Properties

Label 234.2.h
Level $234$
Weight $2$
Character orbit 234.h
Rep. character $\chi_{234}(55,\cdot)$
Character field $\Q(\zeta_{3})$
Dimension $14$
Newform subspaces $5$
Sturm bound $84$
Trace bound $5$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 234 = 2 \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 234.h (of order \(3\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 13 \)
Character field: \(\Q(\zeta_{3})\)
Newform subspaces: \( 5 \)
Sturm bound: \(84\)
Trace bound: \(5\)
Distinguishing \(T_p\): \(5\), \(7\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(234, [\chi])\).

Total New Old
Modular forms 100 14 86
Cusp forms 68 14 54
Eisenstein series 32 0 32

Trace form

\( 14 q - q^{2} - 7 q^{4} - 2 q^{5} - 4 q^{7} + 2 q^{8} - q^{10} + 12 q^{11} - 7 q^{13} - 8 q^{14} - 7 q^{16} + 5 q^{17} + 8 q^{19} + q^{20} - 4 q^{22} - 4 q^{23} + 40 q^{25} + 3 q^{26} - 4 q^{28} - 7 q^{29}+ \cdots + 15 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(234, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
234.2.h.a 234.h 13.c $2$ $1.868$ \(\Q(\sqrt{-3}) \) None 78.2.e.a \(-1\) \(0\) \(-6\) \(-2\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-1+\zeta_{6})q^{2}-\zeta_{6}q^{4}-3q^{5}-2\zeta_{6}q^{7}+\cdots\)
234.2.h.b 234.h 13.c $2$ $1.868$ \(\Q(\sqrt{-3}) \) None 78.2.e.b \(-1\) \(0\) \(2\) \(2\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-1+\zeta_{6})q^{2}-\zeta_{6}q^{4}+q^{5}+2\zeta_{6}q^{7}+\cdots\)
234.2.h.c 234.h 13.c $2$ $1.868$ \(\Q(\sqrt{-3}) \) None 26.2.c.a \(1\) \(0\) \(2\) \(-4\) $\mathrm{SU}(2)[C_{3}]$ \(q+(1-\zeta_{6})q^{2}-\zeta_{6}q^{4}+q^{5}-4\zeta_{6}q^{7}+\cdots\)
234.2.h.d 234.h 13.c $4$ $1.868$ \(\Q(\sqrt{-3}, \sqrt{10})\) None 234.2.h.d \(-2\) \(0\) \(4\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+\beta _{2}q^{2}+(-1-\beta _{2})q^{4}+(1+\beta _{3})q^{5}+\cdots\)
234.2.h.e 234.h 13.c $4$ $1.868$ \(\Q(\sqrt{-3}, \sqrt{10})\) None 234.2.h.d \(2\) \(0\) \(-4\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+(1+\beta _{2})q^{2}+\beta _{2}q^{4}+(-1+\beta _{3})q^{5}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(234, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(234, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(26, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(39, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(78, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(117, [\chi])\)\(^{\oplus 2}\)