Properties

Label 234.2.t
Level $234$
Weight $2$
Character orbit 234.t
Rep. character $\chi_{234}(25,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $28$
Newform subspaces $1$
Sturm bound $84$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 234 = 2 \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 234.t (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 117 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 1 \)
Sturm bound: \(84\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(234, [\chi])\).

Total New Old
Modular forms 92 28 64
Cusp forms 76 28 48
Eisenstein series 16 0 16

Trace form

\( 28 q + 14 q^{4} - 16 q^{9} + 2 q^{13} + 8 q^{14} - 14 q^{16} + 16 q^{17} - 8 q^{23} + 14 q^{25} + 8 q^{26} + 18 q^{27} - 16 q^{29} - 8 q^{30} - 68 q^{35} - 8 q^{36} - 8 q^{39} - 10 q^{42} - 4 q^{43} + 10 q^{49}+ \cdots + 8 q^{92}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(234, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
234.2.t.a 234.t 117.t $28$ $1.868$ None 234.2.t.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{6}]$

Decomposition of \(S_{2}^{\mathrm{old}}(234, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(234, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(117, [\chi])\)\(^{\oplus 2}\)