Properties

Label 234.2.t.a.103.14
Level $234$
Weight $2$
Character 234.103
Analytic conductor $1.868$
Analytic rank $0$
Dimension $28$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [234,2,Mod(25,234)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(234, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([4, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("234.25");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 234 = 2 \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 234.t (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.86849940730\)
Analytic rank: \(0\)
Dimension: \(28\)
Relative dimension: \(14\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 103.14
Character \(\chi\) \(=\) 234.103
Dual form 234.2.t.a.25.14

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.866025 - 0.500000i) q^{2} +(1.66410 + 0.480381i) q^{3} +(0.500000 - 0.866025i) q^{4} +(0.515076 + 0.297379i) q^{5} +(1.68134 - 0.416029i) q^{6} +(-1.45217 + 0.838409i) q^{7} -1.00000i q^{8} +(2.53847 + 1.59880i) q^{9} +O(q^{10})\) \(q+(0.866025 - 0.500000i) q^{2} +(1.66410 + 0.480381i) q^{3} +(0.500000 - 0.866025i) q^{4} +(0.515076 + 0.297379i) q^{5} +(1.68134 - 0.416029i) q^{6} +(-1.45217 + 0.838409i) q^{7} -1.00000i q^{8} +(2.53847 + 1.59880i) q^{9} +0.594758 q^{10} +(-0.416337 + 0.240372i) q^{11} +(1.24807 - 1.20096i) q^{12} +(-2.27160 - 2.79997i) q^{13} +(-0.838409 + 1.45217i) q^{14} +(0.714283 + 0.742302i) q^{15} +(-0.500000 - 0.866025i) q^{16} -2.09349 q^{17} +(2.99778 + 0.115371i) q^{18} -0.480744i q^{19} +(0.515076 - 0.297379i) q^{20} +(-2.81931 + 0.697605i) q^{21} +(-0.240372 + 0.416337i) q^{22} +(-1.83339 + 3.17553i) q^{23} +(0.480381 - 1.66410i) q^{24} +(-2.32313 - 4.02378i) q^{25} +(-3.36725 - 1.28905i) q^{26} +(3.45624 + 3.88001i) q^{27} +1.67682i q^{28} +(1.23339 + 2.13629i) q^{29} +(0.989738 + 0.285710i) q^{30} +(-0.993791 - 0.573765i) q^{31} +(-0.866025 - 0.500000i) q^{32} +(-0.808297 + 0.200004i) q^{33} +(-1.81302 + 1.04675i) q^{34} -0.997301 q^{35} +(2.65384 - 1.39898i) q^{36} -3.65012i q^{37} +(-0.240372 - 0.416337i) q^{38} +(-2.43512 - 5.75067i) q^{39} +(0.297379 - 0.515076i) q^{40} +(8.58235 + 4.95502i) q^{41} +(-2.09279 + 2.01380i) q^{42} +(-3.45822 - 5.98981i) q^{43} +0.480744i q^{44} +(0.832053 + 1.57839i) q^{45} +3.66679i q^{46} +(-5.40488 + 3.12051i) q^{47} +(-0.416029 - 1.68134i) q^{48} +(-2.09414 + 3.62716i) q^{49} +(-4.02378 - 2.32313i) q^{50} +(-3.48378 - 1.00567i) q^{51} +(-3.56065 + 0.567277i) q^{52} -5.08592 q^{53} +(4.93319 + 1.63207i) q^{54} -0.285927 q^{55} +(0.838409 + 1.45217i) q^{56} +(0.230940 - 0.800008i) q^{57} +(2.13629 + 1.23339i) q^{58} +(8.13185 + 4.69493i) q^{59} +(0.999994 - 0.247437i) q^{60} +(-3.90635 - 6.76599i) q^{61} -1.14753 q^{62} +(-5.02673 - 0.193456i) q^{63} -1.00000 q^{64} +(-0.337393 - 2.11772i) q^{65} +(-0.600004 + 0.577357i) q^{66} +(12.4551 + 7.19096i) q^{67} +(-1.04675 + 1.81302i) q^{68} +(-4.57642 + 4.40368i) q^{69} +(-0.863688 + 0.498651i) q^{70} +6.51028i q^{71} +(1.59880 - 2.53847i) q^{72} -5.91514i q^{73} +(-1.82506 - 3.16110i) q^{74} +(-1.93298 - 7.81197i) q^{75} +(-0.416337 - 0.240372i) q^{76} +(0.403061 - 0.698121i) q^{77} +(-4.98421 - 3.76267i) q^{78} +(1.02895 + 1.78219i) q^{79} -0.594758i q^{80} +(3.88765 + 8.11703i) q^{81} +9.91005 q^{82} +(-9.57834 + 5.53006i) q^{83} +(-0.805511 + 2.79040i) q^{84} +(-1.07831 - 0.622560i) q^{85} +(-5.98981 - 3.45822i) q^{86} +(1.02625 + 4.14750i) q^{87} +(0.240372 + 0.416337i) q^{88} -9.48720i q^{89} +(1.50978 + 0.950902i) q^{90} +(5.64626 + 2.16150i) q^{91} +(1.83339 + 3.17553i) q^{92} +(-1.37814 - 1.43220i) q^{93} +(-3.12051 + 5.40488i) q^{94} +(0.142963 - 0.247620i) q^{95} +(-1.20096 - 1.24807i) q^{96} +(8.41374 - 4.85767i) q^{97} +4.18828i q^{98} +(-1.44117 - 0.0554640i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 28 q + 14 q^{4} - 16 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 28 q + 14 q^{4} - 16 q^{9} + 2 q^{13} + 8 q^{14} - 14 q^{16} + 16 q^{17} - 8 q^{23} + 14 q^{25} + 8 q^{26} + 18 q^{27} - 16 q^{29} - 8 q^{30} - 68 q^{35} - 8 q^{36} - 8 q^{39} - 10 q^{42} - 4 q^{43} + 10 q^{49} + 58 q^{51} - 2 q^{52} - 120 q^{53} - 8 q^{56} + 28 q^{61} + 68 q^{62} - 28 q^{64} - 8 q^{65} - 24 q^{66} + 8 q^{68} - 92 q^{69} + 16 q^{74} + 32 q^{75} - 24 q^{77} - 22 q^{78} + 28 q^{79} + 8 q^{81} - 48 q^{82} + 68 q^{87} - 50 q^{90} + 8 q^{92}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/234\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(209\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.866025 0.500000i 0.612372 0.353553i
\(3\) 1.66410 + 0.480381i 0.960770 + 0.277348i
\(4\) 0.500000 0.866025i 0.250000 0.433013i
\(5\) 0.515076 + 0.297379i 0.230349 + 0.132992i 0.610733 0.791837i \(-0.290875\pi\)
−0.380384 + 0.924829i \(0.624208\pi\)
\(6\) 1.68134 0.416029i 0.686406 0.169843i
\(7\) −1.45217 + 0.838409i −0.548868 + 0.316889i −0.748665 0.662948i \(-0.769305\pi\)
0.199798 + 0.979837i \(0.435972\pi\)
\(8\) 1.00000i 0.353553i
\(9\) 2.53847 + 1.59880i 0.846156 + 0.532935i
\(10\) 0.594758 0.188079
\(11\) −0.416337 + 0.240372i −0.125530 + 0.0724750i −0.561450 0.827510i \(-0.689756\pi\)
0.435920 + 0.899985i \(0.356423\pi\)
\(12\) 1.24807 1.20096i 0.360288 0.346688i
\(13\) −2.27160 2.79997i −0.630028 0.776572i
\(14\) −0.838409 + 1.45217i −0.224074 + 0.388108i
\(15\) 0.714283 + 0.742302i 0.184427 + 0.191661i
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) −2.09349 −0.507746 −0.253873 0.967238i \(-0.581705\pi\)
−0.253873 + 0.967238i \(0.581705\pi\)
\(18\) 2.99778 + 0.115371i 0.706584 + 0.0271932i
\(19\) 0.480744i 0.110290i −0.998478 0.0551452i \(-0.982438\pi\)
0.998478 0.0551452i \(-0.0175622\pi\)
\(20\) 0.515076 0.297379i 0.115174 0.0664960i
\(21\) −2.81931 + 0.697605i −0.615224 + 0.152230i
\(22\) −0.240372 + 0.416337i −0.0512475 + 0.0887633i
\(23\) −1.83339 + 3.17553i −0.382289 + 0.662144i −0.991389 0.130950i \(-0.958197\pi\)
0.609100 + 0.793093i \(0.291531\pi\)
\(24\) 0.480381 1.66410i 0.0980573 0.339683i
\(25\) −2.32313 4.02378i −0.464626 0.804756i
\(26\) −3.36725 1.28905i −0.660372 0.252803i
\(27\) 3.45624 + 3.88001i 0.665153 + 0.746707i
\(28\) 1.67682i 0.316889i
\(29\) 1.23339 + 2.13629i 0.229035 + 0.396700i 0.957522 0.288359i \(-0.0931098\pi\)
−0.728488 + 0.685059i \(0.759776\pi\)
\(30\) 0.989738 + 0.285710i 0.180701 + 0.0521633i
\(31\) −0.993791 0.573765i −0.178490 0.103051i 0.408093 0.912940i \(-0.366194\pi\)
−0.586583 + 0.809889i \(0.699527\pi\)
\(32\) −0.866025 0.500000i −0.153093 0.0883883i
\(33\) −0.808297 + 0.200004i −0.140706 + 0.0348162i
\(34\) −1.81302 + 1.04675i −0.310930 + 0.179515i
\(35\) −0.997301 −0.168575
\(36\) 2.65384 1.39898i 0.442307 0.233163i
\(37\) 3.65012i 0.600076i −0.953927 0.300038i \(-0.903001\pi\)
0.953927 0.300038i \(-0.0969994\pi\)
\(38\) −0.240372 0.416337i −0.0389935 0.0675388i
\(39\) −2.43512 5.75067i −0.389931 0.920844i
\(40\) 0.297379 0.515076i 0.0470198 0.0814406i
\(41\) 8.58235 + 4.95502i 1.34034 + 0.773845i 0.986857 0.161597i \(-0.0516645\pi\)
0.353481 + 0.935442i \(0.384998\pi\)
\(42\) −2.09279 + 2.01380i −0.322925 + 0.310736i
\(43\) −3.45822 5.98981i −0.527374 0.913438i −0.999491 0.0319023i \(-0.989843\pi\)
0.472117 0.881536i \(-0.343490\pi\)
\(44\) 0.480744i 0.0724750i
\(45\) 0.832053 + 1.57839i 0.124035 + 0.235293i
\(46\) 3.66679i 0.540638i
\(47\) −5.40488 + 3.12051i −0.788383 + 0.455173i −0.839393 0.543525i \(-0.817089\pi\)
0.0510099 + 0.998698i \(0.483756\pi\)
\(48\) −0.416029 1.68134i −0.0600486 0.242681i
\(49\) −2.09414 + 3.62716i −0.299163 + 0.518165i
\(50\) −4.02378 2.32313i −0.569049 0.328540i
\(51\) −3.48378 1.00567i −0.487827 0.140822i
\(52\) −3.56065 + 0.567277i −0.493773 + 0.0786671i
\(53\) −5.08592 −0.698605 −0.349302 0.937010i \(-0.613581\pi\)
−0.349302 + 0.937010i \(0.613581\pi\)
\(54\) 4.93319 + 1.63207i 0.671322 + 0.222096i
\(55\) −0.285927 −0.0385544
\(56\) 0.838409 + 1.45217i 0.112037 + 0.194054i
\(57\) 0.230940 0.800008i 0.0305888 0.105964i
\(58\) 2.13629 + 1.23339i 0.280509 + 0.161952i
\(59\) 8.13185 + 4.69493i 1.05868 + 0.611227i 0.925066 0.379807i \(-0.124009\pi\)
0.133611 + 0.991034i \(0.457343\pi\)
\(60\) 0.999994 0.247437i 0.129099 0.0319439i
\(61\) −3.90635 6.76599i −0.500157 0.866297i −1.00000 0.000180927i \(-0.999942\pi\)
0.499843 0.866116i \(-0.333391\pi\)
\(62\) −1.14753 −0.145737
\(63\) −5.02673 0.193456i −0.633309 0.0243732i
\(64\) −1.00000 −0.125000
\(65\) −0.337393 2.11772i −0.0418484 0.262671i
\(66\) −0.600004 + 0.577357i −0.0738554 + 0.0710677i
\(67\) 12.4551 + 7.19096i 1.52163 + 0.878516i 0.999674 + 0.0255454i \(0.00813225\pi\)
0.521960 + 0.852970i \(0.325201\pi\)
\(68\) −1.04675 + 1.81302i −0.126936 + 0.219860i
\(69\) −4.57642 + 4.40368i −0.550936 + 0.530141i
\(70\) −0.863688 + 0.498651i −0.103231 + 0.0596002i
\(71\) 6.51028i 0.772628i 0.922367 + 0.386314i \(0.126252\pi\)
−0.922367 + 0.386314i \(0.873748\pi\)
\(72\) 1.59880 2.53847i 0.188421 0.299161i
\(73\) 5.91514i 0.692315i −0.938176 0.346157i \(-0.887486\pi\)
0.938176 0.346157i \(-0.112514\pi\)
\(74\) −1.82506 3.16110i −0.212159 0.367470i
\(75\) −1.93298 7.81197i −0.223201 0.902048i
\(76\) −0.416337 0.240372i −0.0477571 0.0275726i
\(77\) 0.403061 0.698121i 0.0459330 0.0795583i
\(78\) −4.98421 3.76267i −0.564351 0.426038i
\(79\) 1.02895 + 1.78219i 0.115766 + 0.200512i 0.918086 0.396382i \(-0.129734\pi\)
−0.802320 + 0.596894i \(0.796401\pi\)
\(80\) 0.594758i 0.0664960i
\(81\) 3.88765 + 8.11703i 0.431961 + 0.901892i
\(82\) 9.91005 1.09438
\(83\) −9.57834 + 5.53006i −1.05136 + 0.607003i −0.923030 0.384729i \(-0.874295\pi\)
−0.128330 + 0.991732i \(0.540962\pi\)
\(84\) −0.805511 + 2.79040i −0.0878885 + 0.304457i
\(85\) −1.07831 0.622560i −0.116959 0.0675261i
\(86\) −5.98981 3.45822i −0.645898 0.372909i
\(87\) 1.02625 + 4.14750i 0.110026 + 0.444659i
\(88\) 0.240372 + 0.416337i 0.0256238 + 0.0443817i
\(89\) 9.48720i 1.00564i −0.864391 0.502821i \(-0.832296\pi\)
0.864391 0.502821i \(-0.167704\pi\)
\(90\) 1.50978 + 0.950902i 0.159144 + 0.100234i
\(91\) 5.64626 + 2.16150i 0.591889 + 0.226586i
\(92\) 1.83339 + 3.17553i 0.191144 + 0.331072i
\(93\) −1.37814 1.43220i −0.142907 0.148512i
\(94\) −3.12051 + 5.40488i −0.321856 + 0.557471i
\(95\) 0.142963 0.247620i 0.0146677 0.0254053i
\(96\) −1.20096 1.24807i −0.122573 0.127381i
\(97\) 8.41374 4.85767i 0.854286 0.493222i −0.00780887 0.999970i \(-0.502486\pi\)
0.862095 + 0.506747i \(0.169152\pi\)
\(98\) 4.18828i 0.423080i
\(99\) −1.44117 0.0554640i −0.144843 0.00557435i
\(100\) −4.64626 −0.464626
\(101\) 2.89748 + 5.01858i 0.288310 + 0.499367i 0.973406 0.229085i \(-0.0735734\pi\)
−0.685097 + 0.728452i \(0.740240\pi\)
\(102\) −3.51988 + 0.870952i −0.348520 + 0.0862371i
\(103\) −0.857037 + 1.48443i −0.0844463 + 0.146265i −0.905155 0.425081i \(-0.860245\pi\)
0.820709 + 0.571347i \(0.193579\pi\)
\(104\) −2.79997 + 2.27160i −0.274560 + 0.222749i
\(105\) −1.65961 0.479084i −0.161961 0.0467539i
\(106\) −4.40453 + 2.54296i −0.427806 + 0.246994i
\(107\) 14.1021 1.36330 0.681651 0.731678i \(-0.261262\pi\)
0.681651 + 0.731678i \(0.261262\pi\)
\(108\) 5.08830 1.05318i 0.489622 0.101343i
\(109\) 18.3474i 1.75736i −0.477413 0.878679i \(-0.658425\pi\)
0.477413 0.878679i \(-0.341575\pi\)
\(110\) −0.247620 + 0.142963i −0.0236096 + 0.0136310i
\(111\) 1.75345 6.07417i 0.166430 0.576535i
\(112\) 1.45217 + 0.838409i 0.137217 + 0.0792222i
\(113\) 10.1390 17.5612i 0.953793 1.65202i 0.216686 0.976241i \(-0.430475\pi\)
0.737107 0.675776i \(-0.236191\pi\)
\(114\) −0.200004 0.808297i −0.0187321 0.0757040i
\(115\) −1.88867 + 1.09043i −0.176120 + 0.101683i
\(116\) 2.46678 0.229035
\(117\) −1.28978 10.7395i −0.119240 0.992865i
\(118\) 9.38985 0.864406
\(119\) 3.04010 1.75520i 0.278685 0.160899i
\(120\) 0.742302 0.714283i 0.0677626 0.0652048i
\(121\) −5.38444 + 9.32613i −0.489495 + 0.847830i
\(122\) −6.76599 3.90635i −0.612564 0.353664i
\(123\) 11.9016 + 12.3685i 1.07313 + 1.11523i
\(124\) −0.993791 + 0.573765i −0.0892450 + 0.0515256i
\(125\) 5.73719i 0.513150i
\(126\) −4.45001 + 2.34583i −0.396438 + 0.208983i
\(127\) 18.5473 1.64581 0.822904 0.568180i \(-0.192352\pi\)
0.822904 + 0.568180i \(0.192352\pi\)
\(128\) −0.866025 + 0.500000i −0.0765466 + 0.0441942i
\(129\) −2.87744 11.6289i −0.253344 1.02387i
\(130\) −1.35105 1.66531i −0.118495 0.146057i
\(131\) 2.32256 4.02280i 0.202923 0.351474i −0.746546 0.665334i \(-0.768289\pi\)
0.949469 + 0.313861i \(0.101622\pi\)
\(132\) −0.230940 + 0.800008i −0.0201008 + 0.0696317i
\(133\) 0.403061 + 0.698121i 0.0349498 + 0.0605348i
\(134\) 14.3819 1.24241
\(135\) 0.626390 + 3.02631i 0.0539111 + 0.260463i
\(136\) 2.09349i 0.179515i
\(137\) 11.2762 6.51034i 0.963395 0.556216i 0.0661784 0.997808i \(-0.478919\pi\)
0.897216 + 0.441592i \(0.145586\pi\)
\(138\) −1.76145 + 6.10190i −0.149945 + 0.519429i
\(139\) −5.09027 + 8.81661i −0.431751 + 0.747815i −0.997024 0.0770888i \(-0.975437\pi\)
0.565273 + 0.824904i \(0.308771\pi\)
\(140\) −0.498651 + 0.863688i −0.0421437 + 0.0729950i
\(141\) −10.4933 + 2.59645i −0.883696 + 0.218660i
\(142\) 3.25514 + 5.63807i 0.273165 + 0.473136i
\(143\) 1.61879 + 0.619702i 0.135370 + 0.0518221i
\(144\) 0.115371 2.99778i 0.00961426 0.249815i
\(145\) 1.46714i 0.121839i
\(146\) −2.95757 5.12266i −0.244770 0.423955i
\(147\) −5.22728 + 5.02997i −0.431139 + 0.414865i
\(148\) −3.16110 1.82506i −0.259841 0.150019i
\(149\) 4.54901 + 2.62637i 0.372669 + 0.215161i 0.674624 0.738162i \(-0.264306\pi\)
−0.301955 + 0.953322i \(0.597639\pi\)
\(150\) −5.57999 5.79887i −0.455605 0.473476i
\(151\) 10.3258 5.96162i 0.840304 0.485150i −0.0170637 0.999854i \(-0.505432\pi\)
0.857367 + 0.514705i \(0.172098\pi\)
\(152\) −0.480744 −0.0389935
\(153\) −5.31426 3.34708i −0.429632 0.270596i
\(154\) 0.806121i 0.0649591i
\(155\) −0.341252 0.591065i −0.0274100 0.0474755i
\(156\) −6.19779 0.766459i −0.496220 0.0613659i
\(157\) −6.19540 + 10.7307i −0.494446 + 0.856406i −0.999980 0.00640095i \(-0.997962\pi\)
0.505533 + 0.862807i \(0.331296\pi\)
\(158\) 1.78219 + 1.02895i 0.141784 + 0.0818588i
\(159\) −8.46349 2.44318i −0.671198 0.193757i
\(160\) −0.297379 0.515076i −0.0235099 0.0407203i
\(161\) 6.14853i 0.484572i
\(162\) 7.42532 + 5.08573i 0.583388 + 0.399573i
\(163\) 21.3629i 1.67327i 0.547760 + 0.836635i \(0.315481\pi\)
−0.547760 + 0.836635i \(0.684519\pi\)
\(164\) 8.58235 4.95502i 0.670169 0.386922i
\(165\) −0.475811 0.137354i −0.0370418 0.0106930i
\(166\) −5.53006 + 9.57834i −0.429216 + 0.743423i
\(167\) −12.7614 7.36778i −0.987504 0.570136i −0.0829768 0.996551i \(-0.526443\pi\)
−0.904527 + 0.426416i \(0.859776\pi\)
\(168\) 0.697605 + 2.81931i 0.0538214 + 0.217514i
\(169\) −2.67968 + 12.7208i −0.206129 + 0.978525i
\(170\) −1.24512 −0.0954964
\(171\) 0.768616 1.22035i 0.0587776 0.0933229i
\(172\) −6.91644 −0.527374
\(173\) −5.82435 10.0881i −0.442817 0.766982i 0.555080 0.831797i \(-0.312688\pi\)
−0.997897 + 0.0648152i \(0.979354\pi\)
\(174\) 2.96251 + 3.07872i 0.224587 + 0.233397i
\(175\) 6.74715 + 3.89547i 0.510037 + 0.294470i
\(176\) 0.416337 + 0.240372i 0.0313826 + 0.0181187i
\(177\) 11.2769 + 11.7192i 0.847622 + 0.880870i
\(178\) −4.74360 8.21616i −0.355548 0.615827i
\(179\) −0.896158 −0.0669820 −0.0334910 0.999439i \(-0.510663\pi\)
−0.0334910 + 0.999439i \(0.510663\pi\)
\(180\) 1.78295 + 0.0686180i 0.132894 + 0.00511448i
\(181\) 1.42191 0.105689 0.0528447 0.998603i \(-0.483171\pi\)
0.0528447 + 0.998603i \(0.483171\pi\)
\(182\) 5.97056 0.951220i 0.442567 0.0705091i
\(183\) −3.25031 13.1358i −0.240270 0.971029i
\(184\) 3.17553 + 1.83339i 0.234103 + 0.135160i
\(185\) 1.08547 1.88009i 0.0798053 0.138227i
\(186\) −1.90961 0.551252i −0.140019 0.0404197i
\(187\) 0.871597 0.503217i 0.0637375 0.0367989i
\(188\) 6.24102i 0.455173i
\(189\) −8.27206 2.73668i −0.601704 0.199064i
\(190\) 0.285927i 0.0207433i
\(191\) 7.42036 + 12.8524i 0.536918 + 0.929970i 0.999068 + 0.0431677i \(0.0137450\pi\)
−0.462150 + 0.886802i \(0.652922\pi\)
\(192\) −1.66410 0.480381i −0.120096 0.0346685i
\(193\) −12.2175 7.05376i −0.879433 0.507741i −0.00896136 0.999960i \(-0.502853\pi\)
−0.870471 + 0.492219i \(0.836186\pi\)
\(194\) 4.85767 8.41374i 0.348761 0.604071i
\(195\) 0.455858 3.68618i 0.0326447 0.263973i
\(196\) 2.09414 + 3.62716i 0.149581 + 0.259083i
\(197\) 0.442517i 0.0315280i 0.999876 + 0.0157640i \(0.00501805\pi\)
−0.999876 + 0.0157640i \(0.994982\pi\)
\(198\) −1.27582 + 0.672550i −0.0906685 + 0.0477960i
\(199\) −13.2925 −0.942282 −0.471141 0.882058i \(-0.656158\pi\)
−0.471141 + 0.882058i \(0.656158\pi\)
\(200\) −4.02378 + 2.32313i −0.284524 + 0.164270i
\(201\) 17.2722 + 17.9497i 1.21828 + 1.26607i
\(202\) 5.01858 + 2.89748i 0.353106 + 0.203866i
\(203\) −3.58217 2.06817i −0.251419 0.145157i
\(204\) −2.61283 + 2.51421i −0.182935 + 0.176030i
\(205\) 2.94704 + 5.10442i 0.205830 + 0.356508i
\(206\) 1.71407i 0.119425i
\(207\) −9.73106 + 5.12975i −0.676356 + 0.356542i
\(208\) −1.28905 + 3.36725i −0.0893793 + 0.233477i
\(209\) 0.115558 + 0.200152i 0.00799329 + 0.0138448i
\(210\) −1.67681 + 0.414906i −0.115711 + 0.0286313i
\(211\) 4.82032 8.34904i 0.331845 0.574772i −0.651029 0.759053i \(-0.725662\pi\)
0.982874 + 0.184281i \(0.0589957\pi\)
\(212\) −2.54296 + 4.40453i −0.174651 + 0.302505i
\(213\) −3.12741 + 10.8338i −0.214287 + 0.742318i
\(214\) 12.2128 7.05105i 0.834848 0.482000i
\(215\) 4.11361i 0.280546i
\(216\) 3.88001 3.45624i 0.264001 0.235167i
\(217\) 1.92420 0.130623
\(218\) −9.17368 15.8893i −0.621320 1.07616i
\(219\) 2.84152 9.84340i 0.192012 0.665155i
\(220\) −0.142963 + 0.247620i −0.00963859 + 0.0166945i
\(221\) 4.75557 + 5.86171i 0.319894 + 0.394301i
\(222\) −1.51856 6.13711i −0.101919 0.411896i
\(223\) −20.0340 + 11.5666i −1.34158 + 0.774559i −0.987039 0.160482i \(-0.948695\pi\)
−0.354537 + 0.935042i \(0.615362\pi\)
\(224\) 1.67682 0.112037
\(225\) 0.536045 13.9285i 0.0357363 0.928565i
\(226\) 20.2779i 1.34887i
\(227\) −11.5239 + 6.65331i −0.764866 + 0.441595i −0.831040 0.556213i \(-0.812254\pi\)
0.0661743 + 0.997808i \(0.478921\pi\)
\(228\) −0.577357 0.600004i −0.0382364 0.0397362i
\(229\) −0.700965 0.404702i −0.0463211 0.0267435i 0.476661 0.879087i \(-0.341847\pi\)
−0.522982 + 0.852344i \(0.675180\pi\)
\(230\) −1.09043 + 1.88867i −0.0719005 + 0.124535i
\(231\) 1.00610 0.968122i 0.0661964 0.0636978i
\(232\) 2.13629 1.23339i 0.140254 0.0809760i
\(233\) −15.4712 −1.01355 −0.506776 0.862078i \(-0.669163\pi\)
−0.506776 + 0.862078i \(0.669163\pi\)
\(234\) −6.48672 8.65578i −0.424050 0.565846i
\(235\) −3.71190 −0.242138
\(236\) 8.13185 4.69493i 0.529338 0.305614i
\(237\) 0.856146 + 3.46004i 0.0556126 + 0.224754i
\(238\) 1.75520 3.04010i 0.113773 0.197060i
\(239\) −25.2511 14.5788i −1.63336 0.943021i −0.983047 0.183355i \(-0.941304\pi\)
−0.650313 0.759666i \(-0.725362\pi\)
\(240\) 0.285710 0.989738i 0.0184425 0.0638873i
\(241\) −13.5054 + 7.79735i −0.869959 + 0.502271i −0.867335 0.497725i \(-0.834169\pi\)
−0.00262472 + 0.999997i \(0.500835\pi\)
\(242\) 10.7689i 0.692250i
\(243\) 2.57017 + 15.3751i 0.164877 + 0.986314i
\(244\) −7.81270 −0.500157
\(245\) −2.15728 + 1.24551i −0.137824 + 0.0795725i
\(246\) 16.4913 + 4.76060i 1.05145 + 0.303524i
\(247\) −1.34607 + 1.09206i −0.0856484 + 0.0694860i
\(248\) −0.573765 + 0.993791i −0.0364341 + 0.0631058i
\(249\) −18.5959 + 4.60133i −1.17846 + 0.291597i
\(250\) −2.86860 4.96856i −0.181426 0.314239i
\(251\) −2.79495 −0.176416 −0.0882079 0.996102i \(-0.528114\pi\)
−0.0882079 + 0.996102i \(0.528114\pi\)
\(252\) −2.68090 + 4.25655i −0.168881 + 0.268137i
\(253\) 1.76279i 0.110825i
\(254\) 16.0624 9.27366i 1.00785 0.581881i
\(255\) −1.49534 1.55400i −0.0936421 0.0973153i
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) −10.4798 + 18.1515i −0.653712 + 1.13226i 0.328503 + 0.944503i \(0.393456\pi\)
−0.982215 + 0.187759i \(0.939877\pi\)
\(258\) −8.30640 8.63222i −0.517134 0.537419i
\(259\) 3.06029 + 5.30059i 0.190157 + 0.329362i
\(260\) −2.00270 0.766671i −0.124202 0.0475469i
\(261\) −0.284595 + 7.39486i −0.0176160 + 0.457730i
\(262\) 4.64513i 0.286977i
\(263\) −7.92418 13.7251i −0.488626 0.846325i 0.511288 0.859409i \(-0.329168\pi\)
−0.999914 + 0.0130839i \(0.995835\pi\)
\(264\) 0.200004 + 0.808297i 0.0123094 + 0.0497472i
\(265\) −2.61963 1.51245i −0.160923 0.0929088i
\(266\) 0.698121 + 0.403061i 0.0428046 + 0.0247132i
\(267\) 4.55747 15.7877i 0.278913 0.966189i
\(268\) 12.4551 7.19096i 0.760817 0.439258i
\(269\) 18.9028 1.15252 0.576261 0.817266i \(-0.304511\pi\)
0.576261 + 0.817266i \(0.304511\pi\)
\(270\) 2.05562 + 2.30767i 0.125101 + 0.140440i
\(271\) 9.63804i 0.585469i 0.956194 + 0.292735i \(0.0945653\pi\)
−0.956194 + 0.292735i \(0.905435\pi\)
\(272\) 1.04675 + 1.81302i 0.0634682 + 0.109930i
\(273\) 8.35761 + 6.30931i 0.505826 + 0.381857i
\(274\) 6.51034 11.2762i 0.393304 0.681223i
\(275\) 1.93441 + 1.11683i 0.116649 + 0.0673475i
\(276\) 1.52549 + 6.16513i 0.0918237 + 0.371097i
\(277\) −1.35010 2.33844i −0.0811197 0.140503i 0.822611 0.568604i \(-0.192516\pi\)
−0.903731 + 0.428100i \(0.859183\pi\)
\(278\) 10.1805i 0.610588i
\(279\) −1.60537 3.04536i −0.0961109 0.182321i
\(280\) 0.997301i 0.0596002i
\(281\) −9.34820 + 5.39719i −0.557667 + 0.321969i −0.752208 0.658925i \(-0.771011\pi\)
0.194542 + 0.980894i \(0.437678\pi\)
\(282\) −7.78925 + 7.49524i −0.463843 + 0.446335i
\(283\) 14.6088 25.3032i 0.868403 1.50412i 0.00477479 0.999989i \(-0.498480\pi\)
0.863628 0.504129i \(-0.168187\pi\)
\(284\) 5.63807 + 3.25514i 0.334558 + 0.193157i
\(285\) 0.356857 0.343388i 0.0211384 0.0203405i
\(286\) 1.71176 0.272715i 0.101219 0.0161260i
\(287\) −16.6173 −0.980891
\(288\) −1.39898 2.65384i −0.0824355 0.156379i
\(289\) −12.6173 −0.742194
\(290\) 0.733568 + 1.27058i 0.0430766 + 0.0746109i
\(291\) 16.3348 4.04187i 0.957566 0.236938i
\(292\) −5.12266 2.95757i −0.299781 0.173079i
\(293\) 20.5199 + 11.8472i 1.19879 + 0.692120i 0.960285 0.279022i \(-0.0900104\pi\)
0.238502 + 0.971142i \(0.423344\pi\)
\(294\) −2.01197 + 6.96972i −0.117340 + 0.406483i
\(295\) 2.79235 + 4.83649i 0.162577 + 0.281591i
\(296\) −3.65012 −0.212159
\(297\) −2.37160 0.784606i −0.137614 0.0455275i
\(298\) 5.25274 0.304283
\(299\) 13.0561 2.08008i 0.755055 0.120294i
\(300\) −7.73185 2.23198i −0.446399 0.128863i
\(301\) 10.0438 + 5.79881i 0.578917 + 0.334238i
\(302\) 5.96162 10.3258i 0.343053 0.594184i
\(303\) 2.41087 + 9.74331i 0.138501 + 0.559739i
\(304\) −0.416337 + 0.240372i −0.0238786 + 0.0137863i
\(305\) 4.64667i 0.266067i
\(306\) −6.27582 0.241528i −0.358765 0.0138073i
\(307\) 6.55237i 0.373963i 0.982363 + 0.186982i \(0.0598705\pi\)
−0.982363 + 0.186982i \(0.940129\pi\)
\(308\) −0.403061 0.698121i −0.0229665 0.0397792i
\(309\) −2.13929 + 2.05854i −0.121700 + 0.117106i
\(310\) −0.591065 0.341252i −0.0335702 0.0193818i
\(311\) −12.7115 + 22.0169i −0.720802 + 1.24847i 0.239876 + 0.970803i \(0.422893\pi\)
−0.960679 + 0.277663i \(0.910440\pi\)
\(312\) −5.75067 + 2.43512i −0.325568 + 0.137861i
\(313\) −0.590728 1.02317i −0.0333899 0.0578331i 0.848848 0.528638i \(-0.177297\pi\)
−0.882237 + 0.470805i \(0.843964\pi\)
\(314\) 12.3908i 0.699253i
\(315\) −2.53162 1.59449i −0.142641 0.0898394i
\(316\) 2.05790 0.115766
\(317\) −24.2009 + 13.9724i −1.35926 + 0.784769i −0.989524 0.144368i \(-0.953885\pi\)
−0.369735 + 0.929137i \(0.620552\pi\)
\(318\) −8.55118 + 2.11589i −0.479526 + 0.118653i
\(319\) −1.02701 0.592945i −0.0575016 0.0331985i
\(320\) −0.515076 0.297379i −0.0287936 0.0166240i
\(321\) 23.4673 + 6.77438i 1.30982 + 0.378109i
\(322\) −3.07427 5.32479i −0.171322 0.296739i
\(323\) 1.00643i 0.0559995i
\(324\) 8.97338 + 0.691715i 0.498521 + 0.0384286i
\(325\) −5.98925 + 15.6451i −0.332224 + 0.867835i
\(326\) 10.6814 + 18.5008i 0.591591 + 1.02466i
\(327\) 8.81372 30.5319i 0.487400 1.68842i
\(328\) 4.95502 8.58235i 0.273595 0.473881i
\(329\) 5.23253 9.06301i 0.288479 0.499660i
\(330\) −0.480741 + 0.118954i −0.0264639 + 0.00654819i
\(331\) 21.3503 12.3266i 1.17352 0.677530i 0.219010 0.975723i \(-0.429717\pi\)
0.954506 + 0.298193i \(0.0963838\pi\)
\(332\) 11.0601i 0.607003i
\(333\) 5.83583 9.26572i 0.319802 0.507758i
\(334\) −14.7356 −0.806294
\(335\) 4.27688 + 7.40778i 0.233671 + 0.404730i
\(336\) 2.01380 + 2.09279i 0.109862 + 0.114171i
\(337\) 7.63940 13.2318i 0.416145 0.720784i −0.579403 0.815041i \(-0.696714\pi\)
0.995548 + 0.0942571i \(0.0300476\pi\)
\(338\) 4.03974 + 12.3564i 0.219733 + 0.672099i
\(339\) 25.3083 24.3530i 1.37456 1.32268i
\(340\) −1.07831 + 0.622560i −0.0584794 + 0.0337631i
\(341\) 0.551669 0.0298745
\(342\) 0.0554640 1.44117i 0.00299915 0.0779294i
\(343\) 18.7607i 1.01298i
\(344\) −5.98981 + 3.45822i −0.322949 + 0.186455i
\(345\) −3.66676 + 0.907297i −0.197412 + 0.0488472i
\(346\) −10.0881 5.82435i −0.542338 0.313119i
\(347\) 0.607688 1.05255i 0.0326224 0.0565036i −0.849253 0.527986i \(-0.822947\pi\)
0.881876 + 0.471482i \(0.156281\pi\)
\(348\) 4.10497 + 1.18499i 0.220049 + 0.0635223i
\(349\) −3.30094 + 1.90580i −0.176695 + 0.102015i −0.585739 0.810500i \(-0.699196\pi\)
0.409044 + 0.912515i \(0.365862\pi\)
\(350\) 7.79094 0.416443
\(351\) 3.01272 18.4912i 0.160807 0.986986i
\(352\) 0.480744 0.0256238
\(353\) 17.3353 10.0086i 0.922667 0.532702i 0.0381819 0.999271i \(-0.487843\pi\)
0.884485 + 0.466569i \(0.154510\pi\)
\(354\) 15.6257 + 4.51070i 0.830495 + 0.239741i
\(355\) −1.93602 + 3.35329i −0.102753 + 0.177974i
\(356\) −8.21616 4.74360i −0.435455 0.251410i
\(357\) 5.90220 1.46043i 0.312377 0.0772941i
\(358\) −0.776096 + 0.448079i −0.0410179 + 0.0236817i
\(359\) 9.96717i 0.526047i 0.964789 + 0.263024i \(0.0847197\pi\)
−0.964789 + 0.263024i \(0.915280\pi\)
\(360\) 1.57839 0.832053i 0.0831886 0.0438530i
\(361\) 18.7689 0.987836
\(362\) 1.23141 0.710953i 0.0647213 0.0373669i
\(363\) −13.4404 + 12.9330i −0.705436 + 0.678809i
\(364\) 4.69504 3.80906i 0.246087 0.199649i
\(365\) 1.75904 3.04675i 0.0920723 0.159474i
\(366\) −9.38277 9.75081i −0.490445 0.509683i
\(367\) −7.16334 12.4073i −0.373923 0.647654i 0.616242 0.787557i \(-0.288654\pi\)
−0.990165 + 0.139903i \(0.955321\pi\)
\(368\) 3.66679 0.191144
\(369\) 13.8639 + 26.2997i 0.721727 + 1.36911i
\(370\) 2.17094i 0.112862i
\(371\) 7.38560 4.26408i 0.383441 0.221380i
\(372\) −1.92939 + 0.477406i −0.100034 + 0.0247523i
\(373\) 13.9877 24.2275i 0.724257 1.25445i −0.235022 0.971990i \(-0.575516\pi\)
0.959279 0.282460i \(-0.0911505\pi\)
\(374\) 0.503217 0.871597i 0.0260207 0.0450692i
\(375\) 2.75604 9.54727i 0.142321 0.493019i
\(376\) 3.12051 + 5.40488i 0.160928 + 0.278736i
\(377\) 3.17979 8.30625i 0.163768 0.427794i
\(378\) −8.53215 + 1.76600i −0.438847 + 0.0908332i
\(379\) 4.05068i 0.208069i 0.994574 + 0.104035i \(0.0331753\pi\)
−0.994574 + 0.104035i \(0.966825\pi\)
\(380\) −0.142963 0.247620i −0.00733387 0.0127026i
\(381\) 30.8646 + 8.90977i 1.58124 + 0.456461i
\(382\) 12.8524 + 7.42036i 0.657588 + 0.379659i
\(383\) −27.1033 15.6481i −1.38492 0.799581i −0.392179 0.919889i \(-0.628279\pi\)
−0.992737 + 0.120308i \(0.961612\pi\)
\(384\) −1.68134 + 0.416029i −0.0858008 + 0.0212304i
\(385\) 0.415213 0.239724i 0.0211612 0.0122174i
\(386\) −14.1075 −0.718054
\(387\) 0.797958 20.7340i 0.0405625 1.05397i
\(388\) 9.71535i 0.493222i
\(389\) 7.66964 + 13.2842i 0.388866 + 0.673536i 0.992297 0.123879i \(-0.0395335\pi\)
−0.603431 + 0.797415i \(0.706200\pi\)
\(390\) −1.44831 3.42026i −0.0733379 0.173191i
\(391\) 3.83819 6.64794i 0.194106 0.336201i
\(392\) 3.62716 + 2.09414i 0.183199 + 0.105770i
\(393\) 5.79746 5.57863i 0.292443 0.281405i
\(394\) 0.221259 + 0.383231i 0.0111468 + 0.0193069i
\(395\) 1.22395i 0.0615837i
\(396\) −0.768616 + 1.22035i −0.0386244 + 0.0613251i
\(397\) 24.1832i 1.21372i 0.794808 + 0.606860i \(0.207571\pi\)
−0.794808 + 0.606860i \(0.792429\pi\)
\(398\) −11.5117 + 6.64626i −0.577028 + 0.333147i
\(399\) 0.335370 + 1.35537i 0.0167895 + 0.0678532i
\(400\) −2.32313 + 4.02378i −0.116157 + 0.201189i
\(401\) 24.8876 + 14.3689i 1.24283 + 0.717548i 0.969669 0.244421i \(-0.0785978\pi\)
0.273160 + 0.961969i \(0.411931\pi\)
\(402\) 23.9330 + 6.90880i 1.19367 + 0.344579i
\(403\) 0.650967 + 4.08595i 0.0324270 + 0.203536i
\(404\) 5.79495 0.288310
\(405\) −0.411403 + 5.33699i −0.0204428 + 0.265197i
\(406\) −4.13634 −0.205283
\(407\) 0.877388 + 1.51968i 0.0434905 + 0.0753278i
\(408\) −1.00567 + 3.48378i −0.0497882 + 0.172473i
\(409\) −25.9100 14.9591i −1.28117 0.739682i −0.304105 0.952638i \(-0.598357\pi\)
−0.977062 + 0.212956i \(0.931691\pi\)
\(410\) 5.10442 + 2.94704i 0.252090 + 0.145544i
\(411\) 21.8923 5.41698i 1.07987 0.267200i
\(412\) 0.857037 + 1.48443i 0.0422232 + 0.0731327i
\(413\) −15.7451 −0.774764
\(414\) −5.86248 + 9.30802i −0.288125 + 0.457464i
\(415\) −6.57809 −0.322906
\(416\) 0.567277 + 3.56065i 0.0278130 + 0.174575i
\(417\) −12.7061 + 12.2265i −0.622218 + 0.598733i
\(418\) 0.200152 + 0.115558i 0.00978974 + 0.00565211i
\(419\) −12.2858 + 21.2796i −0.600200 + 1.03958i 0.392590 + 0.919713i \(0.371579\pi\)
−0.992790 + 0.119863i \(0.961754\pi\)
\(420\) −1.24470 + 1.19772i −0.0607354 + 0.0584429i
\(421\) 24.6735 14.2452i 1.20251 0.694271i 0.241399 0.970426i \(-0.422394\pi\)
0.961113 + 0.276155i \(0.0890603\pi\)
\(422\) 9.64064i 0.469299i
\(423\) −18.7092 0.720034i −0.909673 0.0350092i
\(424\) 5.08592i 0.246994i
\(425\) 4.86345 + 8.42375i 0.235912 + 0.408612i
\(426\) 2.70847 + 10.9460i 0.131226 + 0.530337i
\(427\) 11.3453 + 6.55024i 0.549040 + 0.316988i
\(428\) 7.05105 12.2128i 0.340825 0.590327i
\(429\) 2.39613 + 1.80888i 0.115686 + 0.0873336i
\(430\) −2.05681 3.56249i −0.0991880 0.171799i
\(431\) 7.13767i 0.343809i −0.985114 0.171905i \(-0.945008\pi\)
0.985114 0.171905i \(-0.0549921\pi\)
\(432\) 1.63207 4.93319i 0.0785228 0.237348i
\(433\) −7.85282 −0.377382 −0.188691 0.982036i \(-0.560424\pi\)
−0.188691 + 0.982036i \(0.560424\pi\)
\(434\) 1.66641 0.962100i 0.0799901 0.0461823i
\(435\) −0.704784 + 2.44146i −0.0337918 + 0.117059i
\(436\) −15.8893 9.17368i −0.760959 0.439340i
\(437\) 1.52662 + 0.881394i 0.0730281 + 0.0421628i
\(438\) −2.46087 9.94539i −0.117585 0.475209i
\(439\) 2.07427 + 3.59274i 0.0989994 + 0.171472i 0.911271 0.411808i \(-0.135102\pi\)
−0.812271 + 0.583280i \(0.801769\pi\)
\(440\) 0.285927i 0.0136310i
\(441\) −11.1150 + 5.85930i −0.529287 + 0.279014i
\(442\) 7.04930 + 2.69861i 0.335301 + 0.128360i
\(443\) −8.92349 15.4559i −0.423968 0.734334i 0.572356 0.820006i \(-0.306030\pi\)
−0.996323 + 0.0856716i \(0.972696\pi\)
\(444\) −4.38366 4.55562i −0.208039 0.216200i
\(445\) 2.82130 4.88663i 0.133742 0.231648i
\(446\) −11.5666 + 20.0340i −0.547696 + 0.948638i
\(447\) 6.30835 + 6.55580i 0.298375 + 0.310079i
\(448\) 1.45217 0.838409i 0.0686084 0.0396111i
\(449\) 19.7308i 0.931152i −0.885008 0.465576i \(-0.845847\pi\)
0.885008 0.465576i \(-0.154153\pi\)
\(450\) −6.50001 12.3304i −0.306413 0.581262i
\(451\) −4.76420 −0.224337
\(452\) −10.1390 17.5612i −0.476896 0.826009i
\(453\) 20.0471 4.96041i 0.941893 0.233060i
\(454\) −6.65331 + 11.5239i −0.312255 + 0.540842i
\(455\) 2.26547 + 2.79242i 0.106207 + 0.130910i
\(456\) −0.800008 0.230940i −0.0374638 0.0108148i
\(457\) −31.4762 + 18.1728i −1.47240 + 0.850088i −0.999518 0.0310408i \(-0.990118\pi\)
−0.472877 + 0.881128i \(0.656784\pi\)
\(458\) −0.809405 −0.0378210
\(459\) −7.23559 8.12275i −0.337729 0.379138i
\(460\) 2.18085i 0.101683i
\(461\) −19.8630 + 11.4679i −0.925112 + 0.534114i −0.885262 0.465092i \(-0.846021\pi\)
−0.0398498 + 0.999206i \(0.512688\pi\)
\(462\) 0.387245 1.34147i 0.0180163 0.0624107i
\(463\) −25.6143 14.7884i −1.19040 0.687277i −0.232002 0.972715i \(-0.574528\pi\)
−0.958397 + 0.285438i \(0.907861\pi\)
\(464\) 1.23339 2.13629i 0.0572586 0.0991749i
\(465\) −0.283941 1.14752i −0.0131675 0.0532151i
\(466\) −13.3984 + 7.73559i −0.620671 + 0.358344i
\(467\) −12.5970 −0.582920 −0.291460 0.956583i \(-0.594141\pi\)
−0.291460 + 0.956583i \(0.594141\pi\)
\(468\) −9.94555 4.25276i −0.459733 0.196584i
\(469\) −24.1159 −1.11357
\(470\) −3.21460 + 1.85595i −0.148278 + 0.0856086i
\(471\) −15.4646 + 14.8809i −0.712572 + 0.685675i
\(472\) 4.69493 8.13185i 0.216101 0.374299i
\(473\) 2.87957 + 1.66252i 0.132403 + 0.0764428i
\(474\) 2.47146 + 2.56841i 0.113518 + 0.117971i
\(475\) −1.93441 + 1.11683i −0.0887568 + 0.0512438i
\(476\) 3.51040i 0.160899i
\(477\) −12.9104 8.13139i −0.591129 0.372311i
\(478\) −29.1575 −1.33363
\(479\) 11.0404 6.37417i 0.504448 0.291243i −0.226101 0.974104i \(-0.572598\pi\)
0.730549 + 0.682861i \(0.239264\pi\)
\(480\) −0.247437 0.999994i −0.0112939 0.0456433i
\(481\) −10.2202 + 8.29161i −0.466003 + 0.378065i
\(482\) −7.79735 + 13.5054i −0.355159 + 0.615154i
\(483\) 2.95364 10.2318i 0.134395 0.465562i
\(484\) 5.38444 + 9.32613i 0.244747 + 0.423915i
\(485\) 5.77828 0.262378
\(486\) 9.91339 + 12.0302i 0.449681 + 0.545699i
\(487\) 20.8054i 0.942782i −0.881924 0.471391i \(-0.843752\pi\)
0.881924 0.471391i \(-0.156248\pi\)
\(488\) −6.76599 + 3.90635i −0.306282 + 0.176832i
\(489\) −10.2623 + 35.5500i −0.464078 + 1.60763i
\(490\) −1.24551 + 2.15728i −0.0562663 + 0.0974561i
\(491\) 7.37362 12.7715i 0.332767 0.576369i −0.650286 0.759689i \(-0.725351\pi\)
0.983053 + 0.183320i \(0.0586844\pi\)
\(492\) 16.6622 4.12287i 0.751190 0.185873i
\(493\) −2.58209 4.47231i −0.116291 0.201423i
\(494\) −0.619702 + 1.61879i −0.0278817 + 0.0728326i
\(495\) −0.725816 0.457141i −0.0326230 0.0205470i
\(496\) 1.14753i 0.0515256i
\(497\) −5.45828 9.45402i −0.244837 0.424071i
\(498\) −13.8038 + 13.2828i −0.618564 + 0.595216i
\(499\) 25.7627 + 14.8741i 1.15330 + 0.665856i 0.949688 0.313197i \(-0.101400\pi\)
0.203608 + 0.979053i \(0.434733\pi\)
\(500\) −4.96856 2.86860i −0.222201 0.128288i
\(501\) −17.6969 18.3910i −0.790638 0.821651i
\(502\) −2.42050 + 1.39748i −0.108032 + 0.0623724i
\(503\) −26.1270 −1.16495 −0.582473 0.812850i \(-0.697915\pi\)
−0.582473 + 0.812850i \(0.697915\pi\)
\(504\) −0.193456 + 5.02673i −0.00861724 + 0.223908i
\(505\) 3.44660i 0.153372i
\(506\) −0.881394 1.52662i −0.0391827 0.0678665i
\(507\) −10.5701 + 19.8815i −0.469434 + 0.882967i
\(508\) 9.27366 16.0624i 0.411452 0.712656i
\(509\) 15.4810 + 8.93795i 0.686182 + 0.396168i 0.802180 0.597082i \(-0.203673\pi\)
−0.115998 + 0.993249i \(0.537007\pi\)
\(510\) −2.07201 0.598132i −0.0917500 0.0264857i
\(511\) 4.95931 + 8.58977i 0.219387 + 0.379989i
\(512\) 1.00000i 0.0441942i
\(513\) 1.86529 1.66157i 0.0823546 0.0733599i
\(514\) 20.9596i 0.924488i
\(515\) −0.882878 + 0.509730i −0.0389042 + 0.0224614i
\(516\) −11.5097 3.32252i −0.506685 0.146266i
\(517\) 1.50017 2.59837i 0.0659773 0.114276i
\(518\) 5.30059 + 3.06029i 0.232894 + 0.134462i
\(519\) −4.84620 19.5855i −0.212724 0.859707i
\(520\) −2.11772 + 0.337393i −0.0928683 + 0.0147956i
\(521\) −13.7904 −0.604168 −0.302084 0.953281i \(-0.597682\pi\)
−0.302084 + 0.953281i \(0.597682\pi\)
\(522\) 3.45096 + 6.54643i 0.151045 + 0.286530i
\(523\) −0.523640 −0.0228972 −0.0114486 0.999934i \(-0.503644\pi\)
−0.0114486 + 0.999934i \(0.503644\pi\)
\(524\) −2.32256 4.02280i −0.101462 0.175737i
\(525\) 9.35664 + 9.72366i 0.408357 + 0.424375i
\(526\) −13.7251 7.92418i −0.598442 0.345511i
\(527\) 2.08049 + 1.20117i 0.0906276 + 0.0523239i
\(528\) 0.577357 + 0.600004i 0.0251262 + 0.0261118i
\(529\) 4.77734 + 8.27459i 0.207710 + 0.359765i
\(530\) −3.02489 −0.131393
\(531\) 13.1362 + 24.9192i 0.570062 + 1.08140i
\(532\) 0.806121 0.0349498
\(533\) −5.62174 35.2862i −0.243505 1.52841i
\(534\) −3.94695 15.9513i −0.170801 0.690278i
\(535\) 7.26365 + 4.19367i 0.314035 + 0.181308i
\(536\) 7.19096 12.4551i 0.310602 0.537979i
\(537\) −1.49130 0.430497i −0.0643543 0.0185773i
\(538\) 16.3703 9.45139i 0.705773 0.407478i
\(539\) 2.01349i 0.0867273i
\(540\) 2.93406 + 0.970684i 0.126262 + 0.0417716i
\(541\) 11.3636i 0.488558i 0.969705 + 0.244279i \(0.0785513\pi\)
−0.969705 + 0.244279i \(0.921449\pi\)
\(542\) 4.81902 + 8.34679i 0.206995 + 0.358525i
\(543\) 2.36620 + 0.683057i 0.101543 + 0.0293128i
\(544\) 1.81302 + 1.04675i 0.0777324 + 0.0448788i
\(545\) 5.45612 9.45028i 0.233715 0.404806i
\(546\) 10.3926 + 1.28521i 0.444760 + 0.0550020i
\(547\) 4.14239 + 7.17484i 0.177116 + 0.306774i 0.940892 0.338708i \(-0.109990\pi\)
−0.763776 + 0.645482i \(0.776657\pi\)
\(548\) 13.0207i 0.556216i
\(549\) 0.901360 23.4208i 0.0384691 0.999573i
\(550\) 2.23366 0.0952438
\(551\) 1.02701 0.592945i 0.0437521 0.0252603i
\(552\) 4.40368 + 4.57642i 0.187433 + 0.194785i
\(553\) −2.98841 1.72536i −0.127080 0.0733698i
\(554\) −2.33844 1.35010i −0.0993510 0.0573603i
\(555\) 2.70949 2.60722i 0.115011 0.110670i
\(556\) 5.09027 + 8.81661i 0.215876 + 0.373908i
\(557\) 26.7334i 1.13273i 0.824154 + 0.566365i \(0.191651\pi\)
−0.824154 + 0.566365i \(0.808349\pi\)
\(558\) −2.91297 1.83468i −0.123316 0.0776681i
\(559\) −8.91562 + 23.2894i −0.377090 + 0.985035i
\(560\) 0.498651 + 0.863688i 0.0210718 + 0.0364975i
\(561\) 1.69216 0.418706i 0.0714431 0.0176778i
\(562\) −5.39719 + 9.34820i −0.227667 + 0.394330i
\(563\) −2.36071 + 4.08888i −0.0994922 + 0.172326i −0.911475 0.411356i \(-0.865055\pi\)
0.811982 + 0.583682i \(0.198389\pi\)
\(564\) −2.99807 + 10.3857i −0.126241 + 0.437317i
\(565\) 10.4447 6.03023i 0.439410 0.253694i
\(566\) 29.2176i 1.22811i
\(567\) −12.4509 8.52785i −0.522889 0.358136i
\(568\) 6.51028 0.273165
\(569\) 21.0546 + 36.4676i 0.882653 + 1.52880i 0.848380 + 0.529388i \(0.177578\pi\)
0.0342730 + 0.999413i \(0.489088\pi\)
\(570\) 0.137354 0.475811i 0.00575311 0.0199295i
\(571\) 5.89219 10.2056i 0.246581 0.427090i −0.715994 0.698106i \(-0.754026\pi\)
0.962575 + 0.271016i \(0.0873597\pi\)
\(572\) 1.34607 1.09206i 0.0562820 0.0456613i
\(573\) 6.17417 + 24.9524i 0.257930 + 1.04240i
\(574\) −14.3910 + 8.30867i −0.600671 + 0.346797i
\(575\) 17.0369 0.710486
\(576\) −2.53847 1.59880i −0.105770 0.0666169i
\(577\) 21.5466i 0.896997i −0.893784 0.448498i \(-0.851959\pi\)
0.893784 0.448498i \(-0.148041\pi\)
\(578\) −10.9269 + 6.30865i −0.454499 + 0.262405i
\(579\) −16.9426 17.6072i −0.704111 0.731731i
\(580\) 1.27058 + 0.733568i 0.0527579 + 0.0304598i
\(581\) 9.27290 16.0611i 0.384705 0.666328i
\(582\) 12.1255 11.6678i 0.502617 0.483645i
\(583\) 2.11746 1.22251i 0.0876961 0.0506313i
\(584\) −5.91514 −0.244770
\(585\) 2.52937 5.91520i 0.104576 0.244563i
\(586\) 23.6944 0.978805
\(587\) 7.62960 4.40495i 0.314907 0.181812i −0.334213 0.942498i \(-0.608470\pi\)
0.649120 + 0.760686i \(0.275137\pi\)
\(588\) 1.74245 + 7.04194i 0.0718573 + 0.290405i
\(589\) −0.275834 + 0.477759i −0.0113656 + 0.0196857i
\(590\) 4.83649 + 2.79235i 0.199115 + 0.114959i
\(591\) −0.212577 + 0.736393i −0.00874424 + 0.0302912i
\(592\) −3.16110 + 1.82506i −0.129920 + 0.0750095i
\(593\) 26.7483i 1.09842i −0.835685 0.549210i \(-0.814929\pi\)
0.835685 0.549210i \(-0.185071\pi\)
\(594\) −2.44617 + 0.506313i −0.100368 + 0.0207743i
\(595\) 2.08784 0.0855931
\(596\) 4.54901 2.62637i 0.186335 0.107580i
\(597\) −22.1201 6.38547i −0.905316 0.261340i
\(598\) 10.2669 8.32947i 0.419845 0.340617i
\(599\) 23.9224 41.4349i 0.977445 1.69298i 0.305825 0.952088i \(-0.401068\pi\)
0.671620 0.740896i \(-0.265599\pi\)
\(600\) −7.81197 + 1.93298i −0.318922 + 0.0789136i
\(601\) 10.5193 + 18.2199i 0.429091 + 0.743207i 0.996793 0.0800273i \(-0.0255008\pi\)
−0.567702 + 0.823234i \(0.692167\pi\)
\(602\) 11.5976 0.472683
\(603\) 20.1200 + 38.1673i 0.819348 + 1.55429i
\(604\) 11.9232i 0.485150i
\(605\) −5.54679 + 3.20244i −0.225509 + 0.130198i
\(606\) 6.95953 + 7.23252i 0.282712 + 0.293801i
\(607\) −11.7683 + 20.3833i −0.477662 + 0.827334i −0.999672 0.0256049i \(-0.991849\pi\)
0.522011 + 0.852939i \(0.325182\pi\)
\(608\) −0.240372 + 0.416337i −0.00974838 + 0.0168847i
\(609\) −4.96759 5.16245i −0.201297 0.209193i
\(610\) −2.32333 4.02413i −0.0940690 0.162932i
\(611\) 21.0151 + 8.04497i 0.850179 + 0.325465i
\(612\) −5.55579 + 2.92874i −0.224579 + 0.118387i
\(613\) 40.7009i 1.64390i −0.569563 0.821948i \(-0.692888\pi\)
0.569563 0.821948i \(-0.307112\pi\)
\(614\) 3.27618 + 5.67452i 0.132216 + 0.229005i
\(615\) 2.45211 + 9.90998i 0.0988786 + 0.399609i
\(616\) −0.698121 0.403061i −0.0281281 0.0162398i
\(617\) −34.0924 19.6832i −1.37251 0.792417i −0.381264 0.924466i \(-0.624511\pi\)
−0.991243 + 0.132049i \(0.957844\pi\)
\(618\) −0.823408 + 2.85239i −0.0331223 + 0.114740i
\(619\) 21.1669 12.2207i 0.850770 0.491192i −0.0101406 0.999949i \(-0.503228\pi\)
0.860911 + 0.508756i \(0.169895\pi\)
\(620\) −0.682503 −0.0274100
\(621\) −18.6577 + 3.86180i −0.748708 + 0.154969i
\(622\) 25.4230i 1.01937i
\(623\) 7.95416 + 13.7770i 0.318677 + 0.551964i
\(624\) −3.76267 + 4.98421i −0.150627 + 0.199528i
\(625\) −9.90953 + 17.1638i −0.396381 + 0.686553i
\(626\) −1.02317 0.590728i −0.0408942 0.0236103i
\(627\) 0.0961506 + 0.388584i 0.00383989 + 0.0155186i
\(628\) 6.19540 + 10.7307i 0.247223 + 0.428203i
\(629\) 7.64149i 0.304686i
\(630\) −2.98969 0.115060i −0.119112 0.00458409i
\(631\) 5.70930i 0.227284i 0.993522 + 0.113642i \(0.0362516\pi\)
−0.993522 + 0.113642i \(0.963748\pi\)
\(632\) 1.78219 1.02895i 0.0708918 0.0409294i
\(633\) 12.0322 11.5781i 0.478238 0.460187i
\(634\) −13.9724 + 24.2009i −0.554915 + 0.961141i
\(635\) 9.55327 + 5.51558i 0.379110 + 0.218879i
\(636\) −6.34760 + 6.10800i −0.251699 + 0.242198i
\(637\) 14.9130 2.37591i 0.590874 0.0941372i
\(638\) −1.18589 −0.0469498
\(639\) −10.4087 + 16.5261i −0.411761 + 0.653764i
\(640\) −0.594758 −0.0235099
\(641\) −19.7411 34.1925i −0.779725 1.35052i −0.932100 0.362201i \(-0.882026\pi\)
0.152375 0.988323i \(-0.451308\pi\)
\(642\) 23.7105 5.86688i 0.935778 0.231547i
\(643\) −25.5467 14.7494i −1.00747 0.581660i −0.0970167 0.995283i \(-0.530930\pi\)
−0.910449 + 0.413622i \(0.864263\pi\)
\(644\) −5.32479 3.07427i −0.209826 0.121143i
\(645\) 1.97610 6.84547i 0.0778088 0.269540i
\(646\) 0.503217 + 0.871597i 0.0197988 + 0.0342925i
\(647\) 47.5940 1.87111 0.935556 0.353178i \(-0.114899\pi\)
0.935556 + 0.353178i \(0.114899\pi\)
\(648\) 8.11703 3.88765i 0.318867 0.152721i
\(649\) −4.51412 −0.177195
\(650\) 2.63572 + 16.5437i 0.103381 + 0.648897i
\(651\) 3.20206 + 0.924349i 0.125499 + 0.0362281i
\(652\) 18.5008 + 10.6814i 0.724548 + 0.418318i
\(653\) −6.23738 + 10.8035i −0.244088 + 0.422772i −0.961875 0.273490i \(-0.911822\pi\)
0.717787 + 0.696263i \(0.245155\pi\)
\(654\) −7.63303 30.8482i −0.298475 1.20626i
\(655\) 2.39259 1.38136i 0.0934863 0.0539744i
\(656\) 9.91005i 0.386922i
\(657\) 9.45715 15.0154i 0.368959 0.585807i
\(658\) 10.4651i 0.407970i
\(659\) −1.87306 3.24423i −0.0729639 0.126377i 0.827235 0.561856i \(-0.189912\pi\)
−0.900199 + 0.435479i \(0.856579\pi\)
\(660\) −0.356857 + 0.343388i −0.0138907 + 0.0133663i
\(661\) 28.6397 + 16.5352i 1.11396 + 0.643143i 0.939851 0.341584i \(-0.110963\pi\)
0.174105 + 0.984727i \(0.444297\pi\)
\(662\) 12.3266 21.3503i 0.479086 0.829801i
\(663\) 5.09790 + 12.0390i 0.197986 + 0.467555i
\(664\) 5.53006 + 9.57834i 0.214608 + 0.371712i
\(665\) 0.479447i 0.0185922i
\(666\) 0.421119 10.9423i 0.0163180 0.424004i
\(667\) −9.04515 −0.350230
\(668\) −12.7614 + 7.36778i −0.493752 + 0.285068i
\(669\) −38.8950 + 9.62411i −1.50377 + 0.372090i
\(670\) 7.40778 + 4.27688i 0.286187 + 0.165230i
\(671\) 3.25271 + 1.87796i 0.125570 + 0.0724977i
\(672\) 2.79040 + 0.805511i 0.107642 + 0.0310733i
\(673\) 7.07178 + 12.2487i 0.272597 + 0.472152i 0.969526 0.244988i \(-0.0787840\pi\)
−0.696929 + 0.717140i \(0.745451\pi\)
\(674\) 15.2788i 0.588518i
\(675\) 7.58300 22.9209i 0.291870 0.882226i
\(676\) 9.67672 + 8.68108i 0.372181 + 0.333888i
\(677\) 17.1064 + 29.6291i 0.657451 + 1.13874i 0.981273 + 0.192620i \(0.0616986\pi\)
−0.323823 + 0.946118i \(0.604968\pi\)
\(678\) 9.74112 33.7445i 0.374105 1.29595i
\(679\) −8.14544 + 14.1083i −0.312593 + 0.541427i
\(680\) −0.622560 + 1.07831i −0.0238741 + 0.0413512i
\(681\) −22.3730 + 5.53594i −0.857335 + 0.212138i
\(682\) 0.477759 0.275834i 0.0182944 0.0105622i
\(683\) 16.3144i 0.624255i 0.950040 + 0.312127i \(0.101042\pi\)
−0.950040 + 0.312127i \(0.898958\pi\)
\(684\) −0.672550 1.27582i −0.0257156 0.0487822i
\(685\) 7.74416 0.295889
\(686\) −9.38036 16.2473i −0.358144 0.620323i
\(687\) −0.972066 1.01020i −0.0370866 0.0385414i
\(688\) −3.45822 + 5.98981i −0.131843 + 0.228359i
\(689\) 11.5532 + 14.2404i 0.440141 + 0.542517i
\(690\) −2.72186 + 2.61912i −0.103619 + 0.0997083i
\(691\) −21.9516 + 12.6738i −0.835078 + 0.482132i −0.855588 0.517657i \(-0.826804\pi\)
0.0205104 + 0.999790i \(0.493471\pi\)
\(692\) −11.6487 −0.442817
\(693\) 2.13932 1.12774i 0.0812659 0.0428395i
\(694\) 1.21538i 0.0461350i
\(695\) −5.24375 + 3.02748i −0.198907 + 0.114839i
\(696\) 4.14750 1.02625i 0.157211 0.0388999i
\(697\) −17.9671 10.3733i −0.680551 0.392916i
\(698\) −1.90580 + 3.30094i −0.0721355 + 0.124942i
\(699\) −25.7456 7.43206i −0.973789 0.281106i
\(700\) 6.74715 3.89547i 0.255018 0.147235i
\(701\) 35.4651 1.33950 0.669750 0.742587i \(-0.266401\pi\)
0.669750 + 0.742587i \(0.266401\pi\)
\(702\) −6.63649 17.5202i −0.250478 0.661257i
\(703\) −1.75478 −0.0661826
\(704\) 0.416337 0.240372i 0.0156913 0.00905937i
\(705\) −6.17698 1.78312i −0.232638 0.0671564i
\(706\) 10.0086 17.3353i 0.376677 0.652424i
\(707\) −8.41524 4.85854i −0.316488 0.182724i
\(708\) 15.7876 3.90645i 0.593333 0.146813i
\(709\) 18.7687 10.8361i 0.704874 0.406959i −0.104286 0.994547i \(-0.533256\pi\)
0.809160 + 0.587588i \(0.199923\pi\)
\(710\) 3.87204i 0.145315i
\(711\) −0.237422 + 6.16913i −0.00890403 + 0.231360i
\(712\) −9.48720 −0.355548
\(713\) 3.64402 2.10387i 0.136470 0.0787907i
\(714\) 4.38124 4.21587i 0.163964 0.157775i
\(715\) 0.649511 + 0.800587i 0.0242903 + 0.0299402i
\(716\) −0.448079 + 0.776096i −0.0167455 + 0.0290041i
\(717\) −35.0171 36.3907i −1.30774 1.35903i
\(718\) 4.98359 + 8.63182i 0.185986 + 0.322137i
\(719\) 15.4819 0.577378 0.288689 0.957423i \(-0.406781\pi\)
0.288689 + 0.957423i \(0.406781\pi\)
\(720\) 0.950902 1.50978i 0.0354380 0.0562660i
\(721\) 2.87419i 0.107040i
\(722\) 16.2543 9.38444i 0.604924 0.349253i
\(723\) −26.2201 + 6.48784i −0.975135 + 0.241286i
\(724\) 0.710953 1.23141i 0.0264224 0.0457649i
\(725\) 5.73065 9.92578i 0.212831 0.368634i
\(726\) −5.17316 + 17.9205i −0.191994 + 0.665093i
\(727\) 2.73280 + 4.73335i 0.101354 + 0.175550i 0.912243 0.409650i \(-0.134349\pi\)
−0.810889 + 0.585200i \(0.801016\pi\)
\(728\) 2.16150 5.64626i 0.0801104 0.209264i
\(729\) −3.10888 + 26.8204i −0.115144 + 0.993349i
\(730\) 3.51808i 0.130210i
\(731\) 7.23975 + 12.5396i 0.267772 + 0.463794i
\(732\) −13.0011 3.75307i −0.480535 0.138717i
\(733\) 16.5705 + 9.56700i 0.612046 + 0.353365i 0.773766 0.633472i \(-0.218371\pi\)
−0.161720 + 0.986837i \(0.551704\pi\)
\(734\) −12.4073 7.16334i −0.457960 0.264404i
\(735\) −4.18825 + 1.03633i −0.154486 + 0.0382258i
\(736\) 3.17553 1.83339i 0.117052 0.0675798i
\(737\) −6.91403 −0.254681
\(738\) 25.1563 + 15.8442i 0.926018 + 0.583234i
\(739\) 3.40317i 0.125188i −0.998039 0.0625938i \(-0.980063\pi\)
0.998039 0.0625938i \(-0.0199373\pi\)
\(740\) −1.08547 1.88009i −0.0399027 0.0691134i
\(741\) −2.76460 + 1.17067i −0.101560 + 0.0430056i
\(742\) 4.26408 7.38560i 0.156539 0.271134i
\(743\) −19.8454 11.4578i −0.728058 0.420345i 0.0896532 0.995973i \(-0.471424\pi\)
−0.817711 + 0.575628i \(0.804757\pi\)
\(744\) −1.43220 + 1.37814i −0.0525071 + 0.0505252i
\(745\) 1.56206 + 2.70556i 0.0572293 + 0.0991240i
\(746\) 27.9755i 1.02425i
\(747\) −33.1558 1.27602i −1.21311 0.0466871i
\(748\) 1.00643i 0.0367989i
\(749\) −20.4786 + 11.8233i −0.748272 + 0.432015i
\(750\) −2.38684 9.64620i −0.0871550 0.352229i
\(751\) 7.68694 13.3142i 0.280500 0.485841i −0.691008 0.722847i \(-0.742833\pi\)
0.971508 + 0.237006i \(0.0761663\pi\)
\(752\) 5.40488 + 3.12051i 0.197096 + 0.113793i
\(753\) −4.65109 1.34264i −0.169495 0.0489286i
\(754\) −1.39935 8.78332i −0.0509612 0.319870i
\(755\) 7.09144 0.258084
\(756\) −6.50606 + 5.79548i −0.236623 + 0.210779i
\(757\) 41.9292 1.52394 0.761971 0.647611i \(-0.224232\pi\)
0.761971 + 0.647611i \(0.224232\pi\)
\(758\) 2.02534 + 3.50799i 0.0735637 + 0.127416i
\(759\) 0.846809 2.93346i 0.0307372 0.106478i
\(760\) −0.247620 0.142963i −0.00898211 0.00518583i
\(761\) −2.20005 1.27020i −0.0797518 0.0460447i 0.459594 0.888129i \(-0.347995\pi\)
−0.539346 + 0.842085i \(0.681328\pi\)
\(762\) 31.1844 7.71622i 1.12969 0.279529i
\(763\) 15.3826 + 26.6434i 0.556887 + 0.964557i
\(764\) 14.8407 0.536918
\(765\) −1.74189 3.30435i −0.0629783 0.119469i
\(766\) −31.2962 −1.13078
\(767\) −5.32664 33.4339i −0.192334 1.20723i
\(768\) −1.24807 + 1.20096i −0.0450359 + 0.0433361i
\(769\) 8.65130 + 4.99483i 0.311974 + 0.180118i 0.647809 0.761802i \(-0.275685\pi\)
−0.335836 + 0.941921i \(0.609019\pi\)
\(770\) 0.239724 0.415213i 0.00863904