Defining parameters
| Level: | \( N \) | \(=\) | \( 234 = 2 \cdot 3^{2} \cdot 13 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 234.h (of order \(3\) and degree \(2\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 13 \) |
| Character field: | \(\Q(\zeta_{3})\) | ||
| Newform subspaces: | \( 5 \) | ||
| Sturm bound: | \(84\) | ||
| Trace bound: | \(5\) | ||
| Distinguishing \(T_p\): | \(5\), \(7\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(234, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 100 | 14 | 86 |
| Cusp forms | 68 | 14 | 54 |
| Eisenstein series | 32 | 0 | 32 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(234, [\chi])\) into newform subspaces
| Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
| 234.2.h.a | $2$ | $1.868$ | \(\Q(\sqrt{-3}) \) | None | \(-1\) | \(0\) | \(-6\) | \(-2\) | \(q+(-1+\zeta_{6})q^{2}-\zeta_{6}q^{4}-3q^{5}-2\zeta_{6}q^{7}+\cdots\) |
| 234.2.h.b | $2$ | $1.868$ | \(\Q(\sqrt{-3}) \) | None | \(-1\) | \(0\) | \(2\) | \(2\) | \(q+(-1+\zeta_{6})q^{2}-\zeta_{6}q^{4}+q^{5}+2\zeta_{6}q^{7}+\cdots\) |
| 234.2.h.c | $2$ | $1.868$ | \(\Q(\sqrt{-3}) \) | None | \(1\) | \(0\) | \(2\) | \(-4\) | \(q+(1-\zeta_{6})q^{2}-\zeta_{6}q^{4}+q^{5}-4\zeta_{6}q^{7}+\cdots\) |
| 234.2.h.d | $4$ | $1.868$ | \(\Q(\sqrt{-3}, \sqrt{10})\) | None | \(-2\) | \(0\) | \(4\) | \(0\) | \(q+\beta _{2}q^{2}+(-1-\beta _{2})q^{4}+(1+\beta _{3})q^{5}+\cdots\) |
| 234.2.h.e | $4$ | $1.868$ | \(\Q(\sqrt{-3}, \sqrt{10})\) | None | \(2\) | \(0\) | \(-4\) | \(0\) | \(q+(1+\beta _{2})q^{2}+\beta _{2}q^{4}+(-1+\beta _{3})q^{5}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(234, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(234, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(26, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(39, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(78, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(117, [\chi])\)\(^{\oplus 2}\)