Properties

Label 234.2.l.c.127.1
Level $234$
Weight $2$
Character 234.127
Analytic conductor $1.868$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [234,2,Mod(127,234)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(234, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("234.127");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 234 = 2 \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 234.l (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.86849940730\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{12})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 78)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 127.1
Root \(-0.866025 + 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 234.127
Dual form 234.2.l.c.199.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.866025 + 0.500000i) q^{2} +(0.500000 - 0.866025i) q^{4} -0.267949i q^{5} +(0.633975 + 0.366025i) q^{7} +1.00000i q^{8} +(0.133975 + 0.232051i) q^{10} +(4.09808 - 2.36603i) q^{11} +(2.59808 + 2.50000i) q^{13} -0.732051 q^{14} +(-0.500000 - 0.866025i) q^{16} +(1.13397 - 1.96410i) q^{17} +(-1.09808 - 0.633975i) q^{19} +(-0.232051 - 0.133975i) q^{20} +(-2.36603 + 4.09808i) q^{22} +(3.09808 + 5.36603i) q^{23} +4.92820 q^{25} +(-3.50000 - 0.866025i) q^{26} +(0.633975 - 0.366025i) q^{28} +(1.23205 + 2.13397i) q^{29} -5.46410i q^{31} +(0.866025 + 0.500000i) q^{32} +2.26795i q^{34} +(0.0980762 - 0.169873i) q^{35} +(-9.06218 + 5.23205i) q^{37} +1.26795 q^{38} +0.267949 q^{40} +(-9.86603 + 5.69615i) q^{41} +(3.83013 - 6.63397i) q^{43} -4.73205i q^{44} +(-5.36603 - 3.09808i) q^{46} -8.19615i q^{47} +(-3.23205 - 5.59808i) q^{49} +(-4.26795 + 2.46410i) q^{50} +(3.46410 - 1.00000i) q^{52} -0.464102 q^{53} +(-0.633975 - 1.09808i) q^{55} +(-0.366025 + 0.633975i) q^{56} +(-2.13397 - 1.23205i) q^{58} +(-6.92820 - 4.00000i) q^{59} +(-0.598076 + 1.03590i) q^{61} +(2.73205 + 4.73205i) q^{62} -1.00000 q^{64} +(0.669873 - 0.696152i) q^{65} +(-9.63397 + 5.56218i) q^{67} +(-1.13397 - 1.96410i) q^{68} +0.196152i q^{70} +(1.09808 + 0.633975i) q^{71} +9.73205i q^{73} +(5.23205 - 9.06218i) q^{74} +(-1.09808 + 0.633975i) q^{76} +3.46410 q^{77} -9.46410 q^{79} +(-0.232051 + 0.133975i) q^{80} +(5.69615 - 9.86603i) q^{82} -10.1962i q^{83} +(-0.526279 - 0.303848i) q^{85} +7.66025i q^{86} +(2.36603 + 4.09808i) q^{88} +(-2.19615 + 1.26795i) q^{89} +(0.732051 + 2.53590i) q^{91} +6.19615 q^{92} +(4.09808 + 7.09808i) q^{94} +(-0.169873 + 0.294229i) q^{95} +(5.19615 + 3.00000i) q^{97} +(5.59808 + 3.23205i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{4} + 6 q^{7} + 4 q^{10} + 6 q^{11} + 4 q^{14} - 2 q^{16} + 8 q^{17} + 6 q^{19} + 6 q^{20} - 6 q^{22} + 2 q^{23} - 8 q^{25} - 14 q^{26} + 6 q^{28} - 2 q^{29} - 10 q^{35} - 12 q^{37} + 12 q^{38}+ \cdots + 12 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/234\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(209\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.866025 + 0.500000i −0.612372 + 0.353553i
\(3\) 0 0
\(4\) 0.500000 0.866025i 0.250000 0.433013i
\(5\) 0.267949i 0.119831i −0.998203 0.0599153i \(-0.980917\pi\)
0.998203 0.0599153i \(-0.0190830\pi\)
\(6\) 0 0
\(7\) 0.633975 + 0.366025i 0.239620 + 0.138345i 0.615002 0.788526i \(-0.289155\pi\)
−0.375382 + 0.926870i \(0.622489\pi\)
\(8\) 1.00000i 0.353553i
\(9\) 0 0
\(10\) 0.133975 + 0.232051i 0.0423665 + 0.0733809i
\(11\) 4.09808 2.36603i 1.23562 0.713384i 0.267421 0.963580i \(-0.413828\pi\)
0.968195 + 0.250196i \(0.0804951\pi\)
\(12\) 0 0
\(13\) 2.59808 + 2.50000i 0.720577 + 0.693375i
\(14\) −0.732051 −0.195649
\(15\) 0 0
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) 1.13397 1.96410i 0.275029 0.476365i −0.695113 0.718900i \(-0.744646\pi\)
0.970143 + 0.242536i \(0.0779791\pi\)
\(18\) 0 0
\(19\) −1.09808 0.633975i −0.251916 0.145444i 0.368725 0.929538i \(-0.379794\pi\)
−0.620641 + 0.784095i \(0.713128\pi\)
\(20\) −0.232051 0.133975i −0.0518881 0.0299576i
\(21\) 0 0
\(22\) −2.36603 + 4.09808i −0.504438 + 0.873713i
\(23\) 3.09808 + 5.36603i 0.645994 + 1.11889i 0.984071 + 0.177775i \(0.0568901\pi\)
−0.338078 + 0.941118i \(0.609777\pi\)
\(24\) 0 0
\(25\) 4.92820 0.985641
\(26\) −3.50000 0.866025i −0.686406 0.169842i
\(27\) 0 0
\(28\) 0.633975 0.366025i 0.119810 0.0691723i
\(29\) 1.23205 + 2.13397i 0.228786 + 0.396269i 0.957449 0.288604i \(-0.0931910\pi\)
−0.728663 + 0.684873i \(0.759858\pi\)
\(30\) 0 0
\(31\) 5.46410i 0.981382i −0.871334 0.490691i \(-0.836744\pi\)
0.871334 0.490691i \(-0.163256\pi\)
\(32\) 0.866025 + 0.500000i 0.153093 + 0.0883883i
\(33\) 0 0
\(34\) 2.26795i 0.388950i
\(35\) 0.0980762 0.169873i 0.0165779 0.0287138i
\(36\) 0 0
\(37\) −9.06218 + 5.23205i −1.48981 + 0.860144i −0.999932 0.0116456i \(-0.996293\pi\)
−0.489881 + 0.871789i \(0.662960\pi\)
\(38\) 1.26795 0.205689
\(39\) 0 0
\(40\) 0.267949 0.0423665
\(41\) −9.86603 + 5.69615i −1.54081 + 0.889590i −0.542027 + 0.840361i \(0.682343\pi\)
−0.998788 + 0.0492283i \(0.984324\pi\)
\(42\) 0 0
\(43\) 3.83013 6.63397i 0.584089 1.01167i −0.410899 0.911681i \(-0.634785\pi\)
0.994988 0.0999910i \(-0.0318814\pi\)
\(44\) 4.73205i 0.713384i
\(45\) 0 0
\(46\) −5.36603 3.09808i −0.791177 0.456786i
\(47\) 8.19615i 1.19553i −0.801671 0.597766i \(-0.796055\pi\)
0.801671 0.597766i \(-0.203945\pi\)
\(48\) 0 0
\(49\) −3.23205 5.59808i −0.461722 0.799725i
\(50\) −4.26795 + 2.46410i −0.603579 + 0.348477i
\(51\) 0 0
\(52\) 3.46410 1.00000i 0.480384 0.138675i
\(53\) −0.464102 −0.0637493 −0.0318746 0.999492i \(-0.510148\pi\)
−0.0318746 + 0.999492i \(0.510148\pi\)
\(54\) 0 0
\(55\) −0.633975 1.09808i −0.0854851 0.148065i
\(56\) −0.366025 + 0.633975i −0.0489122 + 0.0847184i
\(57\) 0 0
\(58\) −2.13397 1.23205i −0.280205 0.161776i
\(59\) −6.92820 4.00000i −0.901975 0.520756i −0.0241347 0.999709i \(-0.507683\pi\)
−0.877841 + 0.478953i \(0.841016\pi\)
\(60\) 0 0
\(61\) −0.598076 + 1.03590i −0.0765758 + 0.132633i −0.901770 0.432215i \(-0.857732\pi\)
0.825195 + 0.564848i \(0.191065\pi\)
\(62\) 2.73205 + 4.73205i 0.346971 + 0.600971i
\(63\) 0 0
\(64\) −1.00000 −0.125000
\(65\) 0.669873 0.696152i 0.0830875 0.0863471i
\(66\) 0 0
\(67\) −9.63397 + 5.56218i −1.17698 + 0.679528i −0.955313 0.295595i \(-0.904482\pi\)
−0.221664 + 0.975123i \(0.571149\pi\)
\(68\) −1.13397 1.96410i −0.137515 0.238182i
\(69\) 0 0
\(70\) 0.196152i 0.0234447i
\(71\) 1.09808 + 0.633975i 0.130318 + 0.0752389i 0.563742 0.825951i \(-0.309361\pi\)
−0.433424 + 0.901190i \(0.642695\pi\)
\(72\) 0 0
\(73\) 9.73205i 1.13905i 0.821974 + 0.569525i \(0.192873\pi\)
−0.821974 + 0.569525i \(0.807127\pi\)
\(74\) 5.23205 9.06218i 0.608214 1.05346i
\(75\) 0 0
\(76\) −1.09808 + 0.633975i −0.125958 + 0.0727219i
\(77\) 3.46410 0.394771
\(78\) 0 0
\(79\) −9.46410 −1.06479 −0.532397 0.846495i \(-0.678709\pi\)
−0.532397 + 0.846495i \(0.678709\pi\)
\(80\) −0.232051 + 0.133975i −0.0259441 + 0.0149788i
\(81\) 0 0
\(82\) 5.69615 9.86603i 0.629035 1.08952i
\(83\) 10.1962i 1.11917i −0.828772 0.559587i \(-0.810960\pi\)
0.828772 0.559587i \(-0.189040\pi\)
\(84\) 0 0
\(85\) −0.526279 0.303848i −0.0570830 0.0329569i
\(86\) 7.66025i 0.826026i
\(87\) 0 0
\(88\) 2.36603 + 4.09808i 0.252219 + 0.436856i
\(89\) −2.19615 + 1.26795i −0.232792 + 0.134402i −0.611859 0.790967i \(-0.709578\pi\)
0.379068 + 0.925369i \(0.376245\pi\)
\(90\) 0 0
\(91\) 0.732051 + 2.53590i 0.0767398 + 0.265834i
\(92\) 6.19615 0.645994
\(93\) 0 0
\(94\) 4.09808 + 7.09808i 0.422684 + 0.732111i
\(95\) −0.169873 + 0.294229i −0.0174286 + 0.0301872i
\(96\) 0 0
\(97\) 5.19615 + 3.00000i 0.527589 + 0.304604i 0.740034 0.672569i \(-0.234809\pi\)
−0.212445 + 0.977173i \(0.568143\pi\)
\(98\) 5.59808 + 3.23205i 0.565491 + 0.326486i
\(99\) 0 0
\(100\) 2.46410 4.26795i 0.246410 0.426795i
\(101\) 5.96410 + 10.3301i 0.593450 + 1.02789i 0.993764 + 0.111508i \(0.0355680\pi\)
−0.400313 + 0.916378i \(0.631099\pi\)
\(102\) 0 0
\(103\) 18.7321 1.84572 0.922862 0.385131i \(-0.125844\pi\)
0.922862 + 0.385131i \(0.125844\pi\)
\(104\) −2.50000 + 2.59808i −0.245145 + 0.254762i
\(105\) 0 0
\(106\) 0.401924 0.232051i 0.0390383 0.0225388i
\(107\) −0.0980762 0.169873i −0.00948139 0.0164222i 0.861246 0.508189i \(-0.169685\pi\)
−0.870727 + 0.491766i \(0.836351\pi\)
\(108\) 0 0
\(109\) 5.46410i 0.523366i −0.965154 0.261683i \(-0.915723\pi\)
0.965154 0.261683i \(-0.0842775\pi\)
\(110\) 1.09808 + 0.633975i 0.104697 + 0.0604471i
\(111\) 0 0
\(112\) 0.732051i 0.0691723i
\(113\) −9.33013 + 16.1603i −0.877705 + 1.52023i −0.0238510 + 0.999716i \(0.507593\pi\)
−0.853854 + 0.520513i \(0.825741\pi\)
\(114\) 0 0
\(115\) 1.43782 0.830127i 0.134078 0.0774097i
\(116\) 2.46410 0.228786
\(117\) 0 0
\(118\) 8.00000 0.736460
\(119\) 1.43782 0.830127i 0.131805 0.0760976i
\(120\) 0 0
\(121\) 5.69615 9.86603i 0.517832 0.896911i
\(122\) 1.19615i 0.108295i
\(123\) 0 0
\(124\) −4.73205 2.73205i −0.424951 0.245345i
\(125\) 2.66025i 0.237940i
\(126\) 0 0
\(127\) 8.92820 + 15.4641i 0.792250 + 1.37222i 0.924571 + 0.381010i \(0.124424\pi\)
−0.132321 + 0.991207i \(0.542243\pi\)
\(128\) 0.866025 0.500000i 0.0765466 0.0441942i
\(129\) 0 0
\(130\) −0.232051 + 0.937822i −0.0203522 + 0.0822524i
\(131\) −13.4641 −1.17636 −0.588182 0.808729i \(-0.700156\pi\)
−0.588182 + 0.808729i \(0.700156\pi\)
\(132\) 0 0
\(133\) −0.464102 0.803848i −0.0402427 0.0697024i
\(134\) 5.56218 9.63397i 0.480499 0.832249i
\(135\) 0 0
\(136\) 1.96410 + 1.13397i 0.168420 + 0.0972375i
\(137\) 1.66987 + 0.964102i 0.142667 + 0.0823688i 0.569634 0.821898i \(-0.307085\pi\)
−0.426968 + 0.904267i \(0.640418\pi\)
\(138\) 0 0
\(139\) 4.92820 8.53590i 0.418005 0.724005i −0.577734 0.816225i \(-0.696063\pi\)
0.995739 + 0.0922197i \(0.0293962\pi\)
\(140\) −0.0980762 0.169873i −0.00828895 0.0143569i
\(141\) 0 0
\(142\) −1.26795 −0.106404
\(143\) 16.5622 + 4.09808i 1.38500 + 0.342698i
\(144\) 0 0
\(145\) 0.571797 0.330127i 0.0474851 0.0274156i
\(146\) −4.86603 8.42820i −0.402715 0.697523i
\(147\) 0 0
\(148\) 10.4641i 0.860144i
\(149\) 2.42820 + 1.40192i 0.198926 + 0.114850i 0.596154 0.802870i \(-0.296695\pi\)
−0.397228 + 0.917720i \(0.630028\pi\)
\(150\) 0 0
\(151\) 3.26795i 0.265942i −0.991120 0.132971i \(-0.957548\pi\)
0.991120 0.132971i \(-0.0424517\pi\)
\(152\) 0.633975 1.09808i 0.0514221 0.0890657i
\(153\) 0 0
\(154\) −3.00000 + 1.73205i −0.241747 + 0.139573i
\(155\) −1.46410 −0.117599
\(156\) 0 0
\(157\) −23.5885 −1.88256 −0.941282 0.337622i \(-0.890378\pi\)
−0.941282 + 0.337622i \(0.890378\pi\)
\(158\) 8.19615 4.73205i 0.652051 0.376462i
\(159\) 0 0
\(160\) 0.133975 0.232051i 0.0105916 0.0183452i
\(161\) 4.53590i 0.357479i
\(162\) 0 0
\(163\) −5.66025 3.26795i −0.443345 0.255966i 0.261670 0.965157i \(-0.415727\pi\)
−0.705016 + 0.709192i \(0.749060\pi\)
\(164\) 11.3923i 0.889590i
\(165\) 0 0
\(166\) 5.09808 + 8.83013i 0.395687 + 0.685351i
\(167\) −2.19615 + 1.26795i −0.169943 + 0.0981169i −0.582559 0.812788i \(-0.697949\pi\)
0.412616 + 0.910905i \(0.364615\pi\)
\(168\) 0 0
\(169\) 0.500000 + 12.9904i 0.0384615 + 0.999260i
\(170\) 0.607695 0.0466081
\(171\) 0 0
\(172\) −3.83013 6.63397i −0.292044 0.505836i
\(173\) 8.19615 14.1962i 0.623142 1.07931i −0.365755 0.930711i \(-0.619189\pi\)
0.988897 0.148602i \(-0.0474774\pi\)
\(174\) 0 0
\(175\) 3.12436 + 1.80385i 0.236179 + 0.136358i
\(176\) −4.09808 2.36603i −0.308904 0.178346i
\(177\) 0 0
\(178\) 1.26795 2.19615i 0.0950368 0.164609i
\(179\) −11.0263 19.0981i −0.824143 1.42746i −0.902573 0.430538i \(-0.858324\pi\)
0.0784298 0.996920i \(-0.475009\pi\)
\(180\) 0 0
\(181\) −8.80385 −0.654385 −0.327192 0.944958i \(-0.606103\pi\)
−0.327192 + 0.944958i \(0.606103\pi\)
\(182\) −1.90192 1.83013i −0.140980 0.135658i
\(183\) 0 0
\(184\) −5.36603 + 3.09808i −0.395589 + 0.228393i
\(185\) 1.40192 + 2.42820i 0.103071 + 0.178525i
\(186\) 0 0
\(187\) 10.7321i 0.784805i
\(188\) −7.09808 4.09808i −0.517680 0.298883i
\(189\) 0 0
\(190\) 0.339746i 0.0246478i
\(191\) 3.46410 6.00000i 0.250654 0.434145i −0.713052 0.701111i \(-0.752688\pi\)
0.963706 + 0.266966i \(0.0860212\pi\)
\(192\) 0 0
\(193\) 7.16025 4.13397i 0.515406 0.297570i −0.219647 0.975579i \(-0.570490\pi\)
0.735053 + 0.678009i \(0.237157\pi\)
\(194\) −6.00000 −0.430775
\(195\) 0 0
\(196\) −6.46410 −0.461722
\(197\) −8.53590 + 4.92820i −0.608158 + 0.351120i −0.772244 0.635326i \(-0.780866\pi\)
0.164086 + 0.986446i \(0.447532\pi\)
\(198\) 0 0
\(199\) −1.90192 + 3.29423i −0.134824 + 0.233522i −0.925530 0.378674i \(-0.876380\pi\)
0.790706 + 0.612196i \(0.209714\pi\)
\(200\) 4.92820i 0.348477i
\(201\) 0 0
\(202\) −10.3301 5.96410i −0.726825 0.419633i
\(203\) 1.80385i 0.126605i
\(204\) 0 0
\(205\) 1.52628 + 2.64359i 0.106600 + 0.184637i
\(206\) −16.2224 + 9.36603i −1.13027 + 0.652562i
\(207\) 0 0
\(208\) 0.866025 3.50000i 0.0600481 0.242681i
\(209\) −6.00000 −0.415029
\(210\) 0 0
\(211\) 2.19615 + 3.80385i 0.151189 + 0.261868i 0.931665 0.363319i \(-0.118356\pi\)
−0.780476 + 0.625186i \(0.785023\pi\)
\(212\) −0.232051 + 0.401924i −0.0159373 + 0.0276042i
\(213\) 0 0
\(214\) 0.169873 + 0.0980762i 0.0116123 + 0.00670435i
\(215\) −1.77757 1.02628i −0.121229 0.0699917i
\(216\) 0 0
\(217\) 2.00000 3.46410i 0.135769 0.235159i
\(218\) 2.73205 + 4.73205i 0.185038 + 0.320495i
\(219\) 0 0
\(220\) −1.26795 −0.0854851
\(221\) 7.85641 2.26795i 0.528479 0.152559i
\(222\) 0 0
\(223\) −11.3205 + 6.53590i −0.758077 + 0.437676i −0.828605 0.559834i \(-0.810865\pi\)
0.0705277 + 0.997510i \(0.477532\pi\)
\(224\) 0.366025 + 0.633975i 0.0244561 + 0.0423592i
\(225\) 0 0
\(226\) 18.6603i 1.24126i
\(227\) −1.56218 0.901924i −0.103685 0.0598628i 0.447261 0.894404i \(-0.352400\pi\)
−0.550946 + 0.834541i \(0.685733\pi\)
\(228\) 0 0
\(229\) 15.8564i 1.04782i −0.851773 0.523910i \(-0.824473\pi\)
0.851773 0.523910i \(-0.175527\pi\)
\(230\) −0.830127 + 1.43782i −0.0547370 + 0.0948072i
\(231\) 0 0
\(232\) −2.13397 + 1.23205i −0.140102 + 0.0808881i
\(233\) 19.8564 1.30084 0.650418 0.759576i \(-0.274594\pi\)
0.650418 + 0.759576i \(0.274594\pi\)
\(234\) 0 0
\(235\) −2.19615 −0.143261
\(236\) −6.92820 + 4.00000i −0.450988 + 0.260378i
\(237\) 0 0
\(238\) −0.830127 + 1.43782i −0.0538091 + 0.0932002i
\(239\) 9.66025i 0.624870i 0.949939 + 0.312435i \(0.101145\pi\)
−0.949939 + 0.312435i \(0.898855\pi\)
\(240\) 0 0
\(241\) −15.2321 8.79423i −0.981183 0.566486i −0.0785557 0.996910i \(-0.525031\pi\)
−0.902627 + 0.430424i \(0.858364\pi\)
\(242\) 11.3923i 0.732325i
\(243\) 0 0
\(244\) 0.598076 + 1.03590i 0.0382879 + 0.0663166i
\(245\) −1.50000 + 0.866025i −0.0958315 + 0.0553283i
\(246\) 0 0
\(247\) −1.26795 4.39230i −0.0806777 0.279476i
\(248\) 5.46410 0.346971
\(249\) 0 0
\(250\) 1.33013 + 2.30385i 0.0841246 + 0.145708i
\(251\) −3.26795 + 5.66025i −0.206271 + 0.357272i −0.950537 0.310611i \(-0.899466\pi\)
0.744266 + 0.667883i \(0.232800\pi\)
\(252\) 0 0
\(253\) 25.3923 + 14.6603i 1.59640 + 0.921682i
\(254\) −15.4641 8.92820i −0.970304 0.560205i
\(255\) 0 0
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) −13.3301 23.0885i −0.831510 1.44022i −0.896840 0.442355i \(-0.854143\pi\)
0.0653297 0.997864i \(-0.479190\pi\)
\(258\) 0 0
\(259\) −7.66025 −0.475985
\(260\) −0.267949 0.928203i −0.0166175 0.0575647i
\(261\) 0 0
\(262\) 11.6603 6.73205i 0.720373 0.415907i
\(263\) 14.0263 + 24.2942i 0.864897 + 1.49805i 0.867149 + 0.498049i \(0.165950\pi\)
−0.00225153 + 0.999997i \(0.500717\pi\)
\(264\) 0 0
\(265\) 0.124356i 0.00763911i
\(266\) 0.803848 + 0.464102i 0.0492871 + 0.0284559i
\(267\) 0 0
\(268\) 11.1244i 0.679528i
\(269\) −0.732051 + 1.26795i −0.0446339 + 0.0773082i −0.887479 0.460848i \(-0.847545\pi\)
0.842845 + 0.538156i \(0.180879\pi\)
\(270\) 0 0
\(271\) −5.07180 + 2.92820i −0.308090 + 0.177876i −0.646071 0.763277i \(-0.723589\pi\)
0.337982 + 0.941153i \(0.390256\pi\)
\(272\) −2.26795 −0.137515
\(273\) 0 0
\(274\) −1.92820 −0.116487
\(275\) 20.1962 11.6603i 1.21787 0.703140i
\(276\) 0 0
\(277\) −1.13397 + 1.96410i −0.0681339 + 0.118011i −0.898080 0.439832i \(-0.855038\pi\)
0.829946 + 0.557844i \(0.188371\pi\)
\(278\) 9.85641i 0.591148i
\(279\) 0 0
\(280\) 0.169873 + 0.0980762i 0.0101519 + 0.00586117i
\(281\) 22.3205i 1.33153i −0.746162 0.665765i \(-0.768105\pi\)
0.746162 0.665765i \(-0.231895\pi\)
\(282\) 0 0
\(283\) 4.16987 + 7.22243i 0.247873 + 0.429329i 0.962936 0.269732i \(-0.0869350\pi\)
−0.715062 + 0.699061i \(0.753602\pi\)
\(284\) 1.09808 0.633975i 0.0651588 0.0376195i
\(285\) 0 0
\(286\) −16.3923 + 4.73205i −0.969297 + 0.279812i
\(287\) −8.33975 −0.492280
\(288\) 0 0
\(289\) 5.92820 + 10.2679i 0.348718 + 0.603997i
\(290\) −0.330127 + 0.571797i −0.0193857 + 0.0335771i
\(291\) 0 0
\(292\) 8.42820 + 4.86603i 0.493223 + 0.284763i
\(293\) 12.5718 + 7.25833i 0.734452 + 0.424036i 0.820049 0.572294i \(-0.193946\pi\)
−0.0855965 + 0.996330i \(0.527280\pi\)
\(294\) 0 0
\(295\) −1.07180 + 1.85641i −0.0624024 + 0.108084i
\(296\) −5.23205 9.06218i −0.304107 0.526728i
\(297\) 0 0
\(298\) −2.80385 −0.162423
\(299\) −5.36603 + 21.6865i −0.310325 + 1.25416i
\(300\) 0 0
\(301\) 4.85641 2.80385i 0.279919 0.161611i
\(302\) 1.63397 + 2.83013i 0.0940247 + 0.162856i
\(303\) 0 0
\(304\) 1.26795i 0.0727219i
\(305\) 0.277568 + 0.160254i 0.0158935 + 0.00917612i
\(306\) 0 0
\(307\) 8.58846i 0.490169i −0.969502 0.245085i \(-0.921184\pi\)
0.969502 0.245085i \(-0.0788157\pi\)
\(308\) 1.73205 3.00000i 0.0986928 0.170941i
\(309\) 0 0
\(310\) 1.26795 0.732051i 0.0720147 0.0415777i
\(311\) 15.6603 0.888012 0.444006 0.896024i \(-0.353557\pi\)
0.444006 + 0.896024i \(0.353557\pi\)
\(312\) 0 0
\(313\) 13.4641 0.761036 0.380518 0.924774i \(-0.375746\pi\)
0.380518 + 0.924774i \(0.375746\pi\)
\(314\) 20.4282 11.7942i 1.15283 0.665587i
\(315\) 0 0
\(316\) −4.73205 + 8.19615i −0.266199 + 0.461070i
\(317\) 3.33975i 0.187579i −0.995592 0.0937894i \(-0.970102\pi\)
0.995592 0.0937894i \(-0.0298980\pi\)
\(318\) 0 0
\(319\) 10.0981 + 5.83013i 0.565384 + 0.326424i
\(320\) 0.267949i 0.0149788i
\(321\) 0 0
\(322\) −2.26795 3.92820i −0.126388 0.218910i
\(323\) −2.49038 + 1.43782i −0.138569 + 0.0800026i
\(324\) 0 0
\(325\) 12.8038 + 12.3205i 0.710230 + 0.683419i
\(326\) 6.53590 0.361990
\(327\) 0 0
\(328\) −5.69615 9.86603i −0.314517 0.544760i
\(329\) 3.00000 5.19615i 0.165395 0.286473i
\(330\) 0 0
\(331\) −17.3205 10.0000i −0.952021 0.549650i −0.0583130 0.998298i \(-0.518572\pi\)
−0.893708 + 0.448649i \(0.851905\pi\)
\(332\) −8.83013 5.09808i −0.484616 0.279793i
\(333\) 0 0
\(334\) 1.26795 2.19615i 0.0693791 0.120168i
\(335\) 1.49038 + 2.58142i 0.0814282 + 0.141038i
\(336\) 0 0
\(337\) −6.85641 −0.373492 −0.186746 0.982408i \(-0.559794\pi\)
−0.186746 + 0.982408i \(0.559794\pi\)
\(338\) −6.92820 11.0000i −0.376845 0.598321i
\(339\) 0 0
\(340\) −0.526279 + 0.303848i −0.0285415 + 0.0164784i
\(341\) −12.9282 22.3923i −0.700101 1.21261i
\(342\) 0 0
\(343\) 9.85641i 0.532196i
\(344\) 6.63397 + 3.83013i 0.357680 + 0.206507i
\(345\) 0 0
\(346\) 16.3923i 0.881256i
\(347\) 4.43782 7.68653i 0.238235 0.412635i −0.721973 0.691921i \(-0.756765\pi\)
0.960208 + 0.279286i \(0.0900979\pi\)
\(348\) 0 0
\(349\) 16.7321 9.66025i 0.895646 0.517102i 0.0198610 0.999803i \(-0.493678\pi\)
0.875785 + 0.482701i \(0.160344\pi\)
\(350\) −3.60770 −0.192839
\(351\) 0 0
\(352\) 4.73205 0.252219
\(353\) −17.1340 + 9.89230i −0.911949 + 0.526514i −0.881058 0.473008i \(-0.843168\pi\)
−0.0308916 + 0.999523i \(0.509835\pi\)
\(354\) 0 0
\(355\) 0.169873 0.294229i 0.00901592 0.0156160i
\(356\) 2.53590i 0.134402i
\(357\) 0 0
\(358\) 19.0981 + 11.0263i 1.00936 + 0.582757i
\(359\) 23.1244i 1.22046i 0.792226 + 0.610228i \(0.208922\pi\)
−0.792226 + 0.610228i \(0.791078\pi\)
\(360\) 0 0
\(361\) −8.69615 15.0622i −0.457692 0.792746i
\(362\) 7.62436 4.40192i 0.400727 0.231360i
\(363\) 0 0
\(364\) 2.56218 + 0.633975i 0.134295 + 0.0332293i
\(365\) 2.60770 0.136493
\(366\) 0 0
\(367\) 7.36603 + 12.7583i 0.384503 + 0.665979i 0.991700 0.128572i \(-0.0410394\pi\)
−0.607197 + 0.794551i \(0.707706\pi\)
\(368\) 3.09808 5.36603i 0.161498 0.279723i
\(369\) 0 0
\(370\) −2.42820 1.40192i −0.126236 0.0728825i
\(371\) −0.294229 0.169873i −0.0152756 0.00881937i
\(372\) 0 0
\(373\) 5.13397 8.89230i 0.265827 0.460426i −0.701953 0.712223i \(-0.747688\pi\)
0.967780 + 0.251797i \(0.0810216\pi\)
\(374\) 5.36603 + 9.29423i 0.277471 + 0.480593i
\(375\) 0 0
\(376\) 8.19615 0.422684
\(377\) −2.13397 + 8.62436i −0.109905 + 0.444177i
\(378\) 0 0
\(379\) 1.26795 0.732051i 0.0651302 0.0376029i −0.467081 0.884214i \(-0.654694\pi\)
0.532211 + 0.846611i \(0.321361\pi\)
\(380\) 0.169873 + 0.294229i 0.00871430 + 0.0150936i
\(381\) 0 0
\(382\) 6.92820i 0.354478i
\(383\) 4.73205 + 2.73205i 0.241797 + 0.139601i 0.616002 0.787744i \(-0.288751\pi\)
−0.374206 + 0.927346i \(0.622085\pi\)
\(384\) 0 0
\(385\) 0.928203i 0.0473056i
\(386\) −4.13397 + 7.16025i −0.210414 + 0.364447i
\(387\) 0 0
\(388\) 5.19615 3.00000i 0.263795 0.152302i
\(389\) −29.7846 −1.51014 −0.755070 0.655644i \(-0.772397\pi\)
−0.755070 + 0.655644i \(0.772397\pi\)
\(390\) 0 0
\(391\) 14.0526 0.710668
\(392\) 5.59808 3.23205i 0.282746 0.163243i
\(393\) 0 0
\(394\) 4.92820 8.53590i 0.248279 0.430032i
\(395\) 2.53590i 0.127595i
\(396\) 0 0
\(397\) −0.339746 0.196152i −0.0170514 0.00984461i 0.491450 0.870906i \(-0.336467\pi\)
−0.508501 + 0.861061i \(0.669800\pi\)
\(398\) 3.80385i 0.190670i
\(399\) 0 0
\(400\) −2.46410 4.26795i −0.123205 0.213397i
\(401\) 18.9904 10.9641i 0.948334 0.547521i 0.0557713 0.998444i \(-0.482238\pi\)
0.892563 + 0.450922i \(0.148905\pi\)
\(402\) 0 0
\(403\) 13.6603 14.1962i 0.680466 0.707161i
\(404\) 11.9282 0.593450
\(405\) 0 0
\(406\) −0.901924 1.56218i −0.0447617 0.0775296i
\(407\) −24.7583 + 42.8827i −1.22722 + 2.12562i
\(408\) 0 0
\(409\) −12.3564 7.13397i −0.610985 0.352752i 0.162366 0.986731i \(-0.448088\pi\)
−0.773351 + 0.633978i \(0.781421\pi\)
\(410\) −2.64359 1.52628i −0.130558 0.0753776i
\(411\) 0 0
\(412\) 9.36603 16.2224i 0.461431 0.799222i
\(413\) −2.92820 5.07180i −0.144087 0.249567i
\(414\) 0 0
\(415\) −2.73205 −0.134111
\(416\) 1.00000 + 3.46410i 0.0490290 + 0.169842i
\(417\) 0 0
\(418\) 5.19615 3.00000i 0.254152 0.146735i
\(419\) −5.26795 9.12436i −0.257356 0.445754i 0.708177 0.706035i \(-0.249518\pi\)
−0.965533 + 0.260281i \(0.916185\pi\)
\(420\) 0 0
\(421\) 32.7128i 1.59432i 0.603765 + 0.797162i \(0.293667\pi\)
−0.603765 + 0.797162i \(0.706333\pi\)
\(422\) −3.80385 2.19615i −0.185168 0.106907i
\(423\) 0 0
\(424\) 0.464102i 0.0225388i
\(425\) 5.58846 9.67949i 0.271080 0.469524i
\(426\) 0 0
\(427\) −0.758330 + 0.437822i −0.0366982 + 0.0211877i
\(428\) −0.196152 −0.00948139
\(429\) 0 0
\(430\) 2.05256 0.0989832
\(431\) 9.63397 5.56218i 0.464052 0.267921i −0.249694 0.968325i \(-0.580330\pi\)
0.713747 + 0.700404i \(0.246997\pi\)
\(432\) 0 0
\(433\) −7.42820 + 12.8660i −0.356977 + 0.618302i −0.987454 0.157906i \(-0.949526\pi\)
0.630478 + 0.776208i \(0.282859\pi\)
\(434\) 4.00000i 0.192006i
\(435\) 0 0
\(436\) −4.73205 2.73205i −0.226624 0.130842i
\(437\) 7.85641i 0.375823i
\(438\) 0 0
\(439\) −8.83013 15.2942i −0.421439 0.729954i 0.574642 0.818405i \(-0.305141\pi\)
−0.996080 + 0.0884515i \(0.971808\pi\)
\(440\) 1.09808 0.633975i 0.0523487 0.0302236i
\(441\) 0 0
\(442\) −5.66987 + 5.89230i −0.269688 + 0.280268i
\(443\) −36.3923 −1.72905 −0.864525 0.502589i \(-0.832381\pi\)
−0.864525 + 0.502589i \(0.832381\pi\)
\(444\) 0 0
\(445\) 0.339746 + 0.588457i 0.0161055 + 0.0278955i
\(446\) 6.53590 11.3205i 0.309484 0.536042i
\(447\) 0 0
\(448\) −0.633975 0.366025i −0.0299525 0.0172931i
\(449\) 20.1962 + 11.6603i 0.953115 + 0.550281i 0.894047 0.447973i \(-0.147854\pi\)
0.0590680 + 0.998254i \(0.481187\pi\)
\(450\) 0 0
\(451\) −26.9545 + 46.6865i −1.26924 + 2.19838i
\(452\) 9.33013 + 16.1603i 0.438852 + 0.760114i
\(453\) 0 0
\(454\) 1.80385 0.0846588
\(455\) 0.679492 0.196152i 0.0318551 0.00919577i
\(456\) 0 0
\(457\) 16.1603 9.33013i 0.755945 0.436445i −0.0718931 0.997412i \(-0.522904\pi\)
0.827838 + 0.560967i \(0.189571\pi\)
\(458\) 7.92820 + 13.7321i 0.370461 + 0.641657i
\(459\) 0 0
\(460\) 1.66025i 0.0774097i
\(461\) 22.2846 + 12.8660i 1.03790 + 0.599231i 0.919237 0.393704i \(-0.128807\pi\)
0.118661 + 0.992935i \(0.462140\pi\)
\(462\) 0 0
\(463\) 28.0526i 1.30371i 0.758342 + 0.651856i \(0.226010\pi\)
−0.758342 + 0.651856i \(0.773990\pi\)
\(464\) 1.23205 2.13397i 0.0571965 0.0990673i
\(465\) 0 0
\(466\) −17.1962 + 9.92820i −0.796596 + 0.459915i
\(467\) −12.5885 −0.582524 −0.291262 0.956643i \(-0.594075\pi\)
−0.291262 + 0.956643i \(0.594075\pi\)
\(468\) 0 0
\(469\) −8.14359 −0.376036
\(470\) 1.90192 1.09808i 0.0877292 0.0506505i
\(471\) 0 0
\(472\) 4.00000 6.92820i 0.184115 0.318896i
\(473\) 36.2487i 1.66672i
\(474\) 0 0
\(475\) −5.41154 3.12436i −0.248299 0.143355i
\(476\) 1.66025i 0.0760976i
\(477\) 0 0
\(478\) −4.83013 8.36603i −0.220925 0.382653i
\(479\) 22.9808 13.2679i 1.05002 0.606228i 0.127363 0.991856i \(-0.459349\pi\)
0.922654 + 0.385628i \(0.126015\pi\)
\(480\) 0 0
\(481\) −36.6244 9.06218i −1.66993 0.413200i
\(482\) 17.5885 0.801132
\(483\) 0 0
\(484\) −5.69615 9.86603i −0.258916 0.448456i
\(485\) 0.803848 1.39230i 0.0365008 0.0632213i
\(486\) 0 0
\(487\) −18.2942 10.5622i −0.828991 0.478618i 0.0245163 0.999699i \(-0.492195\pi\)
−0.853507 + 0.521081i \(0.825529\pi\)
\(488\) −1.03590 0.598076i −0.0468929 0.0270736i
\(489\) 0 0
\(490\) 0.866025 1.50000i 0.0391230 0.0677631i
\(491\) −2.63397 4.56218i −0.118870 0.205888i 0.800450 0.599399i \(-0.204594\pi\)
−0.919320 + 0.393511i \(0.871260\pi\)
\(492\) 0 0
\(493\) 5.58846 0.251691
\(494\) 3.29423 + 3.16987i 0.148214 + 0.142619i
\(495\) 0 0
\(496\) −4.73205 + 2.73205i −0.212475 + 0.122673i
\(497\) 0.464102 + 0.803848i 0.0208178 + 0.0360575i
\(498\) 0 0
\(499\) 32.0000i 1.43252i 0.697835 + 0.716258i \(0.254147\pi\)
−0.697835 + 0.716258i \(0.745853\pi\)
\(500\) −2.30385 1.33013i −0.103031 0.0594851i
\(501\) 0 0
\(502\) 6.53590i 0.291711i
\(503\) −5.49038 + 9.50962i −0.244804 + 0.424013i −0.962076 0.272780i \(-0.912057\pi\)
0.717272 + 0.696793i \(0.245390\pi\)
\(504\) 0 0
\(505\) 2.76795 1.59808i 0.123172 0.0711135i
\(506\) −29.3205 −1.30346
\(507\) 0 0
\(508\) 17.8564 0.792250
\(509\) −8.89230 + 5.13397i −0.394144 + 0.227559i −0.683954 0.729525i \(-0.739741\pi\)
0.289810 + 0.957084i \(0.406408\pi\)
\(510\) 0 0
\(511\) −3.56218 + 6.16987i −0.157581 + 0.272939i
\(512\) 1.00000i 0.0441942i
\(513\) 0 0
\(514\) 23.0885 + 13.3301i 1.01839 + 0.587967i
\(515\) 5.01924i 0.221174i
\(516\) 0 0
\(517\) −19.3923 33.5885i −0.852873 1.47722i
\(518\) 6.63397 3.83013i 0.291480 0.168286i
\(519\) 0 0
\(520\) 0.696152 + 0.669873i 0.0305283 + 0.0293759i
\(521\) 17.4449 0.764273 0.382137 0.924106i \(-0.375188\pi\)
0.382137 + 0.924106i \(0.375188\pi\)
\(522\) 0 0
\(523\) −18.2224 31.5622i −0.796811 1.38012i −0.921683 0.387945i \(-0.873185\pi\)
0.124871 0.992173i \(-0.460148\pi\)
\(524\) −6.73205 + 11.6603i −0.294091 + 0.509381i
\(525\) 0 0
\(526\) −24.2942 14.0263i −1.05928 0.611575i
\(527\) −10.7321 6.19615i −0.467495 0.269909i
\(528\) 0 0
\(529\) −7.69615 + 13.3301i −0.334615 + 0.579571i
\(530\) −0.0621778 0.107695i −0.00270083 0.00467798i
\(531\) 0 0
\(532\) −0.928203 −0.0402427
\(533\) −39.8731 9.86603i −1.72709 0.427345i
\(534\) 0 0
\(535\) −0.0455173 + 0.0262794i −0.00196789 + 0.00113616i
\(536\) −5.56218 9.63397i −0.240249 0.416124i
\(537\) 0 0
\(538\) 1.46410i 0.0631219i
\(539\) −26.4904 15.2942i −1.14102 0.658769i
\(540\) 0 0
\(541\) 40.3205i 1.73351i −0.498731 0.866757i \(-0.666200\pi\)
0.498731 0.866757i \(-0.333800\pi\)
\(542\) 2.92820 5.07180i 0.125777 0.217852i
\(543\) 0 0
\(544\) 1.96410 1.13397i 0.0842102 0.0486188i
\(545\) −1.46410 −0.0627152
\(546\) 0 0
\(547\) 6.19615 0.264928 0.132464 0.991188i \(-0.457711\pi\)
0.132464 + 0.991188i \(0.457711\pi\)
\(548\) 1.66987 0.964102i 0.0713334 0.0411844i
\(549\) 0 0
\(550\) −11.6603 + 20.1962i −0.497195 + 0.861167i
\(551\) 3.12436i 0.133102i
\(552\) 0 0
\(553\) −6.00000 3.46410i −0.255146 0.147309i
\(554\) 2.26795i 0.0963559i
\(555\) 0 0
\(556\) −4.92820 8.53590i −0.209002 0.362003i
\(557\) −26.3038 + 15.1865i −1.11453 + 0.643474i −0.939999 0.341178i \(-0.889174\pi\)
−0.174531 + 0.984652i \(0.555841\pi\)
\(558\) 0 0
\(559\) 26.5359 7.66025i 1.12235 0.323994i
\(560\) −0.196152 −0.00828895
\(561\) 0 0
\(562\) 11.1603 + 19.3301i 0.470767 + 0.815392i
\(563\) −10.5359 + 18.2487i −0.444035 + 0.769091i −0.997984 0.0634589i \(-0.979787\pi\)
0.553949 + 0.832550i \(0.313120\pi\)
\(564\) 0 0
\(565\) 4.33013 + 2.50000i 0.182170 + 0.105176i
\(566\) −7.22243 4.16987i −0.303581 0.175273i
\(567\) 0 0
\(568\) −0.633975 + 1.09808i −0.0266010 + 0.0460743i
\(569\) 19.3205 + 33.4641i 0.809958 + 1.40289i 0.912893 + 0.408200i \(0.133843\pi\)
−0.102935 + 0.994688i \(0.532823\pi\)
\(570\) 0 0
\(571\) 24.0526 1.00657 0.503284 0.864121i \(-0.332125\pi\)
0.503284 + 0.864121i \(0.332125\pi\)
\(572\) 11.8301 12.2942i 0.494642 0.514048i
\(573\) 0 0
\(574\) 7.22243 4.16987i 0.301458 0.174047i
\(575\) 15.2679 + 26.4449i 0.636717 + 1.10283i
\(576\) 0 0
\(577\) 0.267949i 0.0111549i 0.999984 + 0.00557744i \(0.00177536\pi\)
−0.999984 + 0.00557744i \(0.998225\pi\)
\(578\) −10.2679 5.92820i −0.427090 0.246581i
\(579\) 0 0
\(580\) 0.660254i 0.0274156i
\(581\) 3.73205 6.46410i 0.154832 0.268176i
\(582\) 0 0
\(583\) −1.90192 + 1.09808i −0.0787696 + 0.0454777i
\(584\) −9.73205 −0.402715
\(585\) 0 0
\(586\) −14.5167 −0.599678
\(587\) −13.8564 + 8.00000i −0.571915 + 0.330195i −0.757914 0.652355i \(-0.773781\pi\)
0.185999 + 0.982550i \(0.440448\pi\)
\(588\) 0 0
\(589\) −3.46410 + 6.00000i −0.142736 + 0.247226i
\(590\) 2.14359i 0.0882503i
\(591\) 0 0
\(592\) 9.06218 + 5.23205i 0.372453 + 0.215036i
\(593\) 36.8564i 1.51351i −0.653698 0.756756i \(-0.726783\pi\)
0.653698 0.756756i \(-0.273217\pi\)
\(594\) 0 0
\(595\) −0.222432 0.385263i −0.00911882 0.0157943i
\(596\) 2.42820 1.40192i 0.0994631 0.0574250i
\(597\) 0 0
\(598\) −6.19615 21.4641i −0.253380 0.877732i
\(599\) 9.46410 0.386693 0.193346 0.981131i \(-0.438066\pi\)
0.193346 + 0.981131i \(0.438066\pi\)
\(600\) 0 0
\(601\) 2.96410 + 5.13397i 0.120908 + 0.209419i 0.920126 0.391622i \(-0.128086\pi\)
−0.799218 + 0.601041i \(0.794753\pi\)
\(602\) −2.80385 + 4.85641i −0.114276 + 0.197932i
\(603\) 0 0
\(604\) −2.83013 1.63397i −0.115156 0.0664855i
\(605\) −2.64359 1.52628i −0.107477 0.0620521i
\(606\) 0 0
\(607\) −0.392305 + 0.679492i −0.0159232 + 0.0275797i −0.873877 0.486147i \(-0.838402\pi\)
0.857954 + 0.513726i \(0.171735\pi\)
\(608\) −0.633975 1.09808i −0.0257111 0.0445329i
\(609\) 0 0
\(610\) −0.320508 −0.0129770
\(611\) 20.4904 21.2942i 0.828952 0.861472i
\(612\) 0 0
\(613\) 9.86603 5.69615i 0.398485 0.230065i −0.287345 0.957827i \(-0.592773\pi\)
0.685830 + 0.727762i \(0.259439\pi\)
\(614\) 4.29423 + 7.43782i 0.173301 + 0.300166i
\(615\) 0 0
\(616\) 3.46410i 0.139573i
\(617\) 30.5263 + 17.6244i 1.22894 + 0.709530i 0.966809 0.255502i \(-0.0822407\pi\)
0.262133 + 0.965032i \(0.415574\pi\)
\(618\) 0 0
\(619\) 10.5359i 0.423474i −0.977327 0.211737i \(-0.932088\pi\)
0.977327 0.211737i \(-0.0679119\pi\)
\(620\) −0.732051 + 1.26795i −0.0293999 + 0.0509221i
\(621\) 0 0
\(622\) −13.5622 + 7.83013i −0.543794 + 0.313959i
\(623\) −1.85641 −0.0743754
\(624\) 0 0
\(625\) 23.9282 0.957128
\(626\) −11.6603 + 6.73205i −0.466037 + 0.269067i
\(627\) 0 0
\(628\) −11.7942 + 20.4282i −0.470641 + 0.815174i
\(629\) 23.7321i 0.946259i
\(630\) 0 0
\(631\) 41.3205 + 23.8564i 1.64494 + 0.949709i 0.979039 + 0.203671i \(0.0652874\pi\)
0.665904 + 0.746037i \(0.268046\pi\)
\(632\) 9.46410i 0.376462i
\(633\) 0 0
\(634\) 1.66987 + 2.89230i 0.0663191 + 0.114868i
\(635\) 4.14359 2.39230i 0.164433 0.0949357i
\(636\) 0 0
\(637\) 5.59808 22.6244i 0.221804 0.896410i
\(638\) −11.6603 −0.461634
\(639\) 0 0
\(640\) −0.133975 0.232051i −0.00529581 0.00917261i
\(641\) −12.9904 + 22.5000i −0.513089 + 0.888697i 0.486796 + 0.873516i \(0.338166\pi\)
−0.999885 + 0.0151806i \(0.995168\pi\)
\(642\) 0 0
\(643\) −12.0000 6.92820i −0.473234 0.273222i 0.244359 0.969685i \(-0.421423\pi\)
−0.717592 + 0.696463i \(0.754756\pi\)
\(644\) 3.92820 + 2.26795i 0.154793 + 0.0893697i
\(645\) 0 0
\(646\) 1.43782 2.49038i 0.0565704 0.0979827i
\(647\) −13.1244 22.7321i −0.515972 0.893689i −0.999828 0.0185417i \(-0.994098\pi\)
0.483856 0.875147i \(-0.339236\pi\)
\(648\) 0 0
\(649\) −37.8564 −1.48599
\(650\) −17.2487 4.26795i −0.676550 0.167403i
\(651\) 0 0
\(652\) −5.66025 + 3.26795i −0.221673 + 0.127983i
\(653\) −5.26795 9.12436i −0.206151 0.357064i 0.744348 0.667792i \(-0.232760\pi\)
−0.950499 + 0.310728i \(0.899427\pi\)
\(654\) 0 0
\(655\) 3.60770i 0.140964i
\(656\) 9.86603 + 5.69615i 0.385204 + 0.222397i
\(657\) 0 0
\(658\) 6.00000i 0.233904i
\(659\) 19.1244 33.1244i 0.744979 1.29034i −0.205225 0.978715i \(-0.565793\pi\)
0.950205 0.311627i \(-0.100874\pi\)
\(660\) 0 0
\(661\) 8.13397 4.69615i 0.316375 0.182659i −0.333401 0.942785i \(-0.608196\pi\)
0.649776 + 0.760126i \(0.274863\pi\)
\(662\) 20.0000 0.777322
\(663\) 0 0
\(664\) 10.1962 0.395687
\(665\) −0.215390 + 0.124356i −0.00835248 + 0.00482231i
\(666\) 0 0
\(667\) −7.63397 + 13.2224i −0.295589 + 0.511975i
\(668\) 2.53590i 0.0981169i
\(669\) 0 0
\(670\) −2.58142 1.49038i −0.0997288 0.0575784i
\(671\) 5.66025i 0.218512i
\(672\) 0 0
\(673\) 7.03590 + 12.1865i 0.271214 + 0.469756i 0.969173 0.246381i \(-0.0792416\pi\)
−0.697959 + 0.716138i \(0.745908\pi\)
\(674\) 5.93782 3.42820i 0.228716 0.132049i
\(675\) 0 0
\(676\) 11.5000 + 6.06218i 0.442308 + 0.233161i
\(677\) 38.5359 1.48105 0.740527 0.672026i \(-0.234576\pi\)
0.740527 + 0.672026i \(0.234576\pi\)
\(678\) 0 0
\(679\) 2.19615 + 3.80385i 0.0842806 + 0.145978i
\(680\) 0.303848 0.526279i 0.0116520 0.0201819i
\(681\) 0 0
\(682\) 22.3923 + 12.9282i 0.857446 + 0.495046i
\(683\) 32.7846 + 18.9282i 1.25447 + 0.724268i 0.971994 0.235007i \(-0.0755114\pi\)
0.282475 + 0.959275i \(0.408845\pi\)
\(684\) 0 0
\(685\) 0.258330 0.447441i 0.00987029 0.0170958i
\(686\) 4.92820 + 8.53590i 0.188160 + 0.325902i
\(687\) 0 0
\(688\) −7.66025 −0.292044
\(689\) −1.20577 1.16025i −0.0459362 0.0442022i
\(690\) 0 0
\(691\) 22.8109 13.1699i 0.867767 0.501006i 0.00116153 0.999999i \(-0.499630\pi\)
0.866606 + 0.498994i \(0.166297\pi\)
\(692\) −8.19615 14.1962i −0.311571 0.539657i
\(693\) 0 0
\(694\) 8.87564i 0.336915i
\(695\) −2.28719 1.32051i −0.0867580 0.0500897i
\(696\) 0 0
\(697\) 25.8372i 0.978653i
\(698\) −9.66025 + 16.7321i −0.365646 + 0.633317i
\(699\) 0 0
\(700\) 3.12436 1.80385i 0.118090 0.0681790i
\(701\) 31.3205 1.18296 0.591480 0.806320i \(-0.298544\pi\)
0.591480 + 0.806320i \(0.298544\pi\)
\(702\) 0 0
\(703\) 13.2679 0.500410
\(704\) −4.09808 + 2.36603i −0.154452 + 0.0891729i
\(705\) 0 0
\(706\) 9.89230 17.1340i 0.372302 0.644846i
\(707\) 8.73205i 0.328403i
\(708\) 0 0
\(709\) 35.3827 + 20.4282i 1.32882 + 0.767197i 0.985118 0.171880i \(-0.0549841\pi\)
0.343707 + 0.939077i \(0.388317\pi\)
\(710\) 0.339746i 0.0127504i
\(711\) 0 0
\(712\) −1.26795 2.19615i −0.0475184 0.0823043i
\(713\) 29.3205 16.9282i 1.09806 0.633966i
\(714\) 0 0
\(715\) 1.09808 4.43782i 0.0410657 0.165965i
\(716\) −22.0526 −0.824143
\(717\) 0 0
\(718\) −11.5622 20.0263i −0.431497 0.747374i
\(719\) 11.2679 19.5167i 0.420224 0.727849i −0.575737 0.817635i \(-0.695285\pi\)
0.995961 + 0.0897860i \(0.0286183\pi\)
\(720\) 0 0
\(721\) 11.8756 + 6.85641i 0.442272 + 0.255346i
\(722\) 15.0622 + 8.69615i 0.560556 + 0.323637i
\(723\) 0 0
\(724\) −4.40192 + 7.62436i −0.163596 + 0.283357i
\(725\) 6.07180 + 10.5167i 0.225501 + 0.390579i
\(726\) 0 0
\(727\) −20.9808 −0.778133 −0.389067 0.921210i \(-0.627202\pi\)
−0.389067 + 0.921210i \(0.627202\pi\)
\(728\) −2.53590 + 0.732051i −0.0939866 + 0.0271316i
\(729\) 0 0
\(730\) −2.25833 + 1.30385i −0.0835846 + 0.0482576i
\(731\) −8.68653 15.0455i −0.321283 0.556479i
\(732\) 0 0
\(733\) 19.0000i 0.701781i 0.936416 + 0.350891i \(0.114121\pi\)
−0.936416 + 0.350891i \(0.885879\pi\)
\(734\) −12.7583 7.36603i −0.470919 0.271885i
\(735\) 0 0
\(736\) 6.19615i 0.228393i
\(737\) −26.3205 + 45.5885i −0.969528 + 1.67927i
\(738\) 0 0
\(739\) 9.46410 5.46410i 0.348143 0.201000i −0.315724 0.948851i \(-0.602247\pi\)
0.663867 + 0.747851i \(0.268914\pi\)
\(740\) 2.80385 0.103071
\(741\) 0 0
\(742\) 0.339746 0.0124725
\(743\) 23.9090 13.8038i 0.877135 0.506414i 0.00742221 0.999972i \(-0.497637\pi\)
0.869713 + 0.493558i \(0.164304\pi\)
\(744\) 0 0
\(745\) 0.375644 0.650635i 0.0137625 0.0238374i
\(746\) 10.2679i 0.375936i
\(747\) 0 0
\(748\) −9.29423 5.36603i −0.339831 0.196201i
\(749\) 0.143594i 0.00524679i
\(750\) 0 0
\(751\) 7.95448 + 13.7776i 0.290263 + 0.502751i 0.973872 0.227098i \(-0.0729238\pi\)
−0.683609 + 0.729849i \(0.739590\pi\)
\(752\) −7.09808 + 4.09808i −0.258840 + 0.149441i
\(753\) 0 0
\(754\) −2.46410 8.53590i −0.0897373 0.310859i
\(755\) −0.875644 −0.0318680
\(756\) 0 0
\(757\) −3.53590 6.12436i −0.128514 0.222593i 0.794587 0.607151i \(-0.207688\pi\)
−0.923101 + 0.384557i \(0.874354\pi\)
\(758\) −0.732051 + 1.26795i −0.0265893 + 0.0460540i
\(759\) 0 0
\(760\) −0.294229 0.169873i −0.0106728 0.00616194i
\(761\) 20.1962 + 11.6603i 0.732110 + 0.422684i 0.819194 0.573517i \(-0.194421\pi\)
−0.0870836 + 0.996201i \(0.527755\pi\)
\(762\) 0 0
\(763\) 2.00000 3.46410i 0.0724049 0.125409i
\(764\) −3.46410 6.00000i −0.125327 0.217072i
\(765\) 0 0
\(766\) −5.46410 −0.197426
\(767\) −8.00000 27.7128i −0.288863 1.00065i
\(768\) 0 0
\(769\) −13.9808 + 8.07180i −0.504159 + 0.291076i −0.730429 0.682988i \(-0.760680\pi\)
0.226270 + 0.974065i \(0.427347\pi\)
\(770\) 0.464102 + 0.803848i 0.0167251 + 0.0289687i
\(771\) 0 0
\(772\) 8.26795i 0.297570i
\(773\) −30.3731 17.5359i −1.09244 0.630722i −0.158217 0.987404i \(-0.550575\pi\)
−0.934226 + 0.356682i \(0.883908\pi\)
\(774\) 0 0
\(775\) 26.9282i 0.967290i
\(776\) −3.00000 + 5.19615i −0.107694 + 0.186531i
\(777\) 0 0
\(778\) 25.7942 14.8923i 0.924768 0.533915i
\(779\) 14.4449 0.517541
\(780\) 0 0
\(781\) 6.00000 0.214697
\(782\) −12.1699 + 7.02628i −0.435194 + 0.251259i
\(783\) 0 0
\(784\) −3.23205 + 5.59808i −0.115430 + 0.199931i
\(785\) 6.32051i 0.225589i
\(786\) 0 0
\(787\) 34.0526 + 19.6603i 1.21384 + 0.700812i 0.963594 0.267369i \(-0.0861544\pi\)
0.250248 + 0.968182i \(0.419488\pi\)
\(788\) 9.85641i 0.351120i
\(789\) 0 0
\(790\) −1.26795 2.19615i −0.0451116 0.0781356i
\(791\) −11.8301 + 6.83013i −0.420631 + 0.242851i
\(792\) 0 0
\(793\) −4.14359 + 1.19615i −0.147143 + 0.0424766i
\(794\) 0.392305 0.0139224
\(795\) 0 0
\(796\) 1.90192 + 3.29423i 0.0674119 + 0.116761i
\(797\) 17.0000 29.4449i 0.602171 1.04299i −0.390321 0.920679i \(-0.627636\pi\)
0.992492 0.122312i \(-0.0390308\pi\)
\(798\) 0 0
\(799\) −16.0981 9.29423i −0.569509 0.328806i
\(800\) 4.26795 + 2.46410i 0.150895 + 0.0871191i
\(801\) 0 0
\(802\) −10.9641 + 18.9904i −0.387156 + 0.670574i
\(803\) 23.0263 + 39.8827i 0.812580 + 1.40743i
\(804\) 0 0
\(805\) 1.21539 0.0428369
\(806\) −4.73205 + 19.1244i −0.166679 + 0.673627i
\(807\) 0 0
\(808\) −10.3301 + 5.96410i −0.363413 + 0.209816i
\(809\) −11.2058 19.4090i −0.393974 0.682383i 0.598996 0.800752i \(-0.295567\pi\)
−0.992970 + 0.118369i \(0.962233\pi\)
\(810\) 0 0
\(811\) 45.1769i 1.58638i −0.608977 0.793188i \(-0.708420\pi\)
0.608977 0.793188i \(-0.291580\pi\)
\(812\) 1.56218 + 0.901924i 0.0548217 + 0.0316513i
\(813\) 0 0
\(814\) 49.5167i 1.73556i
\(815\) −0.875644 + 1.51666i −0.0306725 + 0.0531263i
\(816\) 0 0
\(817\) −8.41154 + 4.85641i −0.294283 + 0.169904i
\(818\) 14.2679 0.498867
\(819\) 0 0
\(820\) 3.05256 0.106600
\(821\) −11.1962 + 6.46410i −0.390748 + 0.225599i −0.682484 0.730900i \(-0.739100\pi\)
0.291736 + 0.956499i \(0.405767\pi\)
\(822\) 0 0
\(823\) −20.7846 + 36.0000i −0.724506 + 1.25488i 0.234671 + 0.972075i \(0.424599\pi\)
−0.959177 + 0.282806i \(0.908735\pi\)
\(824\) 18.7321i 0.652562i
\(825\) 0 0
\(826\) 5.07180 + 2.92820i 0.176470 + 0.101885i
\(827\) 33.4641i 1.16366i 0.813310 + 0.581830i \(0.197663\pi\)
−0.813310 + 0.581830i \(0.802337\pi\)
\(828\) 0 0
\(829\) 6.06218 + 10.5000i 0.210548 + 0.364680i 0.951886 0.306452i \(-0.0991418\pi\)
−0.741338 + 0.671132i \(0.765808\pi\)
\(830\) 2.36603 1.36603i 0.0821259 0.0474154i
\(831\) 0 0
\(832\) −2.59808 2.50000i −0.0900721 0.0866719i
\(833\) −14.6603 −0.507948
\(834\) 0 0
\(835\) 0.339746 + 0.588457i 0.0117574 + 0.0203644i
\(836\) −3.00000 + 5.19615i −0.103757 + 0.179713i
\(837\) 0 0
\(838\) 9.12436 + 5.26795i 0.315196 + 0.181978i
\(839\) −12.2487 7.07180i −0.422872 0.244146i 0.273433 0.961891i \(-0.411841\pi\)
−0.696306 + 0.717745i \(0.745174\pi\)
\(840\) 0 0
\(841\) 11.4641 19.8564i 0.395314 0.684704i
\(842\) −16.3564 28.3301i −0.563679 0.976321i
\(843\) 0 0
\(844\) 4.39230 0.151189
\(845\) 3.48076 0.133975i 0.119742 0.00460887i
\(846\) 0 0
\(847\) 7.22243 4.16987i 0.248166 0.143279i
\(848\) 0.232051 + 0.401924i 0.00796866 + 0.0138021i
\(849\) 0 0
\(850\) 11.1769i 0.383365i
\(851\) −56.1506 32.4186i −1.92482 1.11129i
\(852\) 0 0
\(853\) 8.17691i 0.279972i −0.990153 0.139986i \(-0.955294\pi\)
0.990153 0.139986i \(-0.0447058\pi\)
\(854\) 0.437822 0.758330i 0.0149820 0.0259495i
\(855\) 0 0
\(856\) 0.169873 0.0980762i 0.00580614 0.00335218i
\(857\) −19.4449 −0.664224 −0.332112 0.943240i \(-0.607761\pi\)
−0.332112 + 0.943240i \(0.607761\pi\)
\(858\) 0 0
\(859\) −22.8756 −0.780507 −0.390253 0.920707i \(-0.627613\pi\)
−0.390253 + 0.920707i \(0.627613\pi\)
\(860\) −1.77757 + 1.02628i −0.0606146 + 0.0349958i
\(861\) 0 0
\(862\) −5.56218 + 9.63397i −0.189449 + 0.328134i
\(863\) 7.12436i 0.242516i −0.992621 0.121258i \(-0.961307\pi\)
0.992621 0.121258i \(-0.0386928\pi\)
\(864\) 0 0
\(865\) −3.80385 2.19615i −0.129335 0.0746714i
\(866\) 14.8564i 0.504841i
\(867\) 0 0
\(868\) −2.00000 3.46410i −0.0678844 0.117579i
\(869\) −38.7846 + 22.3923i −1.31568 + 0.759607i
\(870\) 0 0
\(871\) −38.9352 9.63397i −1.31927 0.326435i
\(872\) 5.46410 0.185038
\(873\) 0 0
\(874\) 3.92820 + 6.80385i 0.132873 + 0.230144i
\(875\) 0.973721 1.68653i 0.0329178 0.0570152i
\(876\) 0 0
\(877\) −8.72243 5.03590i −0.294536 0.170050i 0.345450 0.938437i \(-0.387726\pi\)
−0.639985 + 0.768387i \(0.721060\pi\)
\(878\) 15.2942 + 8.83013i 0.516155 + 0.298002i
\(879\) 0 0
\(880\) −0.633975 + 1.09808i −0.0213713 + 0.0370161i
\(881\) −25.9186 44.8923i −0.873219 1.51246i −0.858648 0.512566i \(-0.828695\pi\)
−0.0145717 0.999894i \(-0.504638\pi\)
\(882\) 0 0
\(883\) −29.0718 −0.978344 −0.489172 0.872187i \(-0.662701\pi\)
−0.489172 + 0.872187i \(0.662701\pi\)
\(884\) 1.96410 7.93782i 0.0660599 0.266978i
\(885\) 0 0
\(886\) 31.5167 18.1962i 1.05882 0.611312i
\(887\) 5.07180 + 8.78461i 0.170294 + 0.294958i 0.938523 0.345217i \(-0.112195\pi\)
−0.768228 + 0.640176i \(0.778862\pi\)
\(888\) 0 0
\(889\) 13.0718i 0.438414i
\(890\) −0.588457 0.339746i −0.0197251 0.0113883i
\(891\) 0 0
\(892\) 13.0718i 0.437676i
\(893\) −5.19615 + 9.00000i −0.173883 + 0.301174i
\(894\) 0 0
\(895\) −5.11731 + 2.95448i −0.171053 + 0.0987575i
\(896\) 0.732051 0.0244561
\(897\) 0 0
\(898\) −23.3205 −0.778215
\(899\) 11.6603 6.73205i 0.388891 0.224526i
\(900\) 0 0
\(901\) −0.526279 + 0.911543i −0.0175329 + 0.0303679i
\(902\) 53.9090i 1.79497i
\(903\) 0 0
\(904\) −16.1603 9.33013i −0.537482 0.310315i
\(905\) 2.35898i 0.0784153i
\(906\) 0 0
\(907\) 7.80385 + 13.5167i 0.259123 + 0.448813i 0.966007 0.258516i \(-0.0832333\pi\)
−0.706885 + 0.707329i \(0.749900\pi\)
\(908\) −1.56218 + 0.901924i −0.0518427 + 0.0299314i
\(909\) 0 0
\(910\) −0.490381 + 0.509619i −0.0162560 + 0.0168937i
\(911\) 9.46410 0.313560 0.156780 0.987634i \(-0.449889\pi\)
0.156780 + 0.987634i \(0.449889\pi\)
\(912\) 0 0
\(913\) −24.1244 41.7846i −0.798400 1.38287i
\(914\) −9.33013 + 16.1603i −0.308613 + 0.534534i
\(915\) 0 0
\(916\) −13.7321 7.92820i −0.453720 0.261955i
\(917\) −8.53590 4.92820i −0.281880 0.162744i
\(918\) 0 0
\(919\) 28.9808 50.1962i 0.955987 1.65582i 0.223894 0.974613i \(-0.428123\pi\)
0.732093 0.681205i \(-0.238544\pi\)
\(920\) 0.830127 + 1.43782i 0.0273685 + 0.0474036i
\(921\) 0 0
\(922\) −25.7321 −0.847440
\(923\) 1.26795 + 4.39230i 0.0417351 + 0.144574i
\(924\) 0 0
\(925\) −44.6603 + 25.7846i −1.46842 + 0.847793i
\(926\) −14.0263 24.2942i −0.460932 0.798358i
\(927\) 0 0
\(928\) 2.46410i 0.0808881i
\(929\) 8.00962 + 4.62436i 0.262787 + 0.151720i 0.625605 0.780140i \(-0.284852\pi\)
−0.362818 + 0.931860i \(0.618185\pi\)
\(930\) 0 0
\(931\) 8.19615i 0.268618i
\(932\) 9.92820 17.1962i 0.325209 0.563279i
\(933\) 0 0
\(934\) 10.9019 6.29423i 0.356722 0.205953i
\(935\) −2.87564 −0.0940436
\(936\) 0 0
\(937\) 43.2487 1.41287 0.706437 0.707776i \(-0.250301\pi\)
0.706437 + 0.707776i \(0.250301\pi\)
\(938\) 7.05256 4.07180i 0.230274 0.132949i
\(939\) 0 0
\(940\) −1.09808 + 1.90192i −0.0358153 + 0.0620339i
\(941\) 56.6410i 1.84644i 0.384267 + 0.923222i \(0.374454\pi\)
−0.384267 + 0.923222i \(0.625546\pi\)
\(942\) 0 0
\(943\) −61.1314 35.2942i −1.99071 1.14934i
\(944\) 8.00000i 0.260378i
\(945\) 0 0
\(946\) 18.1244 + 31.3923i 0.589274 + 1.02065i
\(947\) 30.2487 17.4641i 0.982951 0.567507i 0.0797913 0.996812i \(-0.474575\pi\)
0.903160 + 0.429305i \(0.141241\pi\)
\(948\) 0 0
\(949\) −24.3301 + 25.2846i −0.789789 + 0.820773i
\(950\) 6.24871 0.202735
\(951\) 0 0
\(952\) 0.830127 + 1.43782i 0.0269046 + 0.0466001i
\(953\) 20.7846 36.0000i 0.673280 1.16615i −0.303689 0.952771i \(-0.598218\pi\)
0.976969 0.213383i \(-0.0684483\pi\)
\(954\) 0 0
\(955\) −1.60770 0.928203i −0.0520238 0.0300360i
\(956\) 8.36603 + 4.83013i 0.270577 + 0.156217i
\(957\) 0 0
\(958\) −13.2679 + 22.9808i −0.428668 + 0.742475i
\(959\) 0.705771 + 1.22243i 0.0227905 + 0.0394744i
\(960\) 0 0
\(961\) 1.14359 0.0368901
\(962\) 36.2487 10.4641i 1.16871 0.337376i
\(963\) 0 0
\(964\) −15.2321 + 8.79423i −0.490591 + 0.283243i
\(965\) −1.10770 1.91858i −0.0356580 0.0617614i
\(966\) 0 0
\(967\) 18.8756i 0.607000i −0.952831 0.303500i \(-0.901845\pi\)
0.952831 0.303500i \(-0.0981552\pi\)
\(968\) 9.86603 + 5.69615i 0.317106 + 0.183081i
\(969\) 0 0
\(970\) 1.60770i 0.0516200i
\(971\) −9.12436 + 15.8038i −0.292815 + 0.507170i −0.974474 0.224500i \(-0.927925\pi\)
0.681660 + 0.731669i \(0.261259\pi\)
\(972\) 0 0
\(973\) 6.24871 3.60770i 0.200324 0.115657i
\(974\) 21.1244 0.676868
\(975\) 0 0
\(976\) 1.19615 0.0382879
\(977\) −27.7750 + 16.0359i −0.888601 + 0.513034i −0.873485 0.486852i \(-0.838145\pi\)
−0.0151161 + 0.999886i \(0.504812\pi\)
\(978\) 0 0
\(979\) −6.00000 + 10.3923i −0.191761 + 0.332140i
\(980\) 1.73205i 0.0553283i
\(981\) 0 0
\(982\) 4.56218 + 2.63397i 0.145585 + 0.0840535i
\(983\) 20.7846i 0.662926i −0.943468 0.331463i \(-0.892458\pi\)
0.943468 0.331463i \(-0.107542\pi\)
\(984\) 0 0
\(985\) 1.32051 + 2.28719i 0.0420749 + 0.0728758i
\(986\) −4.83975 + 2.79423i −0.154129 + 0.0889864i
\(987\) 0 0
\(988\) −4.43782 1.09808i −0.141186 0.0349345i
\(989\) 47.4641 1.50927
\(990\) 0 0
\(991\) 4.29423 + 7.43782i 0.136411 + 0.236270i 0.926135 0.377191i \(-0.123110\pi\)
−0.789725 + 0.613461i \(0.789777\pi\)
\(992\) 2.73205 4.73205i 0.0867427 0.150243i
\(993\) 0 0
\(994\) −0.803848 0.464102i −0.0254965 0.0147204i
\(995\) 0.882686 + 0.509619i 0.0279830 + 0.0161560i
\(996\) 0 0
\(997\) −19.3301 + 33.4808i −0.612191 + 1.06035i 0.378679 + 0.925528i \(0.376378\pi\)
−0.990870 + 0.134818i \(0.956955\pi\)
\(998\) −16.0000 27.7128i −0.506471 0.877234i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 234.2.l.c.127.1 4
3.2 odd 2 78.2.i.a.49.2 yes 4
4.3 odd 2 1872.2.by.h.1297.1 4
12.11 even 2 624.2.bv.e.49.2 4
13.2 odd 12 3042.2.a.p.1.2 2
13.3 even 3 3042.2.b.i.1351.2 4
13.4 even 6 inner 234.2.l.c.199.1 4
13.10 even 6 3042.2.b.i.1351.3 4
13.11 odd 12 3042.2.a.y.1.1 2
15.2 even 4 1950.2.y.g.49.1 4
15.8 even 4 1950.2.y.b.49.2 4
15.14 odd 2 1950.2.bc.d.751.1 4
39.2 even 12 1014.2.a.k.1.1 2
39.5 even 4 1014.2.e.g.991.1 4
39.8 even 4 1014.2.e.i.991.2 4
39.11 even 12 1014.2.a.i.1.2 2
39.17 odd 6 78.2.i.a.43.2 4
39.20 even 12 1014.2.e.i.529.2 4
39.23 odd 6 1014.2.b.e.337.2 4
39.29 odd 6 1014.2.b.e.337.3 4
39.32 even 12 1014.2.e.g.529.1 4
39.35 odd 6 1014.2.i.a.823.1 4
39.38 odd 2 1014.2.i.a.361.1 4
52.43 odd 6 1872.2.by.h.433.2 4
156.11 odd 12 8112.2.a.bj.1.2 2
156.95 even 6 624.2.bv.e.433.1 4
156.119 odd 12 8112.2.a.bp.1.1 2
195.17 even 12 1950.2.y.b.199.2 4
195.134 odd 6 1950.2.bc.d.901.1 4
195.173 even 12 1950.2.y.g.199.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
78.2.i.a.43.2 4 39.17 odd 6
78.2.i.a.49.2 yes 4 3.2 odd 2
234.2.l.c.127.1 4 1.1 even 1 trivial
234.2.l.c.199.1 4 13.4 even 6 inner
624.2.bv.e.49.2 4 12.11 even 2
624.2.bv.e.433.1 4 156.95 even 6
1014.2.a.i.1.2 2 39.11 even 12
1014.2.a.k.1.1 2 39.2 even 12
1014.2.b.e.337.2 4 39.23 odd 6
1014.2.b.e.337.3 4 39.29 odd 6
1014.2.e.g.529.1 4 39.32 even 12
1014.2.e.g.991.1 4 39.5 even 4
1014.2.e.i.529.2 4 39.20 even 12
1014.2.e.i.991.2 4 39.8 even 4
1014.2.i.a.361.1 4 39.38 odd 2
1014.2.i.a.823.1 4 39.35 odd 6
1872.2.by.h.433.2 4 52.43 odd 6
1872.2.by.h.1297.1 4 4.3 odd 2
1950.2.y.b.49.2 4 15.8 even 4
1950.2.y.b.199.2 4 195.17 even 12
1950.2.y.g.49.1 4 15.2 even 4
1950.2.y.g.199.1 4 195.173 even 12
1950.2.bc.d.751.1 4 15.14 odd 2
1950.2.bc.d.901.1 4 195.134 odd 6
3042.2.a.p.1.2 2 13.2 odd 12
3042.2.a.y.1.1 2 13.11 odd 12
3042.2.b.i.1351.2 4 13.3 even 3
3042.2.b.i.1351.3 4 13.10 even 6
8112.2.a.bj.1.2 2 156.11 odd 12
8112.2.a.bp.1.1 2 156.119 odd 12