 0.458754 + 0.264862i 0.711520 0.702666i \(-0.248007\pi\)
−0.252766 + 0.967527i \(0.581340\pi\)
\(60\) 2.90448 + 3.83513i 0.374967 + 0.495113i
\(61\) −3.94905 6.83995i −0.505624 0.875766i −0.999979 0.00650624i \(-0.997929\pi\)
0.494355 0.869260i \(-0.335404\pi\)
\(62\) 5.74599 0.729741
\(63\) 1.88254 1.83555i 0.237177 0.231257i
\(64\) −1.00000 −0.125000
\(65\) 4.56775 8.91221i 0.566560 1.10542i
\(66\) −3.55397 1.49848i −0.437463 0.184450i
\(67\) 5.95399 + 3.43754i 0.727395 + 0.419962i 0.817468 0.575973i \(-0.195377\pi\)
−0.0900733 + 0.995935i \(0.528710\pi\)
\(68\) −1.90439 + 3.29850i −0.230941 + 0.400002i
\(69\) −0.828593 0.349364i −0.0997508 0.0420585i
\(70\) −2.10819 + 1.21716i −0.251977 + 0.145479i
\(71\) 15.9569i 1.89374i 0.321622 + 0.946868i \(0.395772\pi\)
−0.321622 + 0.946868i \(0.604228\pi\)
\(72\) −0.739776 2.90736i −0.0871834 0.342635i
\(73\) 5.24797i 0.614228i −0.951673 0.307114i \(-0.900637\pi\)
0.951673 0.307114i \(-0.0993633\pi\)
\(74\) 5.67689 + 9.83267i 0.659926 + 1.14302i
\(75\) 3.74843 2.83883i 0.432832 0.327799i
\(76\) −1.92848 1.11341i −0.221212 0.127717i
\(77\) 0.975824 1.69018i 0.111206 0.192614i
\(78\) −4.78383 + 4.01434i −0.541663 + 0.454535i
\(79\) −7.09690 12.2922i −0.798463 1.38298i −0.920617 0.390468i \(-0.872313\pi\)
0.122153 0.992511i \(-0.461020\pi\)
\(80\) 2.77754i 0.310539i
\(81\) 7.90546 4.30159i 0.878385 0.477954i
\(82\) 4.06784 0.449218
\(83\) −0.641385 + 0.370304i −0.0704011 + 0.0406461i −0.534787 0.844987i \(-0.679608\pi\)
0.464386 + 0.885633i \(0.346275\pi\)
\(84\) 1.50626 0.188628i 0.164346 0.0205810i
\(85\) 9.16172 + 5.28952i 0.993729 + 0.573729i
\(86\) −4.87889 2.81683i −0.526104 0.303746i
\(87\) −10.5312 + 7.97568i −1.12907 + 0.855082i
\(88\) −1.11341 1.92848i −0.118690 0.205576i
\(89\) 9.89914i 1.04931i −0.851316 0.524653i \(-0.824195\pi\)
0.851316 0.524653i \(-0.175805\pi\)
\(90\) −8.07532 + 2.05476i −0.851213 + 0.216591i
\(91\) −1.71476 2.65430i −0.179755 0.278246i
\(92\) −0.259586 0.449617i −0.0270638 0.0468758i
\(93\) −3.86662 + 9.17052i −0.400950 + 0.950938i
\(94\) −0.531395 + 0.920402i −0.0548092 + 0.0949323i
\(95\) −3.09254 + 5.35643i −0.317288 + 0.549559i
\(96\) 0.672925 1.59599i 0.0686801 0.162890i
\(97\) −13.6212 + 7.86418i −1.38302 + 0.798486i −0.992516 0.122116i \(-0.961032\pi\)
−0.390503 + 0.920602i \(0.627699\pi\)
\(98\) 6.23187i 0.629514i
\(99\) 4.78310 4.66372i 0.480720 0.468721i
\(100\) 2.71476 0.271476
\(101\) −9.76705 16.9170i −0.971858 1.68331i −0.689937 0.723870i \(-0.742362\pi\)
−0.281921 0.959438i \(-0.590972\pi\)
\(102\) −3.98285 5.25902i −0.394360 0.520720i
\(103\) −4.09254 + 7.08848i −0.403250 + 0.698449i −0.994116 0.108320i \(-0.965453\pi\)
0.590866 + 0.806770i \(0.298786\pi\)
\(104\) −3.60105 + 0.180130i −0.353112 + 0.0176632i
\(105\) −0.523923 4.18370i −0.0511296 0.408287i
\(106\) −6.31593 + 3.64650i −0.613457 + 0.354180i
\(107\) 13.5605 1.31094 0.655470 0.755221i \(-0.272471\pi\)
0.655470 + 0.755221i \(0.272471\pi\)
\(108\) 5.13792 + 0.775762i 0.494396 + 0.0746477i
\(109\) 8.50225i 0.814368i −0.913346 0.407184i \(-0.866511\pi\)
0.913346 0.407184i \(-0.133489\pi\)
\(110\) −5.35643 + 3.09254i −0.510716 + 0.294862i
\(111\) −19.5129 + 2.44360i −1.85209 + 0.231936i
\(112\) 0.759011 + 0.438215i 0.0717198 + 0.0414075i
\(113\) −1.65386 + 2.86458i −0.155582 + 0.269477i −0.933271 0.359173i \(-0.883059\pi\)
0.777689 + 0.628650i \(0.216392\pi\)
\(114\) 3.07470 2.32858i 0.287972 0.218092i
\(115\) −1.24883 + 0.721013i −0.116454 + 0.0672348i
\(116\) −7.62710 −0.708159
\(117\) −3.18767 10.3363i −0.294700 0.955590i
\(118\) −4.06888 −0.374571
\(119\) 2.89090 1.66906i 0.265009 0.153003i
\(120\) −4.43292 1.86908i −0.404669 0.170623i
\(121\) −3.02065 + 5.23192i −0.274604 + 0.475629i
\(122\) 6.83995 + 3.94905i 0.619260 + 0.357530i
\(123\) −2.73735 + 6.49222i −0.246819 + 0.585384i
\(124\) −4.97617 + 2.87299i −0.446873 + 0.258002i
\(125\) 6.34737i 0.567726i
\(126\) −0.712551 + 2.53090i −0.0634791 + 0.225470i
\(127\) −12.6397 −1.12160 −0.560798 0.827953i \(-0.689506\pi\)
−0.560798 + 0.827953i \(0.689506\pi\)
\(128\) 0.866025 0.500000i 0.0765466 0.0441942i
\(129\) 7.77874 5.89112i 0.684880 0.518684i
\(130\) 0.500318 + 10.0021i 0.0438808 + 0.877240i
\(131\) 3.71482 6.43426i 0.324565 0.562164i −0.656859 0.754013i \(-0.728115\pi\)
0.981424 + 0.191850i \(0.0614486\pi\)
\(132\) 3.82706 0.479262i 0.333103 0.0417144i
\(133\) 0.975824 + 1.69018i 0.0846147 + 0.146557i
\(134\) −6.87507 −0.593916
\(135\) 2.15471 14.2708i 0.185448 1.22823i
\(136\) 3.80878i 0.326600i
\(137\) 14.1119 8.14752i 1.20566 0.696089i 0.243853 0.969812i \(-0.421588\pi\)
0.961809 + 0.273723i \(0.0882551\pi\)
\(138\) 0.892265 0.111738i 0.0759546 0.00951176i
\(139\) 5.31431 9.20466i 0.450754 0.780729i −0.547679 0.836689i \(-0.684488\pi\)
0.998433 + 0.0559594i \(0.0178218\pi\)
\(140\) 1.21716 2.10819i 0.102869 0.178174i
\(141\) −1.11136 1.46746i −0.0935935 0.123582i
\(142\) −7.97845 13.8191i −0.669537 1.15967i
\(143\) −4.35681 6.74399i −0.364335 0.563960i
\(144\) 2.09434 + 2.14796i 0.174529 + 0.178997i
\(145\) 21.1846i 1.75929i
\(146\) 2.62398 + 4.54487i 0.217162 + 0.376136i
\(147\) 9.94598 + 4.19358i 0.820330 + 0.345881i
\(148\) −9.83267 5.67689i −0.808240 0.466638i
\(149\) 12.4936 + 7.21321i 1.02352 + 0.590929i 0.915121 0.403179i \(-0.132095\pi\)
0.108398 + 0.994108i \(0.465428\pi\)
\(150\) −1.82683 + 4.33271i −0.149160 + 0.353764i
\(151\) −9.57392 + 5.52751i −0.779115 + 0.449822i −0.836116 0.548552i \(-0.815179\pi\)
0.0570018 + 0.998374i \(0.481846\pi\)
\(152\) 2.22681 0.180619
\(153\) 11.0735 2.81764i 0.895238 0.227793i
\(154\) 1.95165i 0.157268i
\(155\) 7.97987 + 13.8215i 0.640959 + 1.11017i
\(156\) 2.13575 5.86844i 0.170997 0.469851i
\(157\) −1.92051 + 3.32643i −0.153274 + 0.265478i −0.932429 0.361353i \(-0.882315\pi\)
0.779155 + 0.626831i \(0.215648\pi\)
\(158\) 12.2922 + 7.09690i 0.977914 + 0.564599i
\(159\) −1.56962 12.5340i −0.124479 0.994008i
\(160\) −1.38877 2.40542i −0.109792 0.190165i
\(161\) 0.455019i 0.0358605i
\(162\) −4.69554 + 7.67802i −0.368916 + 0.603242i
\(163\) 19.5106i 1.52819i 0.645103 + 0.764096i \(0.276815\pi\)
−0.645103 + 0.764096i \(0.723185\pi\)
\(164\) −3.52286 + 2.03392i −0.275089 + 0.158823i
\(165\) −1.33117 10.6298i −0.103631 0.827532i
\(166\) 0.370304 0.641385i 0.0287411 0.0497811i
\(167\) −10.0701 5.81397i −0.779247 0.449898i 0.0569166 0.998379i \(-0.481873\pi\)
−0.836163 + 0.548481i \(0.815206\pi\)
\(168\) −1.21014 + 0.916486i −0.0933646 + 0.0707084i
\(169\) −12.9351 + 1.29731i −0.995008 + 0.0997932i
\(170\) −10.5790 −0.811376
\(171\) 1.64734 + 6.47415i 0.125976 + 0.495090i
\(172\) 5.63365 0.429562
\(173\) 3.62242 + 6.27421i 0.275407 + 0.477020i 0.970238 0.242154i \(-0.0778539\pi\)
−0.694830 + 0.719174i \(0.744521\pi\)
\(174\) 5.13247 12.1728i 0.389091 0.922814i
\(175\) −2.06053 1.18965i −0.155761 0.0899289i
\(176\) 1.92848 + 1.11341i 0.145364 + 0.0839262i
\(177\) 2.73805 6.49388i 0.205805 0.488110i
\(178\) 4.94957 + 8.57290i 0.370986 + 0.642566i
\(179\) −7.32606 −0.547575 −0.273788 0.961790i \(-0.588277\pi\)
−0.273788 + 0.961790i \(0.588277\pi\)
\(180\) 5.96605 5.81713i 0.444683 0.433584i
\(181\) 10.0571 0.747536 0.373768 0.927522i \(-0.378066\pi\)
0.373768 + 0.927522i \(0.378066\pi\)
\(182\) 2.81217 + 1.44131i 0.208452 + 0.106837i
\(183\) −10.9054 + 8.25906i −0.806151 + 0.610527i
\(184\) 0.449617 + 0.259586i 0.0331462 + 0.0191370i
\(185\) −15.7678 + 27.3107i −1.15927 + 2.00792i
\(186\) −1.23667 9.87521i −0.0906769 0.724086i
\(187\) 7.34514 4.24072i 0.537130 0.310112i
\(188\) 1.06279i 0.0775119i
\(189\) −3.55979 2.84033i −0.258936 0.206603i
\(190\) 6.18508i 0.448713i
\(191\) 9.39944 + 16.2803i 0.680120 + 1.17800i 0.974944 + 0.222451i \(0.0714056\pi\)
−0.294824 + 0.955552i \(0.595261\pi\)
\(192\) 0.215223 + 1.71863i 0.0155324 + 0.124031i
\(193\) 11.4647 + 6.61912i 0.825244 + 0.476455i 0.852221 0.523181i \(-0.175255\pi\)
−0.0269777 + 0.999636i \(0.508588\pi\)
\(194\) 7.86418 13.6212i 0.564615 0.977942i
\(195\) −16.2999 5.93215i −1.16726 0.424810i
\(196\) 3.11593 + 5.39696i 0.222567 + 0.385497i
\(197\) 1.35286i 0.0963875i −0.998838 0.0481938i \(-0.984654\pi\)
0.998838 0.0481938i \(-0.0153465\pi\)
\(198\) −1.81043 + 6.43045i −0.128662 + 0.456992i
\(199\) 1.42951 0.101335 0.0506677 0.998716i \(-0.483865\pi\)
0.0506677 + 0.998716i \(0.483865\pi\)
\(200\) −2.35105 + 1.35738i −0.166244 + 0.0959811i
\(201\) 4.62641 10.9725i 0.326322 0.773942i
\(202\) 16.9170 + 9.76705i 1.19028 + 0.687207i
\(203\) 5.78906 + 3.34231i 0.406312 + 0.234584i
\(204\) 6.07875 + 2.56302i 0.425598 + 0.179447i
\(205\) 5.64931 + 9.78489i 0.394565 + 0.683406i
\(206\) 8.18508i 0.570281i
\(207\) −0.422095 + 1.49923i −0.0293376 + 0.104204i
\(208\) 3.02853 1.95652i 0.209991 0.135660i
\(209\) 2.47935 + 4.29436i 0.171500 + 0.297047i
\(210\) 2.54558 + 3.36123i 0.175662 + 0.231947i
\(211\) 6.32982 10.9636i 0.435763 0.754764i −0.561595 0.827413i \(-0.689812\pi\)
0.997358 + 0.0726489i \(0.0231453\pi\)
\(212\) 3.64650 6.31593i 0.250443 0.433780i
\(213\) 27.4240 3.43429i 1.87906 0.235314i
\(214\) −11.7437 + 6.78023i −0.802784 + 0.463487i
\(215\) 15.6477i 1.06717i
\(216\) −4.83745 + 1.89713i −0.329147 + 0.129083i
\(217\) 5.03596 0.341863
\(218\) 4.25113 + 7.36317i 0.287923 + 0.498697i
\(219\) −9.01930 + 1.12948i −0.609468 + 0.0763234i
\(220\) 3.09254 5.35643i 0.208499 0.361131i
\(221\) −0.686074 13.7156i −0.0461503 0.922610i
\(222\) 15.6769 11.8727i 1.05216 0.796842i
\(223\) 25.8125 14.9028i 1.72853 0.997968i 0.832408 0.554164i \(-0.186962\pi\)
0.896124 0.443804i \(-0.146372\pi\)
\(224\) −0.876431 −0.0585590
\(225\) −5.68563 5.83118i −0.379042 0.388745i
\(226\) 3.30773i 0.220027i
\(227\) −19.4683 + 11.2401i −1.29216 + 0.746029i −0.979037 0.203684i \(-0.934708\pi\)
−0.313123 + 0.949713i \(0.601375\pi\)
\(228\) −1.49848 + 3.55397i −0.0992392 + 0.235367i
\(229\) −15.7207 9.07634i −1.03885 0.599781i −0.119344 0.992853i \(-0.538079\pi\)
−0.919508 + 0.393072i \(0.871412\pi\)
\(230\) 0.721013 1.24883i 0.0475422 0.0823455i
\(231\) −3.11480 1.31331i −0.204939 0.0864097i
\(232\) 6.60527 3.81355i 0.433657 0.250372i
\(233\) −11.1281 −0.729027 −0.364514 0.931198i \(-0.618765\pi\)
−0.364514 + 0.931198i \(0.618765\pi\)
\(234\) 7.92875 + 7.35765i 0.518318 + 0.480985i
\(235\) −2.95194 −0.192564
\(236\) 3.52376 2.03444i 0.229377 0.132431i
\(237\) −19.5983 + 14.8425i −1.27304 + 0.964123i
\(238\) −1.66906 + 2.89090i −0.108189 + 0.187390i
\(239\) 7.49042 + 4.32460i 0.484515 + 0.279735i 0.722296 0.691584i \(-0.243087\pi\)
−0.237781 + 0.971319i \(0.576420\pi\)
\(240\) 4.77356 0.597791i 0.308132 0.0385873i
\(241\) 2.19103 1.26499i 0.141137 0.0814853i −0.427769 0.903888i \(-0.640700\pi\)
0.568906 + 0.822403i \(0.307367\pi\)
\(242\) 6.04130i 0.388349i
\(243\) −9.09426 12.6607i −0.583397 0.812187i
\(244\) −7.89810 −0.505624
\(245\) 14.9903 8.65465i 0.957694 0.552925i
\(246\) −0.875493 6.99111i −0.0558194 0.445737i
\(247\) 8.01887 0.401116i 0.510228 0.0255224i
\(248\) 2.87299 4.97617i 0.182435 0.315987i
\(249\) 0.774455 + 1.02260i 0.0490791 + 0.0648049i
\(250\) −3.17368 5.49698i −0.200721 0.347660i
\(251\) 22.5341 1.42234 0.711170 0.703020i \(-0.248166\pi\)
0.711170 + 0.703020i \(0.248166\pi\)
\(252\) −0.648362 2.54810i −0.0408430 0.160515i
\(253\) 1.15610i 0.0726835i
\(254\) 10.9463 6.31987i 0.686834 0.396544i
\(255\) 7.11891 16.8840i 0.445803 1.05732i
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) −3.37154 + 5.83968i −0.210311 + 0.364269i −0.951812 0.306683i \(-0.900781\pi\)
0.741501 + 0.670952i \(0.234114\pi\)
\(258\) −3.79103 + 8.99123i −0.236019 + 0.559770i
\(259\) 4.97540 + 8.61765i 0.309157 + 0.535475i
\(260\) −5.43433 8.41189i −0.337023 0.521683i
\(261\) 15.9738 + 16.3827i 0.988752 + 1.01406i
\(262\) 7.42964i 0.459005i
\(263\) −4.11486 7.12715i −0.253733 0.439479i 0.710817 0.703377i \(-0.248325\pi\)
−0.964551 + 0.263898i \(0.914992\pi\)
\(264\) −3.07470 + 2.32858i −0.189235 + 0.143314i
\(265\) −17.5428 10.1283i −1.07764 0.622178i
\(266\) −1.69018 0.975824i −0.103631 0.0598316i
\(267\) −17.0129 + 2.13052i −1.04117 + 0.130386i
\(268\) 5.95399 3.43754i 0.363698 0.209981i
\(269\) −23.8369 −1.45336 −0.726680 0.686976i \(-0.758938\pi\)
−0.726680 + 0.686976i \(0.758938\pi\)
\(270\) 5.26936 + 13.4362i 0.320683 + 0.817703i
\(271\) 15.4310i 0.937367i −0.883366 0.468684i \(-0.844728\pi\)
0.883366 0.468684i \(-0.155272\pi\)
\(272\) 1.90439 + 3.29850i 0.115471 + 0.200001i
\(273\) −4.19270 + 3.51829i −0.253754 + 0.212937i
\(274\) −8.14752 + 14.1119i −0.492209 + 0.852532i
\(275\) −5.23535 3.02263i −0.315703 0.182271i
\(276\) −0.716855 + 0.542900i −0.0431496 + 0.0326788i
\(277\) −4.62513 8.01097i −0.277897 0.481332i 0.692965 0.720972i \(-0.256304\pi\)
−0.970862 + 0.239639i \(0.922971\pi\)
\(278\) 10.6286i 0.637463i
\(279\) 16.5929 + 4.67157i 0.993390 + 0.279680i
\(280\) 2.43433i 0.145479i
\(281\) −17.0788 + 9.86047i −1.01884 + 0.588226i −0.913767 0.406239i \(-0.866840\pi\)
−0.105071 + 0.994465i \(0.533507\pi\)
\(282\) 1.69620 + 0.715177i 0.101007 + 0.0425882i
\(283\) −3.75118 + 6.49723i −0.222984 + 0.386220i −0.955713 0.294301i \(-0.904913\pi\)
0.732728 + 0.680521i \(0.238247\pi\)
\(284\) 13.8191 + 7.97845i 0.820012 + 0.473434i
\(285\) 9.87130 + 4.16209i 0.584725 + 0.246541i
\(286\) 7.14510 + 3.66206i 0.422499 + 0.216542i
\(287\) 3.56518 0.210446
\(288\) −2.88773 0.813014i −0.170161 0.0479073i
\(289\) −2.49322 −0.146660
\(290\) −10.5923 18.3464i −0.622002 1.07734i
\(291\) 16.4472 + 21.7171i 0.964150 + 1.27308i
\(292\) −4.54487 2.62398i −0.265969 0.153557i
\(293\) −18.7239 10.8103i −1.09386 0.631543i −0.159261 0.987236i \(-0.550911\pi\)
−0.934603 + 0.355694i \(0.884245\pi\)
\(294\) −10.7103 + 1.34124i −0.624635 + 0.0782228i
\(295\) −5.65075 9.78739i −0.328999 0.569844i
\(296\) 11.3538 0.659926
\(297\) −9.04462 7.21663i −0.524822 0.418752i
\(298\) −14.4264 −0.835700
\(299\) 1.66585 + 0.853794i 0.0963387 + 0.0493762i
\(300\) −0.584278 4.66565i −0.0337333 0.269372i
\(301\) −4.27601 2.46875i −0.246465 0.142297i
\(302\) 5.52751 9.57392i 0.318072 0.550917i
\(303\) −26.9720 + 20.4269i −1.54950 + 1.17349i
\(304\) −1.92848 + 1.11341i −0.110606 + 0.0638583i
\(305\) 21.9373i 1.25613i
\(306\) −8.18109 + 7.97689i −0.467682 + 0.456008i
\(307\) 7.81179i 0.445842i −0.974836 0.222921i \(-0.928441\pi\)
0.974836 0.222921i \(-0.0715593\pi\)
\(308\) −0.975824 1.69018i −0.0556028 0.0963068i
\(309\) 13.0633 + 5.50794i 0.743143 + 0.313336i
\(310\) −13.8215 7.97987i −0.785011 0.453226i
\(311\) 4.85008 8.40058i 0.275023 0.476353i −0.695118 0.718896i \(-0.744648\pi\)
0.970141 + 0.242542i \(0.0779813\pi\)
\(312\) 1.08460 + 6.15009i 0.0614036 + 0.348180i
\(313\) 15.9559 + 27.6364i 0.901880 + 1.56210i 0.825051 + 0.565058i \(0.191146\pi\)
0.0768289 + 0.997044i \(0.475520\pi\)
\(314\) 3.84103i 0.216762i
\(315\) −7.07746 + 1.80086i −0.398770 + 0.101467i
\(316\) −14.1938 −0.798463
\(317\) −24.4893 + 14.1389i −1.37546 + 0.794119i −0.991608 0.129277i \(-0.958734\pi\)
−0.383847 + 0.923397i \(0.625401\pi\)
\(318\) 7.62631 + 10.0699i 0.427662 + 0.564693i
\(319\) 14.7087 + 8.49207i 0.823529 + 0.475465i
\(320\) 2.40542 + 1.38877i 0.134467 + 0.0776347i
\(321\) −2.91852 23.3054i −0.162896 1.30078i
\(322\) −0.227510 0.394058i −0.0126786 0.0219600i
\(323\) 8.48144i 0.471920i
\(324\) 0.227448 8.99713i 0.0126360 0.499840i
\(325\) −8.22173 + 5.31148i −0.456060 + 0.294628i
\(326\) −9.75532 16.8967i −0.540297 0.935823i
\(327\) −14.6122 + 1.82988i −0.808057 + 0.101193i
\(328\) 2.03392 3.52286i 0.112305 0.194517i
\(329\) −0.465731 + 0.806669i −0.0256766 + 0.0444731i
\(330\) 6.46775 + 8.54013i 0.356038 + 0.470119i
\(331\) 9.22435 5.32568i 0.507016 0.292726i −0.224590 0.974453i \(-0.572104\pi\)
0.731606 + 0.681727i \(0.238771\pi\)
\(332\) 0.740607i 0.0406461i
\(333\) 8.39926 + 33.0095i 0.460277 + 1.80891i
\(334\) 11.6279 0.636252
\(335\) −9.54791 16.5375i −0.521658 0.903538i
\(336\) 0.589772 1.39877i 0.0321747 0.0763092i
\(337\) 0.320956 0.555913i 0.0174836 0.0302825i −0.857151 0.515065i \(-0.827768\pi\)
0.874635 + 0.484782i \(0.161101\pi\)
\(338\) 10.5535 7.59106i 0.574033 0.412899i
\(339\) 5.27909 + 2.22585i 0.286721 + 0.120892i
\(340\) 9.16172 5.28952i 0.496864 0.286865i
\(341\) 12.7952 0.692902
\(342\) −4.66372 4.78310i −0.252185 0.258641i
\(343\) 11.5968i 0.626169i
\(344\) −4.87889 + 2.81683i −0.263052 + 0.151873i
\(345\) 1.50793 + 1.99110i 0.0811842 + 0.107197i
\(346\) −6.27421 3.62242i −0.337304 0.194742i
\(347\) 12.7951 22.1617i 0.686876 1.18970i −0.285968 0.958239i \(-0.592315\pi\)
0.972843 0.231464i \(-0.0743517\pi\)
\(348\) 1.64153 + 13.1081i 0.0879951 + 0.702670i
\(349\) −3.03854 + 1.75430i −0.162649 + 0.0939056i −0.579115 0.815246i \(-0.696602\pi\)
0.416466 + 0.909151i \(0.363269\pi\)
\(350\) 2.37930 0.127179
\(351\) −17.0782 + 7.70302i −0.911565 + 0.411157i
\(352\) −2.22681 −0.118690
\(353\) 6.32742 3.65314i 0.336774 0.194437i −0.322070 0.946716i \(-0.604379\pi\)
0.658845 + 0.752279i \(0.271045\pi\)
\(354\) 0.875717 + 6.99289i 0.0465438 + 0.371668i
\(355\) 22.1605 38.3831i 1.17616 2.03716i
\(356\) −8.57290 4.94957i −0.454363 0.262327i
\(357\) −3.49069 4.60917i −0.184747 0.243943i
\(358\) 6.34455 3.66303i 0.335320 0.193597i
\(359\) 15.7989i 0.833832i 0.908945 + 0.416916i \(0.136889\pi\)
−0.908945 + 0.416916i \(0.863111\pi\)
\(360\) −2.25818 + 8.02081i −0.119017 + 0.422734i
\(361\) 14.0413 0.739016
\(362\) −8.70968 + 5.02853i −0.457771 + 0.264294i
\(363\) 9.64183 + 4.06534i 0.506065 + 0.213375i
\(364\) −3.15607 + 0.157871i −0.165423 + 0.00827470i
\(365\) −7.28823 + 12.6236i −0.381484 + 0.660749i
\(366\) 5.31483 12.6053i 0.277811 0.658887i
\(367\) −5.26543 9.11999i −0.274853 0.476060i 0.695245 0.718773i \(-0.255296\pi\)
−0.970098 + 0.242713i \(0.921963\pi\)
\(368\) −0.519173 −0.0270638
\(369\) 11.7469 + 3.30722i 0.611517 + 0.172167i
\(370\) 31.5357i 1.63946i
\(371\) −5.53548 + 3.19591i −0.287388 + 0.165923i
\(372\) 6.00859 + 7.93385i 0.311531 + 0.411351i
\(373\) 4.86520 8.42678i 0.251911 0.436322i −0.712141 0.702036i \(-0.752274\pi\)
0.964052 + 0.265714i \(0.0856077\pi\)
\(374\) −4.24072 + 7.34514i −0.219282 + 0.379808i
\(375\) 10.9088 1.36610i 0.563326 0.0705451i
\(376\) 0.531395 + 0.920402i 0.0274046 + 0.0474661i
\(377\) 23.0989 14.9226i 1.18966 0.768553i
\(378\) 4.50303 + 0.679902i 0.231611 + 0.0349704i
\(379\) 32.8344i 1.68659i 0.537450 + 0.843296i \(0.319388\pi\)
−0.537450 + 0.843296i \(0.680612\pi\)
\(380\) 3.09254 + 5.35643i 0.158644 + 0.274779i
\(381\) 2.72036 + 21.7230i 0.139368 + 1.11290i
\(382\) −16.2803 9.39944i −0.832973 0.480917i
\(383\) −11.9352 6.89079i −0.609860 0.352103i 0.163050 0.986618i \(-0.447867\pi\)
−0.772911 + 0.634515i \(0.781200\pi\)
\(384\) −1.04570 1.38076i −0.0533633 0.0704618i
\(385\) −4.69454 + 2.71040i −0.239256 + 0.138135i
\(386\) −13.2382 −0.673809
\(387\) −11.7988 12.1008i −0.599767 0.615121i
\(388\) 15.7284i 0.798486i
\(389\) −9.32704 16.1549i −0.472900 0.819086i 0.526619 0.850101i \(-0.323459\pi\)
−0.999519 + 0.0310151i \(0.990126\pi\)
\(390\) 17.0822 3.01254i 0.864989 0.152546i
\(391\) −0.988707 + 1.71249i −0.0500011 + 0.0866044i
\(392\) −5.39696 3.11593i −0.272587 0.157378i
\(393\) −11.8576 4.99959i −0.598137 0.252196i
\(394\) 0.676432 + 1.17161i 0.0340781 + 0.0590251i
\(395\) 39.4239i 1.98363i
\(396\) −1.64734 6.47415i −0.0827821 0.325338i
\(397\) 7.73466i 0.388191i −0.980983 0.194096i \(-0.937823\pi\)
0.980983 0.194096i \(-0.0621772\pi\)
\(398\) −1.23799 + 0.714756i −0.0620550 + 0.0358275i
\(399\) 2.69477 2.04084i 0.134907 0.102170i
\(400\) 1.35738 2.35105i 0.0678689 0.117552i
\(401\) −5.91085 3.41263i −0.295174 0.170419i 0.345099 0.938566i \(-0.387845\pi\)
−0.640273 + 0.768148i \(0.721179\pi\)
\(402\) 1.47967 + 11.8157i 0.0737994 + 0.589313i
\(403\) 9.44943 18.4369i 0.470710 0.918410i
\(404\) −19.5341 −0.971858
\(405\) −24.9899 0.631746i −1.24176 0.0313917i
\(406\) −6.68463 −0.331753
\(407\) 12.6414 + 21.8955i 0.626610 + 1.08532i
\(408\) −6.54587 + 0.819736i −0.324069 + 0.0405830i
\(409\) −27.0687 15.6281i −1.33846 0.772760i −0.351881 0.936045i \(-0.614458\pi\)
−0.986579 + 0.163285i \(0.947791\pi\)
\(410\) −9.78489 5.64931i −0.483241 0.278999i
\(411\) −17.0397 22.4996i −0.840509 1.10982i
\(412\) 4.09254 + 7.08848i 0.201625 + 0.349225i
\(413\) −3.56609 −0.175476
\(414\) −0.384072 1.50942i −0.0188761 0.0741840i
\(415\) 2.05707 0.100978
\(416\) −1.64453 + 3.20866i −0.0806296 + 0.157318i
\(417\) −16.9631 7.15227i −0.830689 0.350248i
\(418\) −4.29436 2.47935i −0.210044 0.121269i
\(419\) −8.68385 + 15.0409i −0.424234 + 0.734794i −0.996349 0.0853793i \(-0.972790\pi\)
0.572115 + 0.820174i \(0.306123\pi\)
\(420\) −3.88515 1.63812i −0.189576 0.0799320i
\(421\) 5.91995 3.41788i 0.288521 0.166577i −0.348754 0.937214i \(-0.613395\pi\)
0.637275 + 0.770637i \(0.280062\pi\)
\(422\) 12.6596i 0.616262i
\(423\) −2.28283 + 2.22585i −0.110995 + 0.108224i
\(424\) 7.29301i 0.354180i
\(425\) −5.16995 8.95461i −0.250779 0.434363i
\(426\) −22.0327 + 16.6862i −1.06749 + 0.808447i
\(427\) 5.99475 + 3.46107i 0.290106 + 0.167493i
\(428\) 6.78023 11.7437i 0.327735 0.567654i
\(429\) −10.6527 + 8.93919i −0.514318 + 0.431588i
\(430\) 7.82386 + 13.5513i 0.377300 + 0.653503i
\(431\) 37.9595i 1.82844i −0.405215 0.914221i \(-0.632803\pi\)
0.405215 0.914221i \(-0.367197\pi\)
\(432\) 3.24079 4.06169i 0.155922 0.195418i
\(433\) 5.83476 0.280401 0.140200 0.990123i \(-0.455225\pi\)
0.140200 + 0.990123i \(0.455225\pi\)
\(434\) −4.36127 + 2.51798i −0.209348 + 0.120867i
\(435\) 36.4085 4.55942i 1.74565 0.218607i
\(436\) −7.36317 4.25113i −0.352632 0.203592i
\(437\) −1.00121 0.578051i −0.0478945 0.0276519i
\(438\) 7.24620 5.48781i 0.346237 0.262218i
\(439\) −0.772490 1.33799i −0.0368690 0.0638589i 0.847002 0.531590i \(-0.178405\pi\)
−0.883871 + 0.467731i \(0.845072\pi\)
\(440\) 6.18508i 0.294862i
\(441\) 5.06660 17.9960i 0.241267 0.856951i
\(442\) 7.45195 + 11.5350i 0.354453 + 0.548665i
\(443\) −1.77937 3.08196i −0.0845403 0.146428i 0.820655 0.571424i \(-0.193609\pi\)
−0.905195 + 0.424996i \(0.860276\pi\)
\(444\) −7.64025 + 18.1205i −0.362590 + 0.859960i
\(445\) −13.7477 + 23.8116i −0.651701 + 1.12878i
\(446\) −14.9028 + 25.8125i −0.705670 + 1.22226i
\(447\) 9.70790 23.0244i 0.459168 1.08902i
\(448\) 0.759011 0.438215i 0.0358599 0.0207037i
\(449\) 10.1607i 0.479515i −0.970833 0.239757i \(-0.922932\pi\)
0.970833 0.239757i \(-0.0770679\pi\)
\(450\) 7.83949 + 2.20714i 0.369557 + 0.104045i
\(451\) 9.05833 0.426540
\(452\) 1.65386 + 2.86458i 0.0777912 + 0.134738i
\(453\) 11.5602 + 15.2644i 0.543148 + 0.717182i
\(454\) 11.2401 19.4683i 0.527522 0.913695i
\(455\) 0.438494 + 8.76613i 0.0205569 + 0.410962i
\(456\) −0.479262 3.82706i −0.0224435 0.179219i
\(457\) 18.4597 10.6577i 0.863506 0.498546i −0.00167864 0.999999i \(-0.500534\pi\)
0.865185 + 0.501453i \(0.167201\pi\)
\(458\) 18.1527 0.848219
\(459\) −7.22574 18.4248i −0.337269 0.859994i
\(460\) 1.44203i 0.0672348i
\(461\) 18.6408 10.7623i 0.868188 0.501248i 0.00144222 0.999999i \(-0.499541\pi\)
0.866746 + 0.498750i \(0.166208\pi\)
\(462\) 3.35416 0.420040i 0.156049 0.0195420i
\(463\) 31.0148 + 17.9064i 1.44138 + 0.832180i 0.997942 0.0641254i \(-0.0204258\pi\)
0.443437 + 0.896306i \(0.353759\pi\)
\(464\) −3.81355 + 6.60527i −0.177040 + 0.306642i
\(465\) 22.0366 16.6891i 1.02192 0.773940i
\(466\) 9.63723 5.56406i 0.446436 0.257750i
\(467\) −21.4529 −0.992723 −0.496362 0.868116i \(-0.665331\pi\)
−0.496362 + 0.868116i \(0.665331\pi\)
\(468\) −10.5453 2.40754i −0.487458 0.111288i
\(469\) −6.02552 −0.278233
\(470\) 2.55646 1.47597i 0.117921 0.0680815i
\(471\) 6.13023 + 2.58472i 0.282466 + 0.119098i
\(472\) −2.03444 + 3.52376i −0.0936427 + 0.162194i
\(473\) −10.8644 6.27255i −0.499544 0.288412i
\(474\) 9.55136 22.6531i 0.438709 1.04049i
\(475\) 5.23535 3.02263i 0.240214 0.138688i
\(476\) 3.33813i 0.153003i
\(477\) −21.2034 + 5.39519i −0.970836 + 0.247029i
\(478\) −8.64919 −0.395605
\(479\) −5.00102 + 2.88734i −0.228502 + 0.131926i −0.609881 0.792493i \(-0.708783\pi\)
0.381379 + 0.924419i \(0.375449\pi\)
\(480\) −3.83513 + 2.90448i −0.175049 + 0.132571i
\(481\) 40.8855 2.04515i 1.86422 0.0932510i
\(482\) −1.26499 + 2.19103i −0.0576188 + 0.0997987i
\(483\) 0.782008 0.0979306i 0.0355826 0.00445599i
\(484\) 3.02065 + 5.23192i 0.137302 + 0.237814i
\(485\) 43.6862 1.98369
\(486\) 14.2062 + 6.41739i 0.644408 + 0.291099i
\(487\) 32.9124i 1.49140i −0.666280 0.745702i \(-0.732114\pi\)
0.666280 0.745702i \(-0.267886\pi\)
\(488\) 6.83995 3.94905i 0.309630 0.178765i
\(489\) 33.5315 4.19914i 1.51635 0.189892i
\(490\) −8.65465 + 14.9903i −0.390977 + 0.677192i
\(491\) 4.89961 8.48638i 0.221116 0.382985i −0.734031 0.679116i \(-0.762363\pi\)
0.955147 + 0.296131i \(0.0956966\pi\)
\(492\) 4.25375 + 5.61673i 0.191774 + 0.253222i
\(493\) 14.5250 + 25.1580i 0.654172 + 1.13306i
\(494\) −6.74399 + 4.35681i −0.303426 + 0.196022i
\(495\) −17.9822 + 4.57557i −0.808241 + 0.205657i
\(496\) 5.74599i 0.258002i
\(497\) −6.99256 12.1115i −0.313659 0.543274i
\(498\) −1.18200 0.498373i −0.0529666 0.0223326i
\(499\) −35.7763 20.6555i −1.60157 0.924666i −0.991174 0.132569i \(-0.957677\pi\)
−0.610395 0.792097i \(-0.708989\pi\)
\(500\) 5.49698 + 3.17368i 0.245833 + 0.141931i
\(501\) −7.82473 + 18.5580i −0.349583 + 0.829111i
\(502\) −19.5151 + 11.2671i −0.871002 + 0.502873i
\(503\) −11.0563 −0.492976 −0.246488 0.969146i \(-0.579277\pi\)
−0.246488 + 0.969146i \(0.579277\pi\)
\(504\) 1.83555 + 1.88254i 0.0817618 + 0.0838548i
\(505\) 54.2568i 2.41440i
\(506\) −0.578051 1.00121i −0.0256975 0.0445094i
\(507\) 5.01353 + 21.9514i 0.222659 + 0.974896i
\(508\) −6.31987 + 10.9463i −0.280399 + 0.485665i
\(509\) −0.959102 0.553738i −0.0425115 0.0245440i 0.478594 0.878037i \(-0.341147\pi\)
−0.521105 + 0.853493i \(0.674480\pi\)
\(510\) 2.27685 + 18.1814i 0.100821 + 0.805088i
\(511\) 2.29974 + 3.98327i 0.101735 + 0.176209i
\(512\) 1.00000i 0.0441942i
\(513\) 10.7721 4.22455i 0.475600 0.186519i
\(514\) 6.74309i 0.297425i
\(515\) 19.6886 11.3672i 0.867583 0.500899i
\(516\) −1.21249 9.68215i −0.0533769 0.426233i
\(517\) −1.18332 + 2.04957i −0.0520422 + 0.0901398i
\(518\) −8.61765 4.97540i −0.378638 0.218607i
\(519\) 10.0034 7.57594i 0.439101 0.332547i
\(520\) 8.91221 + 4.56775i 0.390826 + 0.200309i
\(521\) −9.02695 −0.395478 −0.197739 0.980255i \(-0.563360\pi\)
−0.197739 + 0.980255i \(0.563360\pi\)
\(522\) −22.0250 6.20094i −0.964010 0.271408i
\(523\) 9.47081 0.414130 0.207065 0.978327i \(-0.433609\pi\)
0.207065 + 0.978327i \(0.433609\pi\)
\(524\) −3.71482 6.43426i −0.162283 0.281082i
\(525\) −1.60109 + 3.79732i −0.0698772 + 0.165729i
\(526\) 7.12715 + 4.11486i 0.310759 + 0.179417i
\(527\) 18.9531 + 10.9426i 0.825611 + 0.476667i
\(528\) 1.49848 3.55397i 0.0652129 0.154666i
\(529\) 11.3652 + 19.6852i 0.494140 + 0.855876i
\(530\) 20.2567 0.879893
\(531\) −11.7499 3.30806i −0.509900 0.143558i
\(532\) 1.95165 0.0846147
\(533\) 6.68968 13.0523i 0.289762 0.565360i
\(534\) 13.6684 10.3515i 0.591488 0.447955i
\(535\) −32.6187 18.8324i −1.41023 0.814196i
\(536\) −3.43754 + 5.95399i −0.148479 + 0.257173i
\(537\) 1.57674 + 12.5908i 0.0680412 + 0.543331i
\(538\) 20.6433 11.9184i 0.889998 0.513840i
\(539\) 13.8772i 0.597734i
\(540\) −11.2815 9.00143i −0.485479 0.387360i
\(541\) 29.1499i 1.25325i −0.779320 0.626626i \(-0.784436\pi\)
0.779320 0.626626i \(-0.215564\pi\)
\(542\) 7.71551 + 13.3637i 0.331409 + 0.574018i
\(543\) −2.16451 17.2844i −0.0928881 0.741743i
\(544\) −3.29850 1.90439i −0.141422 0.0816500i
\(545\) −11.8077 + 20.4515i −0.505786 + 0.876047i
\(546\) 1.87184 5.14328i 0.0801073 0.220112i
\(547\) −14.6450 25.3659i −0.626175 1.08457i −0.988312 0.152442i \(-0.951286\pi\)
0.362137 0.932125i \(-0.382047\pi\)
\(548\) 16.2950i 0.696089i
\(549\) 16.5413 + 16.9648i 0.705967 + 0.724039i
\(550\) 6.04526 0.257771
\(551\) −14.7087 + 8.49207i −0.626612 + 0.361774i
\(552\) 0.349364 0.828593i 0.0148699 0.0352673i
\(553\) 10.7733 + 6.21994i 0.458125 + 0.264499i
\(554\) 8.01097 + 4.62513i 0.340353 + 0.196503i
\(555\) 50.3305 + 21.2211i 2.13641 + 0.900787i
\(556\) −5.31431 9.20466i −0.225377 0.390365i
\(557\) 14.0519i 0.595400i 0.954659 + 0.297700i \(0.0962195\pi\)
−0.954659 + 0.297700i \(0.903780\pi\)
\(558\) −16.7056 + 4.25074i −0.707206 + 0.179948i
\(559\) −17.0617 + 11.0224i −0.721634 + 0.466196i
\(560\) −1.21716 2.10819i −0.0514345 0.0890872i
\(561\) −8.86906 11.7109i −0.374452 0.494433i
\(562\) 9.86047 17.0788i 0.415939 0.720427i
\(563\) −1.73120 + 2.99852i −0.0729612 + 0.126373i −0.900198 0.435481i \(-0.856578\pi\)
0.827237 + 0.561854i \(0.189912\pi\)
\(564\) −1.82654 + 0.228737i −0.0769111 + 0.00963155i
\(565\) 7.95649 4.59368i 0.334732 0.193258i
\(566\) 7.50235i 0.315347i
\(567\) −4.11531 + 6.72925i −0.172827 + 0.282602i
\(568\) −15.9569 −0.669537
\(569\) 7.89491 + 13.6744i 0.330972 + 0.573260i 0.982703 0.185190i \(-0.0592901\pi\)
−0.651731 + 0.758450i \(0.725957\pi\)
\(570\) −10.6298 + 1.33117i −0.445235 + 0.0557566i
\(571\) −15.2110 + 26.3463i −0.636562 + 1.10256i 0.349620 + 0.936892i \(0.386311\pi\)
−0.986182 + 0.165666i \(0.947023\pi\)
\(572\) −8.01887 + 0.401116i −0.335286 + 0.0167715i
\(573\) 25.9568 19.6580i 1.08436 0.821226i
\(574\) −3.08754 + 1.78259i −0.128871 + 0.0744039i
\(575\) 1.40943 0.0587772
\(576\) 2.90736 0.739776i 0.121140 0.0308240i
\(577\) 3.19469i 0.132997i 0.997787 + 0.0664984i \(0.0211827\pi\)
−0.997787 + 0.0664984i \(0.978817\pi\)
\(578\) 2.15919 1.24661i 0.0898106 0.0518521i
\(579\) 8.90834 21.1280i 0.370218 0.878052i
\(580\) 18.3464 + 10.5923i 0.761794 + 0.439822i
\(581\) 0.324546 0.562129i 0.0134644 0.0233211i
\(582\) −25.1022 10.5840i −1.04052 0.438721i
\(583\) −14.0644 + 8.12009i −0.582488 + 0.336300i
\(584\) 5.24797 0.217162
\(585\) −6.68704 + 29.2901i −0.276475 + 1.21100i
\(586\) 21.6205 0.893136
\(587\) 11.2778 6.51126i 0.465486 0.268748i −0.248862 0.968539i \(-0.580057\pi\)
0.714348 + 0.699790i \(0.246723\pi\)
\(588\) 8.60474 6.51668i 0.354853 0.268743i
\(589\) −6.39762 + 11.0810i −0.263610 + 0.456585i
\(590\) 9.78739 + 5.65075i 0.402940 + 0.232638i
\(591\) −2.32507 + 0.291167i −0.0956405 + 0.0119770i
\(592\) −9.83267 + 5.67689i −0.404120 + 0.233319i
\(593\) 11.9872i 0.492254i −0.969238 0.246127i \(-0.920842\pi\)
0.969238 0.246127i \(-0.0791581\pi\)
\(594\) 11.4412 + 1.72748i 0.469438 + 0.0708793i
\(595\) −9.27180 −0.380107
\(596\) 12.4936 7.21321i 0.511760 0.295465i
\(597\) −0.307664 2.45680i −0.0125918 0.100550i
\(598\) −1.86957 + 0.0935185i −0.0764523 + 0.00382425i
\(599\) 9.75297 16.8926i 0.398495 0.690214i −0.595045 0.803692i \(-0.702866\pi\)
0.993541 + 0.113478i \(0.0361992\pi\)
\(600\) 2.83883 + 3.74843i 0.115895 + 0.153029i
\(601\) 8.24140 + 14.2745i 0.336174 + 0.582270i 0.983710 0.179765i \(-0.0575337\pi\)
−0.647536 + 0.762035i \(0.724200\pi\)
\(602\) 4.93751 0.201238
\(603\) −19.8534 5.58953i −0.808492 0.227623i
\(604\) 11.0550i 0.449822i
\(605\) 14.5319 8.38999i 0.590805 0.341101i
\(606\) 13.1450 31.1762i 0.533979 1.26644i
\(607\) −1.49710 + 2.59306i −0.0607655 + 0.105249i −0.894808 0.446452i \(-0.852688\pi\)
0.834042 + 0.551700i \(0.186021\pi\)
\(608\) 1.11341 1.92848i 0.0451546 0.0782101i
\(609\) 4.49825 10.6686i 0.182278 0.432312i
\(610\) −10.9687 18.9983i −0.444108 0.769218i
\(611\) 2.07937 + 3.21869i 0.0841223 + 0.130214i
\(612\) 3.09659 10.9987i 0.125172 0.444597i
\(613\) 27.2249i 1.09961i 0.835295 + 0.549803i \(0.185297\pi\)
−0.835295 + 0.549803i \(0.814703\pi\)
\(614\) 3.90590 + 6.76521i 0.157629 + 0.273022i
\(615\) 15.6007 11.8150i 0.629082 0.476426i
\(616\) 1.69018 + 0.975824i 0.0680992 + 0.0393171i
\(617\) −7.28671 4.20698i −0.293352 0.169367i 0.346101 0.938197i \(-0.387506\pi\)
−0.639453 + 0.768831i \(0.720839\pi\)
\(618\) −14.0671 + 1.76162i −0.565862 + 0.0708626i
\(619\) −30.4315 + 17.5696i −1.22314 + 0.706182i −0.965587 0.260081i \(-0.916251\pi\)
−0.257557 + 0.966263i \(0.582917\pi\)
\(620\) 15.9597 0.640959
\(621\) 2.66747 + 0.402755i 0.107042 + 0.0161620i
\(622\) 9.70016i 0.388941i
\(623\) 4.33795 + 7.51356i 0.173796 + 0.301024i
\(624\) −4.01434 4.78383i −0.160702 0.191507i
\(625\) 15.6019 27.0234i 0.624078 1.08093i
\(626\) −27.6364 15.9559i −1.10457 0.637726i
\(627\) 6.84679 5.18533i 0.273435 0.207082i
\(628\) 1.92051 + 3.32643i 0.0766369 + 0.132739i
\(629\) 43.2440i 1.72425i
\(630\) 5.22883 5.09832i 0.208322 0.203122i
\(631\) 21.0022i 0.836083i 0.908428 + 0.418042i \(0.137283\pi\)
−0.908428 + 0.418042i \(0.862717\pi\)
\(632\) 12.2922 7.09690i 0.488957 0.282299i
\(633\) −20.2046 8.51899i −0.803062 0.338600i
\(634\) 14.1389 24.4893i 0.561527 0.972594i
\(635\) 30.4040 + 17.5537i 1.20654 + 0.696599i
\(636\) −11.6395 4.90765i −0.461538 0.194601i
\(637\) −19.9960 10.2485i −0.792269 0.406060i
\(638\) −16.9841 −0.672409
\(639\) −11.8045 46.3924i −0.466980 1.83526i
\(640\) −2.77754 −0.109792
\(641\) −11.7828 20.4085i −0.465394 0.806087i 0.533825 0.845595i \(-0.320754\pi\)
−0.999219 + 0.0395083i \(0.987421\pi\)
\(642\) 14.1802 + 18.7238i 0.559648 + 0.738969i
\(643\) −19.7342 11.3935i −0.778240 0.449317i 0.0575663 0.998342i \(-0.481666\pi\)
−0.835806 + 0.549025i \(0.814999\pi\)
\(644\) 0.394058 + 0.227510i 0.0155281 + 0.00896513i
\(645\) −26.8926 + 3.36775i −1.05889 + 0.132605i
\(646\) −4.24072 7.34514i −0.166849 0.288991i
\(647\) −45.8902 −1.80413 −0.902065 0.431600i \(-0.857949\pi\)
−0.902065 + 0.431600i \(0.857949\pi\)
\(648\) 4.30159 + 7.90546i 0.168982 + 0.310556i
\(649\) −9.06065 −0.355661
\(650\) 4.46449 8.71074i 0.175112 0.341663i
\(651\) −1.08385 8.65494i −0.0424796 0.339214i
\(652\) 16.8967 + 9.75532i 0.661726 + 0.382048i
\(653\) 7.28145 12.6118i 0.284945 0.493539i −0.687651 0.726042i \(-0.741358\pi\)
0.972596 + 0.232502i \(0.0746913\pi\)
\(654\) 11.7396 8.89082i 0.459055 0.347659i
\(655\) −17.8714 + 10.3181i −0.698295 + 0.403161i
\(656\) 4.06784i 0.158823i
\(657\) 3.88232 + 15.2577i 0.151464 + 0.595260i
\(658\) 0.931461i 0.0363121i
\(659\) 12.3920 + 21.4636i 0.482724 + 0.836102i 0.999803 0.0198353i \(-0.00631420\pi\)
−0.517080 + 0.855937i \(0.672981\pi\)
\(660\) −9.87130 4.16209i −0.384240 0.162009i
\(661\) −16.5731 9.56850i −0.644620 0.372172i 0.141772 0.989899i \(-0.454720\pi\)
−0.786392 + 0.617728i \(0.788053\pi\)
\(662\) −5.32568 + 9.22435i −0.206989 + 0.358515i
\(663\) −23.4243 + 4.13102i −0.909726 + 0.160435i
\(664\) −0.370304 0.641385i −0.0143706 0.0248906i
\(665\) 5.42079i 0.210209i
\(666\) −23.7787 24.3875i −0.921407 0.944995i
\(667\) −3.95979 −0.153324
\(668\) −10.0701 + 5.81397i −0.389623 + 0.224949i
\(669\) −31.1679 41.1546i −1.20502 1.59113i
\(670\) 16.5375 + 9.54791i 0.638898 + 0.368868i
\(671\) 15.2313 + 8.79380i 0.587998 + 0.339481i
\(672\) 0.188628 + 1.50626i 0.00727648 + 0.0581052i
\(673\) 7.35301 + 12.7358i 0.283438 + 0.490929i 0.972229 0.234031i \(-0.0751917\pi\)
−0.688791 + 0.724960i \(0.741858\pi\)
\(674\) 0.641913i 0.0247256i
\(675\) −8.79795 + 11.0265i −0.338633 + 0.424410i
\(676\) −5.34405 + 11.8508i −0.205540 + 0.455799i
\(677\) 19.0892 + 33.0634i 0.733656 + 1.27073i 0.955311 + 0.295604i \(0.0955209\pi\)
−0.221655 + 0.975125i \(0.571146\pi\)
\(678\) −5.68475 + 0.711899i −0.218321 + 0.0273403i
\(679\) 6.89241 11.9380i 0.264506 0.458138i
\(680\) −5.28952 + 9.16172i −0.202844 + 0.351336i
\(681\) 23.5075 + 31.0397i 0.900809 + 1.18944i
\(682\) −11.0810 + 6.39762i −0.424314 + 0.244978i
\(683\) 50.5922i 1.93586i −0.251229 0.967928i \(-0.580835\pi\)
0.251229 0.967928i \(-0.419165\pi\)
\(684\) 6.43045 + 1.81043i 0.245874 + 0.0692236i
\(685\) −45.2602 −1.72930
\(686\) 5.79841 + 10.0431i 0.221384 + 0.383449i
\(687\) −12.2154 + 28.9714i −0.466046 + 1.10533i
\(688\) 2.81683 4.87889i 0.107390 0.186006i
\(689\) 1.31369 + 26.2625i 0.0500475 + 1.00052i
\(690\) −2.30145 0.970375i −0.0876148 0.0369416i
\(691\) 11.4208 6.59378i 0.434466 0.250839i −0.266781 0.963757i \(-0.585960\pi\)
0.701247 + 0.712918i \(0.252627\pi\)
\(692\) 7.24484 0.275407
\(693\) −1.58672 + 5.63584i −0.0602745 + 0.214088i
\(694\) 25.5902i 0.971389i
\(695\) −25.5664 + 14.7607i −0.969787 + 0.559907i
\(696\) −7.97568 10.5312i −0.302317 0.399185i
\(697\) 13.4178 + 7.74675i 0.508234 + 0.293429i
\(698\) 1.75430 3.03854i 0.0664013 0.115010i
\(699\) 2.39503 + 19.1251i 0.0905882 + 0.723377i
\(700\) −2.06053 + 1.18965i −0.0778807 + 0.0449645i
\(701\) 17.7794 0.671519 0.335759 0.941948i \(-0.391007\pi\)
0.335759 + 0.941948i \(0.391007\pi\)
\(702\) 10.9386 15.2101i 0.412851 0.574068i
\(703\) −25.2828 −0.953558
\(704\) 1.92848 1.11341i 0.0726822 0.0419631i
\(705\) 0.635326 + 5.07329i 0.0239278 + 0.191071i
\(706\) −3.65314 + 6.32742i −0.137488 + 0.238135i
\(707\) 14.8266 + 8.56014i 0.557612 + 0.321937i
\(708\) −4.25484 5.61816i −0.159907 0.211144i
\(709\) 2.99306 1.72804i 0.112407 0.0648980i −0.442743 0.896649i \(-0.645994\pi\)
0.555149 + 0.831751i \(0.312661\pi\)
\(710\) 44.3210i 1.66334i
\(711\) 29.7267 + 30.4877i 1.11484 + 1.14338i
\(712\) 9.89914 0.370986
\(713\) −2.58349 + 1.49158i −0.0967526 + 0.0558601i
\(714\) 5.32761 + 2.24631i 0.199381 + 0.0840661i
\(715\) 1.11412 + 22.2728i 0.0416656 + 0.832954i
\(716\) −3.66303 + 6.34455i −0.136894 + 0.237107i
\(717\) 5.82026 13.8040i 0.217362 0.515520i
\(718\) −7.89943 13.6822i −0.294804 0.510616i
\(719\) −39.2187 −1.46261 −0.731305 0.682051i \(-0.761088\pi\)
−0.731305 + 0.682051i \(0.761088\pi\)
\(720\) −2.05476 8.07532i −0.0765764 0.300949i
\(721\) 7.17365i 0.267161i
\(722\) −12.1601 + 7.02065i −0.452553 + 0.261281i
\(723\) −2.64561 3.49331i −0.0983913 0.129918i
\(724\) 5.02853 8.70968i 0.186884 0.323693i
\(725\) 10.3529 17.9317i 0.384496 0.665966i
\(726\) −10.3827 + 1.30023i −0.385340 + 0.0482559i
\(727\) 1.64755 + 2.85364i 0.0611042 + 0.105836i 0.894959 0.446148i \(-0.147204\pi\)
−0.833855 + 0.551983i \(0.813871\pi\)
\(728\) 2.65430 1.71476i 0.0983750 0.0635531i
\(729\) −19.8018 + 18.3545i −0.733400 + 0.679797i
\(730\) 14.5765i 0.539499i
\(731\) −10.7287 18.5826i −0.396814 0.687302i
\(732\) 1.69985 + 13.5739i 0.0628283 + 0.501705i
\(733\) −19.3253 11.1575i −0.713796 0.412110i 0.0986691 0.995120i \(-0.468541\pi\)
−0.812465 + 0.583010i \(0.801875\pi\)
\(734\) 9.11999 + 5.26543i 0.336625 + 0.194351i
\(735\) −18.1004 23.9000i −0.667642 0.881566i
\(736\) 0.449617 0.259586i 0.0165731 0.00956848i
\(737\) −15.3095 −0.563933
\(738\) −11.8267 + 3.00929i −0.435346 + 0.110774i
\(739\) 6.45694i 0.237522i 0.992923 + 0.118761i \(0.0378923\pi\)
−0.992923 + 0.118761i \(0.962108\pi\)
\(740\) 15.7678 + 27.3107i 0.579637 + 1.00396i
\(741\) −2.41521 13.6951i −0.0887250 0.503103i
\(742\) 3.19591 5.53548i 0.117325 0.203214i
\(743\) 19.1556 + 11.0595i 0.702750 + 0.405733i 0.808371 0.588673i \(-0.200350\pi\)
−0.105621 + 0.994406i \(0.533683\pi\)
\(744\) −9.17052 3.86662i −0.336207 0.141757i
\(745\) −20.0350 34.7017i −0.734026 1.27137i
\(746\) 9.73041i 0.356256i
\(747\) 1.59079 1.55109i 0.0582041 0.0567513i
\(748\) 8.48144i 0.310112i
\(749\) −10.2926 + 5.94241i −0.376082 + 0.217131i
\(750\) −8.76421 + 6.63746i −0.320024 + 0.242366i
\(751\) −7.90342 + 13.6891i −0.288400 + 0.499523i −0.973428 0.228993i \(-0.926457\pi\)
0.685028 + 0.728517i \(0.259790\pi\)
\(752\) −0.920402 0.531395i −0.0335636 0.0193780i
\(753\) −4.84986 38.7277i −0.176739 1.41132i
\(754\) −12.5430 + 24.4728i −0.456788 + 0.891247i
\(755\) 30.7058 1.11750
\(756\) −4.23969 + 1.66270i −0.154196 + 0.0604719i
\(757\) −44.5733 −1.62004 −0.810021 0.586400i \(-0.800545\pi\)
−0.810021 + 0.586400i \(0.800545\pi\)
\(758\) −16.4172 28.4354i −0.596300 1.03282i
\(759\) 1.98691 0.248820i 0.0721202 0.00903158i
\(760\) −5.35643 3.09254i −0.194298 0.112178i
\(761\) −19.2427 11.1098i −0.697547 0.402729i 0.108886 0.994054i \(-0.465272\pi\)
−0.806433 + 0.591325i \(0.798605\pi\)
\(762\) −13.2174 17.4525i −0.478816 0.632237i
\(763\) 3.72582 + 6.45331i 0.134884 + 0.233625i
\(764\) 18.7989 0.680120
\(765\) −30.5495 8.60092i −1.10452 0.310967i
\(766\) 13.7816 0.497949
\(767\) −6.69139 + 13.0557i −0.241612 + 0.471413i
\(768\) 1.59599 + 0.672925i 0.0575902 + 0.0242821i
\(769\) −30.5190 17.6202i −1.10054 0.635399i −0.164180 0.986430i \(-0.552498\pi\)
−0.936364 + 0.351031i \(0.885831\pi\)
\(770\) 2.71040 4.69454i 0.0976759 0.169180i
\(771\) 10.7619 + 4.53759i 0.387579 + 0.163417i
\(772\) 11.4647 6.61912i 0.412622 0.238227i
\(773\) 12.6527i 0.455086i −0.973768 0.227543i \(-0.926931\pi\)
0.973768 0.227543i \(-0.0730693\pi\)
\(774\) 16.2685 + 4.58024i 0.584759 + 0.164633i
\(775\) 15.5990i 0.560331i
\(776\) −7.86418 13.6212i −0.282308 0.488971i
\(777\) 13.7397 10.4056i 0.492909 0.373298i
\(778\) 16.1549 + 9.32704i 0.579181 + 0.334390i
\(779\) −4.52917 + 7.84475i −0.162274 + 0.281067i
\(780\) −13.2873 + 11.1500i −0.475762 + 0.399234i
\(781\) −17.7665 30.7725i −0.635736 1.10113i
\(782\) 1.97741i 0.0707122i
\(783\) 24.7178 30.9789i 0.883343 1.10710i
\(784\) 6.23187 0.222567
\(785\) 9.23931 5.33432i 0.329765 0.190390i
\(786\) 12.7688 1.59903i 0.455447 0.0570355i
\(787\) 13.1205 + 7.57513i 0.467695 + 0.270024i 0.715274 0.698844i \(-0.246302\pi\)
−0.247579 + 0.968868i \(0.579635\pi\)
\(788\) −1.17161 0.676432i −0.0417370 0.0240969i
\(789\) −11.3633 + 8.60584i −0.404544 + 0.306376i
\(790\) −19.7120 34.1421i −0.701320 1.21472i
\(791\) 2.89899i 0.103076i
\(792\) 4.66372 + 4.78310i 0.165718 + 0.169960i
\(793\) 23.9197 15.4528i 0.849412 0.548745i
\(794\) 3.86733 + 6.69841i 0.137246 + 0.237718i
\(795\) −13.6312 + 32.3293i −0.483449 + 1.14660i
\(796\) 0.714756 1.23799i 0.0253338 0.0438795i
\(797\) 5.91305 10.2417i 0.209451 0.362780i −0.742091 0.670300i \(-0.766166\pi\)
0.951542 + 0.307520i \(0.0994990\pi\)
\(798\) −1.31331 + 3.11480i −0.0464908 + 0.110263i
\(799\) −3.50561 + 2.02396i −0.124019 + 0.0716027i
\(800\) 2.71476i 0.0959811i
\(801\) 7.32314 + 28.7803i 0.258751 + 1.01690i
\(802\) 6.82526 0.241008
\(803\) 5.84313 + 10.1206i 0.206199 + 0.357148i
\(804\) −7.18928 9.49285i −0.253546 0.334787i
\(805\) 0.631918 1.09451i 0.0222722 0.0385766i
\(806\) 1.03502 + 20.6916i 0.0364571 + 0.728830i
\(807\) 5.13024 + 40.9667i 0.180593 + 1.44210i
\(808\) 16.9170 9.76705i 0.595139 0.343604i
\(809\) −18.4258 −0.647815 −0.323908 0.946089i \(-0.604997\pi\)
−0.323908 + 0.946089i \(0.604997\pi\)
\(810\) 21.9578 11.9479i 0.771518 0.419805i
\(811\) 32.9748i 1.15790i 0.815362 + 0.578952i \(0.196538\pi\)
−0.815362 + 0.578952i \(0.803462\pi\)
\(812\) 5.78906 3.34231i 0.203156 0.117292i
\(813\) −26.5202 + 3.32111i −0.930103 + 0.116476i
\(814\) −21.8955 12.6414i −0.767438 0.443080i
\(815\) 27.0958 46.9314i 0.949126 1.64393i
\(816\) 5.25902 3.98285i 0.184102 0.139427i
\(817\) 10.8644 6.27255i 0.380096 0.219449i
\(818\) 31.2562 1.09285
\(819\) 6.94900 + 6.44847i 0.242818 + 0.225328i
\(820\) 11.2986 0.394565
\(821\) 28.9333 16.7047i 1.00978 0.582996i 0.0986524 0.995122i \(-0.468547\pi\)
0.911127 + 0.412125i \(0.135213\pi\)
\(822\) 26.0066 + 10.9653i 0.907086 + 0.382460i
\(823\) −25.3516 + 43.9103i −0.883702 + 1.53062i −0.0365085 + 0.999333i \(0.511624\pi\)
−0.847194 + 0.531284i \(0.821710\pi\)
\(824\) −7.08848 4.09254i −0.246939 0.142570i
\(825\) −4.06800 + 9.64815i −0.141630 + 0.335905i
\(826\) 3.08833 1.78305i 0.107457 0.0620401i
\(827\) 17.9261i 0.623350i −0.950189 0.311675i \(-0.899110\pi\)
0.950189 0.311675i \(-0.100890\pi\)
\(828\) 1.08733 + 1.11516i 0.0377872 + 0.0387545i
\(829\) 18.4342 0.640247 0.320123 0.947376i \(-0.396276\pi\)
0.320123 + 0.947376i \(0.396276\pi\)
\(830\) −1.78147 + 1.02853i −0.0618359 + 0.0357010i
\(831\) −12.7724 + 9.67302i −0.443071 + 0.335553i
\(832\) −0.180130 3.60105i −0.00624487 0.124844i
\(833\) 11.8679 20.5558i 0.411198 0.712216i
\(834\) 18.2666 2.28752i 0.632522 0.0792105i
\(835\) 16.1486 + 27.9701i 0.558844 + 0.967946i
\(836\) 4.95870 0.171500
\(837\) 4.45752 29.5224i 0.154074 1.02044i
\(838\) 17.3677i 0.599957i
\(839\) 38.0045 21.9419i 1.31206 0.757519i 0.329624 0.944112i \(-0.393078\pi\)
0.982437 + 0.186594i \(0.0597448\pi\)
\(840\) 4.18370 0.523923i 0.144351 0.0180771i
\(841\) −14.5864 + 25.2643i −0.502978 + 0.871183i
\(842\) −3.41788 + 5.91995i −0.117788 + 0.204015i
\(843\) 20.6222 + 27.2299i 0.710267 + 0.937849i
\(844\) −6.32982 10.9636i −0.217882 0.377382i
\(845\) 32.9161 + 14.8433i 1.13235 + 0.510626i
\(846\) 0.864063 3.06905i 0.0297071 0.105516i
\(847\) 5.29478i 0.181931i
\(848\) −3.64650 6.31593i −0.125221 0.216890i
\(849\) 11.9737 + 5.04852i 0.410935 + 0.173265i
\(850\) 8.95461 + 5.16995i 0.307141 + 0.177328i
\(851\) −5.10486 2.94729i −0.174992 0.101032i
\(852\) 10.7378 25.4670i 0.367871 0.872485i
\(853\) 18.1041 10.4524i 0.619872 0.357884i −0.156947 0.987607i \(-0.550165\pi\)
0.776819 + 0.629723i \(0.216832\pi\)
\(854\) −6.92214 −0.236871
\(855\) 5.02856 17.8609i 0.171973 0.610828i
\(856\) 13.5605i 0.463487i
\(857\) −16.2026 28.0637i −0.553470 0.958638i −0.998021 0.0628846i \(-0.979970\pi\)
0.444551 0.895754i \(-0.353363\pi\)
\(858\) 4.75592 13.0679i 0.162365 0.446132i
\(859\) 12.7736 22.1245i 0.435829 0.754877i −0.561534 0.827454i \(-0.689789\pi\)
0.997363 + 0.0725761i \(0.0231220\pi\)
\(860\) −13.5513 7.82386i −0.462096 0.266791i
\(861\) −0.767309 6.12722i −0.0261498 0.208815i
\(862\) 18.9797 + 32.8739i 0.646452 + 1.11969i
\(863\) 37.5472i 1.27812i −0.769156 0.639061i \(-0.779323\pi\)
0.769156 0.639061i \(-0.220677\pi\)
\(864\) −0.775762 + 5.13792i −0.0263920 + 0.174795i
\(865\) 20.1229i 0.684198i
\(866\) −5.05305 + 2.91738i −0.171710 + 0.0991366i
\(867\) 0.536598 + 4.28492i 0.0182238 + 0.145523i
\(868\) 2.51798 4.36127i 0.0854658 0.148031i
\(869\) 27.3724 + 15.8035i 0.928546 + 0.536096i
\(870\) −29.2509 + 22.1528i −0.991700 + 0.751050i
\(871\) −11.3062 + 22.0598i −0.383097 + 0.747468i
\(872\) 8.50225 0.287923
\(873\) 33.7838 32.9406i 1.14341 1.11487i
\(874\) 1.15610 0.0391057
\(875\) −2.78151 4.81773i −0.0940324 0.162869i
\(876\) −3.53149 + 8.37568i −0.119318 + 0.282988i
\(877\) 13.1982 + 7.61997i 0.445670 + 0.257308i 0.706000 0.708212i \(-0.250498\pi\)
−0.260329 + 0.965520i \(0.583831\pi\)
\(878\) 1.33799 + 0.772490i 0.0451551 + 0.0260703i
\(879\) −14.5490 + 34.5061i −0.490726 + 1.16386i
\(880\) −3.09254 5.35643i −0.104249 0.180565i
\(881\) 1.19345 0.0402084 0.0201042 0.999798i \(-0.493600\pi\)
0.0201042 + 0.999798i \(0.493600\pi\)
\(882\) 4.61019 + 18.1183i 0.155233 + 0.610074i
\(883\) 8.26791 0.278237 0.139119 0.990276i \(-0.455573\pi\)
0.139119 + 0.990276i \(0.455573\pi\)
\(884\) −12.2211 6.26364i −0.411040 0.210669i
\(885\) −15.6047 + 11.8180i −0.524546 + 0.397258i
\(886\) 3.08196 + 1.77937i 0.103540 + 0.0597790i
\(887\) 13.5452 23.4610i 0.454803 0.787743i −0.543873 0.839167i \(-0.683043\pi\)
0.998677 + 0.0514245i \(0.0163762\pi\)
\(888\) −2.44360 19.5129i −0.0820017 0.654811i
\(889\) 9.59371 5.53893i 0.321763 0.185770i
\(890\) 27.4953i 0.921645i
\(891\) −10.4561 + 17.0975i −0.350292 + 0.572788i
\(892\) 29.8057i 0.997968i
\(893\) −1.18332 2.04957i −0.0395982 0.0685861i
\(894\) 3.10490 + 24.7936i 0.103843 + 0.829223i
\(895\) 17.6223 + 10.1742i 0.589048 + 0.340087i
\(896\) −0.438215 + 0.759011i −0.0146397 + 0.0253568i
\(897\) 1.10882 3.04673i 0.0370226 0.101727i
\(898\) 5.08037 + 8.79945i 0.169534 + 0.293642i
\(899\) 43.8252i 1.46165i
\(900\) −7.89277 + 2.00831i −0.263092 + 0.0669437i
\(901\) −27.7774 −0.925401
\(902\) −7.84475 + 4.52917i −0.261202 + 0.150805i
\(903\) −3.32257 + 7.88019i −0.110568 + 0.262236i
\(904\) −2.86458 1.65386i −0.0952744 0.0550067i
\(905\) −24.1915 13.9670i −0.804153 0.464278i
\(906\) −17.6436 7.43919i −0.586171 0.247151i
\(907\) 20.9922 + 36.3595i 0.697033 + 1.20730i 0.969490 + 0.245129i \(0.0788303\pi\)
−0.272457 + 0.962168i \(0.587836\pi\)
\(908\) 22.4801i 0.746029i
\(909\) 40.9111 + 41.9584i 1.35694 + 1.39167i
\(910\) −4.76281 7.37244i −0.157886 0.244394i
\(911\) 21.4808 + 37.2059i 0.711692 + 1.23269i 0.964222 + 0.265097i \(0.0854040\pi\)
−0.252530 + 0.967589i \(0.581263\pi\)
\(912\) 2.32858 + 3.07470i 0.0771071 + 0.101814i
\(913\) 0.824598 1.42824i 0.0272902 0.0472680i
\(914\) −10.6577 + 18.4597i −0.352525 + 0.610591i
\(915\) 37.7021 4.72142i 1.24639 0.156085i
\(916\) −15.7207 + 9.07634i −0.519426 + 0.299891i
\(917\) 6.51157i 0.215031i
\(918\) 15.4701 + 12.3434i 0.510588 + 0.407394i
\(919\) −7.24189 −0.238888 −0.119444 0.992841i \(-0.538111\pi\)
−0.119444 + 0.992841i \(0.538111\pi\)
\(920\) −0.721013 1.24883i −0.0237711 0.0411727i
\(921\) −13.4256 + 1.68128i −0.442387 + 0.0554000i
\(922\) −10.7623 + 18.6408i −0.354436 + 0.613902i
\(923\) −57.4616 + 2.87431i −1.89137 + 0.0946092i
\(924\) −2.69477 + 2.04084i −0.0886513 + 0.0671388i
\(925\) 26.6933 15.4114i 0.877670 0.506723i
\(926\) −35.8128 −1.17688
\(927\) 6.65459 23.6363i 0.218565 0.776319i
\(928\) 7.62710i 0.250372i
\(929\) 3.51403 2.02883i 0.115292 0.0665636i −0.441245 0.897387i \(-0.645463\pi\)
0.556537 + 0.830823i \(0.312130\pi\)
\(930\) −10.7397 + 25.4715i −0.352169 + 0.835244i
\(931\) 12.0180 + 6.93861i 0.393875 + 0.227404i
\(932\) −5.56406 + 9.63723i −0.182257 + 0.315678i
\(933\) −15.4813 6.52748i −0.506835 0.213700i
\(934\) 18.5788 10.7265i 0.607916 0.350981i
\(935\) −23.5576 −0.770415
\(936\) 10.3363 3.18767i 0.337852 0.104192i
\(937\) 60.3456 1.97140 0.985702 0.168497i \(-0.0538915\pi\)
0.985702 + 0.168497i \(0.0538915\pi\)
\(938\) 5.21826 3.01276i 0.170382 0.0983702i
\(939\) 44.0626 33.3702i 1.43793 1.08900i
\(940\) −1.47597 + 2.55646i −0.0481409 + 0.0833825i
\(941\) 38.1340 + 22.0167i 1.24313 + 0.717723i 0.969731 0.244177i \(-0.0785179\pi\)
0.273401 + 0.961900i \(0.411851\pi\)
\(942\) −6.60130 + 0.826678i −0.215082 + 0.0269346i
\(943\) −1.82897 + 1.05596i −0.0595595 + 0.0343867i
\(944\) 4.06888i 0.132431i
\(945\) 4.61823 + 11.7759i 0.150231 + 0.383071i
\(946\) 12.5451 0.407876
\(947\) −15.2058 + 8.77906i −0.494122 + 0.285281i −0.726283 0.687396i \(-0.758754\pi\)
0.232161 + 0.972677i \(0.425420\pi\)
\(948\) 3.05483 + 24.3938i 0.0992163 + 0.792275i
\(949\) 18.8982 0.945315i 0.613461 0.0306862i
\(950\) −3.02263 + 5.23535i −0.0980670 + 0.169857i
\(951\) 29.5701 + 39.0449i 0.958878 + 1.26612i
\(952\) 1.66906 + 2.89090i 0.0540947 + 0.0936948i
\(953\) −28.3807 −0.919342 −0.459671 0.888089i \(-0.652033\pi\)
−0.459671 + 0.888089i \(0.652033\pi\)
\(954\) 15.6651 15.2741i 0.507176 0.494516i
\(955\) 52.2148i 1.68963i
\(956\) 7.49042 4.32460i 0.242258 0.139867i
\(957\) 11.4291 27.1065i 0.369449 0.876227i
\(958\) 2.88734 5.00102i 0.0932857 0.161575i
\(959\) −7.14073 + 12.3681i −0.230586 + 0.399387i
\(960\) 1.86908 4.43292i 0.0603243 0.143072i
\(961\) 1.00819 + 1.74623i 0.0325221 + 0.0563300i
\(962\) −34.3853 + 22.2139i −1.10863 + 0.716206i
\(963\) −39.4251 + 10.0317i −1.27046 + 0.323267i
\(964\) 2.52998i 0.0814853i
\(965\) −18.3849 31.8436i −0.591831 1.02508i
\(966\) −0.628274 + 0.475814i −0.0202144 + 0.0153091i
\(967\) 6.52590 + 3.76773i 0.209859 + 0.121162i 0.601246 0.799064i \(-0.294671\pi\)
−0.391387 + 0.920226i \(0.628005\pi\)
\(968\) −5.23192 3.02065i −0.168160 0.0970873i
\(969\) 14.5764 1.82540i 0.468262 0.0586403i
\(970\) −37.8334 + 21.8431i −1.21476 + 0.701340i
\(971\) 32.9658 1.05792 0.528962 0.848645i \(-0.322581\pi\)
0.528962 + 0.848645i \(0.322581\pi\)
\(972\) −15.5117 + 1.54549i −0.497537 + 0.0495716i
\(973\) 9.31526i 0.298633i
\(974\) 16.4562 + 28.5030i 0.527291 + 0.913294i
\(975\) 10.8980 + 12.9869i 0.349014 + 0.415915i
\(976\) −3.94905 + 6.83995i −0.126406 + 0.218942i
\(977\) −3.30414 1.90765i −0.105709 0.0610311i 0.446213 0.894927i \(-0.352772\pi\)
−0.551922 + 0.833895i \(0.686106\pi\)
\(978\) −26.9396 + 20.4023i −0.861433 + 0.652394i
\(979\) 11.0218 + 19.0903i 0.352257 + 0.610128i
\(980\) 17.3093i 0.552925i
\(981\) 6.28976 + 24.7191i 0.200817 + 0.789220i
\(982\) 9.79923i 0.312706i
\(983\) −39.1001 + 22.5745i −1.24710 + 0.720013i −0.970530 0.240981i \(-0.922531\pi\)
−0.276570 + 0.960994i \(0.589198\pi\)
\(984\) −6.49222 2.73735i −0.206964 0.0872637i
\(985\) −1.87882 + 3.25421i −0.0598642 + 0.103688i
\(986\) −25.1580 14.5250i −0.801193 0.462569i
\(987\) 1.48660 + 0.626804i 0.0473190 + 0.0199514i
\(988\) 3.66206 7.14510i 0.116506 0.227316i
\(989\) 2.92484 0.0930045
\(990\) 13.2853 12.9537i 0.422234 0.411695i
\(991\) 43.7885 1.39099 0.695493 0.718533i \(-0.255186\pi\)
0.695493 + 0.718533i \(0.255186\pi\)
\(992\) −2.87299 4.97617i −0.0912176 0.157994i
\(993\) −11.1382 14.7070i −0.353459 0.466713i
\(994\) 12.1115 + 6.99256i 0.384153 + 0.221791i
\(995\) −3.43858 1.98527i −0.109010 0.0629372i
\(996\) 1.27283 0.159396i 0.0403311 0.00505065i
\(997\) −27.1339 46.9972i −0.859338 1.48842i −0.872561 0.488504i \(-0.837543\pi\)
0.0132236 0.999913i \(-0.495791\pi\)
\(998\) 41.3110 1.30768
\(999\) 54.9234 21.5396i 1.73770 0.681483i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 234.2.t.a.103.4 yes 28
3.2 odd 2 702.2.t.a.415.13 28
9.2 odd 6 702.2.t.a.181.2 28
9.4 even 3 2106.2.b.c.649.6 14
9.5 odd 6 2106.2.b.d.649.9 14
9.7 even 3 inner 234.2.t.a.25.11 yes 28
13.12 even 2 inner 234.2.t.a.103.11 yes 28
39.38 odd 2 702.2.t.a.415.2 28
117.25 even 6 inner 234.2.t.a.25.4 28
117.38 odd 6 702.2.t.a.181.13 28
117.77 odd 6 2106.2.b.d.649.6 14
117.103 even 6 2106.2.b.c.649.9 14
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
234.2.t.a.25.4 28 117.25 even 6 inner
234.2.t.a.25.11 yes 28 9.7 even 3 inner
234.2.t.a.103.4 yes 28 1.1 even 1 trivial
234.2.t.a.103.11 yes 28 13.12 even 2 inner
702.2.t.a.181.2 28 9.2 odd 6
702.2.t.a.181.13 28 117.38 odd 6
702.2.t.a.415.2 28 39.38 odd 2
702.2.t.a.415.13 28 3.2 odd 2
2106.2.b.c.649.6 14 9.4 even 3
2106.2.b.c.649.9 14 117.103 even 6
2106.2.b.d.649.6 14 117.77 odd 6
2106.2.b.d.649.9 14 9.5 odd 6