Properties

Label 234.2.g.b.211.1
Level $234$
Weight $2$
Character 234.211
Analytic conductor $1.868$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [234,2,Mod(61,234)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("234.61"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(234, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([4, 4])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 234 = 2 \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 234.g (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.86849940730\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 211.1
Root \(0.500000 - 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 234.211
Dual form 234.2.g.b.61.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.500000 - 0.866025i) q^{2} +(1.50000 + 0.866025i) q^{3} +(-0.500000 - 0.866025i) q^{4} +(1.50000 - 2.59808i) q^{5} +(1.50000 - 0.866025i) q^{6} -1.00000 q^{7} -1.00000 q^{8} +(1.50000 + 2.59808i) q^{9} +(-1.50000 - 2.59808i) q^{10} -1.73205i q^{12} +(-3.50000 + 0.866025i) q^{13} +(-0.500000 + 0.866025i) q^{14} +(4.50000 - 2.59808i) q^{15} +(-0.500000 + 0.866025i) q^{16} +(-1.50000 + 2.59808i) q^{17} +3.00000 q^{18} +(0.500000 - 0.866025i) q^{19} -3.00000 q^{20} +(-1.50000 - 0.866025i) q^{21} +9.00000 q^{23} +(-1.50000 - 0.866025i) q^{24} +(-2.00000 - 3.46410i) q^{25} +(-1.00000 + 3.46410i) q^{26} +5.19615i q^{27} +(0.500000 + 0.866025i) q^{28} +(-3.00000 + 5.19615i) q^{29} -5.19615i q^{30} +(0.500000 - 0.866025i) q^{31} +(0.500000 + 0.866025i) q^{32} +(1.50000 + 2.59808i) q^{34} +(-1.50000 + 2.59808i) q^{35} +(1.50000 - 2.59808i) q^{36} +(-2.50000 - 4.33013i) q^{37} +(-0.500000 - 0.866025i) q^{38} +(-6.00000 - 1.73205i) q^{39} +(-1.50000 + 2.59808i) q^{40} -9.00000 q^{41} +(-1.50000 + 0.866025i) q^{42} -7.00000 q^{43} +9.00000 q^{45} +(4.50000 - 7.79423i) q^{46} +(1.50000 + 2.59808i) q^{47} +(-1.50000 + 0.866025i) q^{48} -6.00000 q^{49} -4.00000 q^{50} +(-4.50000 + 2.59808i) q^{51} +(2.50000 + 2.59808i) q^{52} +6.00000 q^{53} +(4.50000 + 2.59808i) q^{54} +1.00000 q^{56} +(1.50000 - 0.866025i) q^{57} +(3.00000 + 5.19615i) q^{58} +(6.00000 + 10.3923i) q^{59} +(-4.50000 - 2.59808i) q^{60} -7.00000 q^{61} +(-0.500000 - 0.866025i) q^{62} +(-1.50000 - 2.59808i) q^{63} +1.00000 q^{64} +(-3.00000 + 10.3923i) q^{65} -1.00000 q^{67} +3.00000 q^{68} +(13.5000 + 7.79423i) q^{69} +(1.50000 + 2.59808i) q^{70} +(7.50000 - 12.9904i) q^{71} +(-1.50000 - 2.59808i) q^{72} +14.0000 q^{73} -5.00000 q^{74} -6.92820i q^{75} -1.00000 q^{76} +(-4.50000 + 4.33013i) q^{78} +(-2.50000 - 4.33013i) q^{79} +(1.50000 + 2.59808i) q^{80} +(-4.50000 + 7.79423i) q^{81} +(-4.50000 + 7.79423i) q^{82} +(-1.50000 - 2.59808i) q^{83} +1.73205i q^{84} +(4.50000 + 7.79423i) q^{85} +(-3.50000 + 6.06218i) q^{86} +(-9.00000 + 5.19615i) q^{87} +(-7.50000 - 12.9904i) q^{89} +(4.50000 - 7.79423i) q^{90} +(3.50000 - 0.866025i) q^{91} +(-4.50000 - 7.79423i) q^{92} +(1.50000 - 0.866025i) q^{93} +3.00000 q^{94} +(-1.50000 - 2.59808i) q^{95} +1.73205i q^{96} -13.0000 q^{97} +(-3.00000 + 5.19615i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + q^{2} + 3 q^{3} - q^{4} + 3 q^{5} + 3 q^{6} - 2 q^{7} - 2 q^{8} + 3 q^{9} - 3 q^{10} - 7 q^{13} - q^{14} + 9 q^{15} - q^{16} - 3 q^{17} + 6 q^{18} + q^{19} - 6 q^{20} - 3 q^{21} + 18 q^{23} - 3 q^{24}+ \cdots - 6 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/234\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(209\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.500000 0.866025i 0.353553 0.612372i
\(3\) 1.50000 + 0.866025i 0.866025 + 0.500000i
\(4\) −0.500000 0.866025i −0.250000 0.433013i
\(5\) 1.50000 2.59808i 0.670820 1.16190i −0.306851 0.951757i \(-0.599275\pi\)
0.977672 0.210138i \(-0.0673912\pi\)
\(6\) 1.50000 0.866025i 0.612372 0.353553i
\(7\) −1.00000 −0.377964 −0.188982 0.981981i \(-0.560519\pi\)
−0.188982 + 0.981981i \(0.560519\pi\)
\(8\) −1.00000 −0.353553
\(9\) 1.50000 + 2.59808i 0.500000 + 0.866025i
\(10\) −1.50000 2.59808i −0.474342 0.821584i
\(11\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(12\) 1.73205i 0.500000i
\(13\) −3.50000 + 0.866025i −0.970725 + 0.240192i
\(14\) −0.500000 + 0.866025i −0.133631 + 0.231455i
\(15\) 4.50000 2.59808i 1.16190 0.670820i
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) −1.50000 + 2.59808i −0.363803 + 0.630126i −0.988583 0.150675i \(-0.951855\pi\)
0.624780 + 0.780801i \(0.285189\pi\)
\(18\) 3.00000 0.707107
\(19\) 0.500000 0.866025i 0.114708 0.198680i −0.802955 0.596040i \(-0.796740\pi\)
0.917663 + 0.397360i \(0.130073\pi\)
\(20\) −3.00000 −0.670820
\(21\) −1.50000 0.866025i −0.327327 0.188982i
\(22\) 0 0
\(23\) 9.00000 1.87663 0.938315 0.345782i \(-0.112386\pi\)
0.938315 + 0.345782i \(0.112386\pi\)
\(24\) −1.50000 0.866025i −0.306186 0.176777i
\(25\) −2.00000 3.46410i −0.400000 0.692820i
\(26\) −1.00000 + 3.46410i −0.196116 + 0.679366i
\(27\) 5.19615i 1.00000i
\(28\) 0.500000 + 0.866025i 0.0944911 + 0.163663i
\(29\) −3.00000 + 5.19615i −0.557086 + 0.964901i 0.440652 + 0.897678i \(0.354747\pi\)
−0.997738 + 0.0672232i \(0.978586\pi\)
\(30\) 5.19615i 0.948683i
\(31\) 0.500000 0.866025i 0.0898027 0.155543i −0.817625 0.575751i \(-0.804710\pi\)
0.907428 + 0.420208i \(0.138043\pi\)
\(32\) 0.500000 + 0.866025i 0.0883883 + 0.153093i
\(33\) 0 0
\(34\) 1.50000 + 2.59808i 0.257248 + 0.445566i
\(35\) −1.50000 + 2.59808i −0.253546 + 0.439155i
\(36\) 1.50000 2.59808i 0.250000 0.433013i
\(37\) −2.50000 4.33013i −0.410997 0.711868i 0.584002 0.811752i \(-0.301486\pi\)
−0.994999 + 0.0998840i \(0.968153\pi\)
\(38\) −0.500000 0.866025i −0.0811107 0.140488i
\(39\) −6.00000 1.73205i −0.960769 0.277350i
\(40\) −1.50000 + 2.59808i −0.237171 + 0.410792i
\(41\) −9.00000 −1.40556 −0.702782 0.711405i \(-0.748059\pi\)
−0.702782 + 0.711405i \(0.748059\pi\)
\(42\) −1.50000 + 0.866025i −0.231455 + 0.133631i
\(43\) −7.00000 −1.06749 −0.533745 0.845645i \(-0.679216\pi\)
−0.533745 + 0.845645i \(0.679216\pi\)
\(44\) 0 0
\(45\) 9.00000 1.34164
\(46\) 4.50000 7.79423i 0.663489 1.14920i
\(47\) 1.50000 + 2.59808i 0.218797 + 0.378968i 0.954441 0.298401i \(-0.0964533\pi\)
−0.735643 + 0.677369i \(0.763120\pi\)
\(48\) −1.50000 + 0.866025i −0.216506 + 0.125000i
\(49\) −6.00000 −0.857143
\(50\) −4.00000 −0.565685
\(51\) −4.50000 + 2.59808i −0.630126 + 0.363803i
\(52\) 2.50000 + 2.59808i 0.346688 + 0.360288i
\(53\) 6.00000 0.824163 0.412082 0.911147i \(-0.364802\pi\)
0.412082 + 0.911147i \(0.364802\pi\)
\(54\) 4.50000 + 2.59808i 0.612372 + 0.353553i
\(55\) 0 0
\(56\) 1.00000 0.133631
\(57\) 1.50000 0.866025i 0.198680 0.114708i
\(58\) 3.00000 + 5.19615i 0.393919 + 0.682288i
\(59\) 6.00000 + 10.3923i 0.781133 + 1.35296i 0.931282 + 0.364299i \(0.118692\pi\)
−0.150148 + 0.988663i \(0.547975\pi\)
\(60\) −4.50000 2.59808i −0.580948 0.335410i
\(61\) −7.00000 −0.896258 −0.448129 0.893969i \(-0.647910\pi\)
−0.448129 + 0.893969i \(0.647910\pi\)
\(62\) −0.500000 0.866025i −0.0635001 0.109985i
\(63\) −1.50000 2.59808i −0.188982 0.327327i
\(64\) 1.00000 0.125000
\(65\) −3.00000 + 10.3923i −0.372104 + 1.28901i
\(66\) 0 0
\(67\) −1.00000 −0.122169 −0.0610847 0.998133i \(-0.519456\pi\)
−0.0610847 + 0.998133i \(0.519456\pi\)
\(68\) 3.00000 0.363803
\(69\) 13.5000 + 7.79423i 1.62521 + 0.938315i
\(70\) 1.50000 + 2.59808i 0.179284 + 0.310530i
\(71\) 7.50000 12.9904i 0.890086 1.54167i 0.0503155 0.998733i \(-0.483977\pi\)
0.839771 0.542941i \(-0.182689\pi\)
\(72\) −1.50000 2.59808i −0.176777 0.306186i
\(73\) 14.0000 1.63858 0.819288 0.573382i \(-0.194369\pi\)
0.819288 + 0.573382i \(0.194369\pi\)
\(74\) −5.00000 −0.581238
\(75\) 6.92820i 0.800000i
\(76\) −1.00000 −0.114708
\(77\) 0 0
\(78\) −4.50000 + 4.33013i −0.509525 + 0.490290i
\(79\) −2.50000 4.33013i −0.281272 0.487177i 0.690426 0.723403i \(-0.257423\pi\)
−0.971698 + 0.236225i \(0.924090\pi\)
\(80\) 1.50000 + 2.59808i 0.167705 + 0.290474i
\(81\) −4.50000 + 7.79423i −0.500000 + 0.866025i
\(82\) −4.50000 + 7.79423i −0.496942 + 0.860729i
\(83\) −1.50000 2.59808i −0.164646 0.285176i 0.771883 0.635764i \(-0.219315\pi\)
−0.936530 + 0.350588i \(0.885982\pi\)
\(84\) 1.73205i 0.188982i
\(85\) 4.50000 + 7.79423i 0.488094 + 0.845403i
\(86\) −3.50000 + 6.06218i −0.377415 + 0.653701i
\(87\) −9.00000 + 5.19615i −0.964901 + 0.557086i
\(88\) 0 0
\(89\) −7.50000 12.9904i −0.794998 1.37698i −0.922840 0.385183i \(-0.874138\pi\)
0.127842 0.991795i \(-0.459195\pi\)
\(90\) 4.50000 7.79423i 0.474342 0.821584i
\(91\) 3.50000 0.866025i 0.366900 0.0907841i
\(92\) −4.50000 7.79423i −0.469157 0.812605i
\(93\) 1.50000 0.866025i 0.155543 0.0898027i
\(94\) 3.00000 0.309426
\(95\) −1.50000 2.59808i −0.153897 0.266557i
\(96\) 1.73205i 0.176777i
\(97\) −13.0000 −1.31995 −0.659975 0.751288i \(-0.729433\pi\)
−0.659975 + 0.751288i \(0.729433\pi\)
\(98\) −3.00000 + 5.19615i −0.303046 + 0.524891i
\(99\) 0 0
\(100\) −2.00000 + 3.46410i −0.200000 + 0.346410i
\(101\) 3.00000 5.19615i 0.298511 0.517036i −0.677284 0.735721i \(-0.736843\pi\)
0.975796 + 0.218685i \(0.0701767\pi\)
\(102\) 5.19615i 0.514496i
\(103\) 6.50000 11.2583i 0.640464 1.10932i −0.344865 0.938652i \(-0.612075\pi\)
0.985329 0.170664i \(-0.0545913\pi\)
\(104\) 3.50000 0.866025i 0.343203 0.0849208i
\(105\) −4.50000 + 2.59808i −0.439155 + 0.253546i
\(106\) 3.00000 5.19615i 0.291386 0.504695i
\(107\) 1.50000 + 2.59808i 0.145010 + 0.251166i 0.929377 0.369132i \(-0.120345\pi\)
−0.784366 + 0.620298i \(0.787012\pi\)
\(108\) 4.50000 2.59808i 0.433013 0.250000i
\(109\) 2.00000 0.191565 0.0957826 0.995402i \(-0.469465\pi\)
0.0957826 + 0.995402i \(0.469465\pi\)
\(110\) 0 0
\(111\) 8.66025i 0.821995i
\(112\) 0.500000 0.866025i 0.0472456 0.0818317i
\(113\) −3.00000 5.19615i −0.282216 0.488813i 0.689714 0.724082i \(-0.257736\pi\)
−0.971930 + 0.235269i \(0.924403\pi\)
\(114\) 1.73205i 0.162221i
\(115\) 13.5000 23.3827i 1.25888 2.18045i
\(116\) 6.00000 0.557086
\(117\) −7.50000 7.79423i −0.693375 0.720577i
\(118\) 12.0000 1.10469
\(119\) 1.50000 2.59808i 0.137505 0.238165i
\(120\) −4.50000 + 2.59808i −0.410792 + 0.237171i
\(121\) 5.50000 + 9.52628i 0.500000 + 0.866025i
\(122\) −3.50000 + 6.06218i −0.316875 + 0.548844i
\(123\) −13.5000 7.79423i −1.21725 0.702782i
\(124\) −1.00000 −0.0898027
\(125\) 3.00000 0.268328
\(126\) −3.00000 −0.267261
\(127\) −5.50000 9.52628i −0.488046 0.845321i 0.511859 0.859069i \(-0.328957\pi\)
−0.999905 + 0.0137486i \(0.995624\pi\)
\(128\) 0.500000 0.866025i 0.0441942 0.0765466i
\(129\) −10.5000 6.06218i −0.924473 0.533745i
\(130\) 7.50000 + 7.79423i 0.657794 + 0.683599i
\(131\) 7.50000 12.9904i 0.655278 1.13497i −0.326546 0.945181i \(-0.605885\pi\)
0.981824 0.189794i \(-0.0607819\pi\)
\(132\) 0 0
\(133\) −0.500000 + 0.866025i −0.0433555 + 0.0750939i
\(134\) −0.500000 + 0.866025i −0.0431934 + 0.0748132i
\(135\) 13.5000 + 7.79423i 1.16190 + 0.670820i
\(136\) 1.50000 2.59808i 0.128624 0.222783i
\(137\) 3.00000 0.256307 0.128154 0.991754i \(-0.459095\pi\)
0.128154 + 0.991754i \(0.459095\pi\)
\(138\) 13.5000 7.79423i 1.14920 0.663489i
\(139\) 2.00000 + 3.46410i 0.169638 + 0.293821i 0.938293 0.345843i \(-0.112407\pi\)
−0.768655 + 0.639664i \(0.779074\pi\)
\(140\) 3.00000 0.253546
\(141\) 5.19615i 0.437595i
\(142\) −7.50000 12.9904i −0.629386 1.09013i
\(143\) 0 0
\(144\) −3.00000 −0.250000
\(145\) 9.00000 + 15.5885i 0.747409 + 1.29455i
\(146\) 7.00000 12.1244i 0.579324 1.00342i
\(147\) −9.00000 5.19615i −0.742307 0.428571i
\(148\) −2.50000 + 4.33013i −0.205499 + 0.355934i
\(149\) −3.00000 5.19615i −0.245770 0.425685i 0.716578 0.697507i \(-0.245707\pi\)
−0.962348 + 0.271821i \(0.912374\pi\)
\(150\) −6.00000 3.46410i −0.489898 0.282843i
\(151\) 9.50000 + 16.4545i 0.773099 + 1.33905i 0.935857 + 0.352381i \(0.114628\pi\)
−0.162758 + 0.986666i \(0.552039\pi\)
\(152\) −0.500000 + 0.866025i −0.0405554 + 0.0702439i
\(153\) −9.00000 −0.727607
\(154\) 0 0
\(155\) −1.50000 2.59808i −0.120483 0.208683i
\(156\) 1.50000 + 6.06218i 0.120096 + 0.485363i
\(157\) −8.50000 + 14.7224i −0.678374 + 1.17498i 0.297097 + 0.954847i \(0.403982\pi\)
−0.975470 + 0.220131i \(0.929352\pi\)
\(158\) −5.00000 −0.397779
\(159\) 9.00000 + 5.19615i 0.713746 + 0.412082i
\(160\) 3.00000 0.237171
\(161\) −9.00000 −0.709299
\(162\) 4.50000 + 7.79423i 0.353553 + 0.612372i
\(163\) −5.50000 + 9.52628i −0.430793 + 0.746156i −0.996942 0.0781474i \(-0.975100\pi\)
0.566149 + 0.824303i \(0.308433\pi\)
\(164\) 4.50000 + 7.79423i 0.351391 + 0.608627i
\(165\) 0 0
\(166\) −3.00000 −0.232845
\(167\) 9.00000 0.696441 0.348220 0.937413i \(-0.386786\pi\)
0.348220 + 0.937413i \(0.386786\pi\)
\(168\) 1.50000 + 0.866025i 0.115728 + 0.0668153i
\(169\) 11.5000 6.06218i 0.884615 0.466321i
\(170\) 9.00000 0.690268
\(171\) 3.00000 0.229416
\(172\) 3.50000 + 6.06218i 0.266872 + 0.462237i
\(173\) 21.0000 1.59660 0.798300 0.602260i \(-0.205733\pi\)
0.798300 + 0.602260i \(0.205733\pi\)
\(174\) 10.3923i 0.787839i
\(175\) 2.00000 + 3.46410i 0.151186 + 0.261861i
\(176\) 0 0
\(177\) 20.7846i 1.56227i
\(178\) −15.0000 −1.12430
\(179\) −4.50000 7.79423i −0.336346 0.582568i 0.647397 0.762153i \(-0.275858\pi\)
−0.983742 + 0.179585i \(0.942524\pi\)
\(180\) −4.50000 7.79423i −0.335410 0.580948i
\(181\) −22.0000 −1.63525 −0.817624 0.575753i \(-0.804709\pi\)
−0.817624 + 0.575753i \(0.804709\pi\)
\(182\) 1.00000 3.46410i 0.0741249 0.256776i
\(183\) −10.5000 6.06218i −0.776182 0.448129i
\(184\) −9.00000 −0.663489
\(185\) −15.0000 −1.10282
\(186\) 1.73205i 0.127000i
\(187\) 0 0
\(188\) 1.50000 2.59808i 0.109399 0.189484i
\(189\) 5.19615i 0.377964i
\(190\) −3.00000 −0.217643
\(191\) 3.00000 0.217072 0.108536 0.994092i \(-0.465384\pi\)
0.108536 + 0.994092i \(0.465384\pi\)
\(192\) 1.50000 + 0.866025i 0.108253 + 0.0625000i
\(193\) 23.0000 1.65558 0.827788 0.561041i \(-0.189599\pi\)
0.827788 + 0.561041i \(0.189599\pi\)
\(194\) −6.50000 + 11.2583i −0.466673 + 0.808301i
\(195\) −13.5000 + 12.9904i −0.966755 + 0.930261i
\(196\) 3.00000 + 5.19615i 0.214286 + 0.371154i
\(197\) −10.5000 18.1865i −0.748094 1.29574i −0.948735 0.316072i \(-0.897636\pi\)
0.200641 0.979665i \(-0.435697\pi\)
\(198\) 0 0
\(199\) 9.50000 16.4545i 0.673437 1.16643i −0.303486 0.952836i \(-0.598151\pi\)
0.976923 0.213591i \(-0.0685161\pi\)
\(200\) 2.00000 + 3.46410i 0.141421 + 0.244949i
\(201\) −1.50000 0.866025i −0.105802 0.0610847i
\(202\) −3.00000 5.19615i −0.211079 0.365600i
\(203\) 3.00000 5.19615i 0.210559 0.364698i
\(204\) 4.50000 + 2.59808i 0.315063 + 0.181902i
\(205\) −13.5000 + 23.3827i −0.942881 + 1.63312i
\(206\) −6.50000 11.2583i −0.452876 0.784405i
\(207\) 13.5000 + 23.3827i 0.938315 + 1.62521i
\(208\) 1.00000 3.46410i 0.0693375 0.240192i
\(209\) 0 0
\(210\) 5.19615i 0.358569i
\(211\) −13.0000 −0.894957 −0.447478 0.894295i \(-0.647678\pi\)
−0.447478 + 0.894295i \(0.647678\pi\)
\(212\) −3.00000 5.19615i −0.206041 0.356873i
\(213\) 22.5000 12.9904i 1.54167 0.890086i
\(214\) 3.00000 0.205076
\(215\) −10.5000 + 18.1865i −0.716094 + 1.24031i
\(216\) 5.19615i 0.353553i
\(217\) −0.500000 + 0.866025i −0.0339422 + 0.0587896i
\(218\) 1.00000 1.73205i 0.0677285 0.117309i
\(219\) 21.0000 + 12.1244i 1.41905 + 0.819288i
\(220\) 0 0
\(221\) 3.00000 10.3923i 0.201802 0.699062i
\(222\) −7.50000 4.33013i −0.503367 0.290619i
\(223\) −4.00000 + 6.92820i −0.267860 + 0.463947i −0.968309 0.249756i \(-0.919650\pi\)
0.700449 + 0.713702i \(0.252983\pi\)
\(224\) −0.500000 0.866025i −0.0334077 0.0578638i
\(225\) 6.00000 10.3923i 0.400000 0.692820i
\(226\) −6.00000 −0.399114
\(227\) 9.00000 0.597351 0.298675 0.954355i \(-0.403455\pi\)
0.298675 + 0.954355i \(0.403455\pi\)
\(228\) −1.50000 0.866025i −0.0993399 0.0573539i
\(229\) −2.50000 + 4.33013i −0.165205 + 0.286143i −0.936728 0.350058i \(-0.886162\pi\)
0.771523 + 0.636201i \(0.219495\pi\)
\(230\) −13.5000 23.3827i −0.890164 1.54181i
\(231\) 0 0
\(232\) 3.00000 5.19615i 0.196960 0.341144i
\(233\) 6.00000 0.393073 0.196537 0.980497i \(-0.437031\pi\)
0.196537 + 0.980497i \(0.437031\pi\)
\(234\) −10.5000 + 2.59808i −0.686406 + 0.169842i
\(235\) 9.00000 0.587095
\(236\) 6.00000 10.3923i 0.390567 0.676481i
\(237\) 8.66025i 0.562544i
\(238\) −1.50000 2.59808i −0.0972306 0.168408i
\(239\) −7.50000 + 12.9904i −0.485135 + 0.840278i −0.999854 0.0170808i \(-0.994563\pi\)
0.514719 + 0.857359i \(0.327896\pi\)
\(240\) 5.19615i 0.335410i
\(241\) −25.0000 −1.61039 −0.805196 0.593009i \(-0.797940\pi\)
−0.805196 + 0.593009i \(0.797940\pi\)
\(242\) 11.0000 0.707107
\(243\) −13.5000 + 7.79423i −0.866025 + 0.500000i
\(244\) 3.50000 + 6.06218i 0.224065 + 0.388091i
\(245\) −9.00000 + 15.5885i −0.574989 + 0.995910i
\(246\) −13.5000 + 7.79423i −0.860729 + 0.496942i
\(247\) −1.00000 + 3.46410i −0.0636285 + 0.220416i
\(248\) −0.500000 + 0.866025i −0.0317500 + 0.0549927i
\(249\) 5.19615i 0.329293i
\(250\) 1.50000 2.59808i 0.0948683 0.164317i
\(251\) −13.5000 + 23.3827i −0.852112 + 1.47590i 0.0271858 + 0.999630i \(0.491345\pi\)
−0.879298 + 0.476272i \(0.841988\pi\)
\(252\) −1.50000 + 2.59808i −0.0944911 + 0.163663i
\(253\) 0 0
\(254\) −11.0000 −0.690201
\(255\) 15.5885i 0.976187i
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) 15.0000 0.935674 0.467837 0.883815i \(-0.345033\pi\)
0.467837 + 0.883815i \(0.345033\pi\)
\(258\) −10.5000 + 6.06218i −0.653701 + 0.377415i
\(259\) 2.50000 + 4.33013i 0.155342 + 0.269061i
\(260\) 10.5000 2.59808i 0.651182 0.161126i
\(261\) −18.0000 −1.11417
\(262\) −7.50000 12.9904i −0.463352 0.802548i
\(263\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(264\) 0 0
\(265\) 9.00000 15.5885i 0.552866 0.957591i
\(266\) 0.500000 + 0.866025i 0.0306570 + 0.0530994i
\(267\) 25.9808i 1.59000i
\(268\) 0.500000 + 0.866025i 0.0305424 + 0.0529009i
\(269\) −10.5000 + 18.1865i −0.640196 + 1.10885i 0.345192 + 0.938532i \(0.387814\pi\)
−0.985389 + 0.170321i \(0.945520\pi\)
\(270\) 13.5000 7.79423i 0.821584 0.474342i
\(271\) −5.50000 9.52628i −0.334101 0.578680i 0.649211 0.760609i \(-0.275099\pi\)
−0.983312 + 0.181928i \(0.941766\pi\)
\(272\) −1.50000 2.59808i −0.0909509 0.157532i
\(273\) 6.00000 + 1.73205i 0.363137 + 0.104828i
\(274\) 1.50000 2.59808i 0.0906183 0.156956i
\(275\) 0 0
\(276\) 15.5885i 0.938315i
\(277\) 17.0000 1.02143 0.510716 0.859750i \(-0.329381\pi\)
0.510716 + 0.859750i \(0.329381\pi\)
\(278\) 4.00000 0.239904
\(279\) 3.00000 0.179605
\(280\) 1.50000 2.59808i 0.0896421 0.155265i
\(281\) −1.50000 2.59808i −0.0894825 0.154988i 0.817810 0.575488i \(-0.195188\pi\)
−0.907293 + 0.420500i \(0.861855\pi\)
\(282\) 4.50000 + 2.59808i 0.267971 + 0.154713i
\(283\) −1.00000 −0.0594438 −0.0297219 0.999558i \(-0.509462\pi\)
−0.0297219 + 0.999558i \(0.509462\pi\)
\(284\) −15.0000 −0.890086
\(285\) 5.19615i 0.307794i
\(286\) 0 0
\(287\) 9.00000 0.531253
\(288\) −1.50000 + 2.59808i −0.0883883 + 0.153093i
\(289\) 4.00000 + 6.92820i 0.235294 + 0.407541i
\(290\) 18.0000 1.05700
\(291\) −19.5000 11.2583i −1.14311 0.659975i
\(292\) −7.00000 12.1244i −0.409644 0.709524i
\(293\) 3.00000 + 5.19615i 0.175262 + 0.303562i 0.940252 0.340480i \(-0.110589\pi\)
−0.764990 + 0.644042i \(0.777256\pi\)
\(294\) −9.00000 + 5.19615i −0.524891 + 0.303046i
\(295\) 36.0000 2.09600
\(296\) 2.50000 + 4.33013i 0.145310 + 0.251684i
\(297\) 0 0
\(298\) −6.00000 −0.347571
\(299\) −31.5000 + 7.79423i −1.82169 + 0.450752i
\(300\) −6.00000 + 3.46410i −0.346410 + 0.200000i
\(301\) 7.00000 0.403473
\(302\) 19.0000 1.09333
\(303\) 9.00000 5.19615i 0.517036 0.298511i
\(304\) 0.500000 + 0.866025i 0.0286770 + 0.0496700i
\(305\) −10.5000 + 18.1865i −0.601228 + 1.04136i
\(306\) −4.50000 + 7.79423i −0.257248 + 0.445566i
\(307\) −28.0000 −1.59804 −0.799022 0.601302i \(-0.794649\pi\)
−0.799022 + 0.601302i \(0.794649\pi\)
\(308\) 0 0
\(309\) 19.5000 11.2583i 1.10932 0.640464i
\(310\) −3.00000 −0.170389
\(311\) −13.5000 + 23.3827i −0.765515 + 1.32591i 0.174459 + 0.984664i \(0.444182\pi\)
−0.939974 + 0.341246i \(0.889151\pi\)
\(312\) 6.00000 + 1.73205i 0.339683 + 0.0980581i
\(313\) 0.500000 + 0.866025i 0.0282617 + 0.0489506i 0.879810 0.475325i \(-0.157669\pi\)
−0.851549 + 0.524276i \(0.824336\pi\)
\(314\) 8.50000 + 14.7224i 0.479683 + 0.830835i
\(315\) −9.00000 −0.507093
\(316\) −2.50000 + 4.33013i −0.140636 + 0.243589i
\(317\) −4.50000 7.79423i −0.252745 0.437767i 0.711535 0.702650i \(-0.248000\pi\)
−0.964281 + 0.264883i \(0.914667\pi\)
\(318\) 9.00000 5.19615i 0.504695 0.291386i
\(319\) 0 0
\(320\) 1.50000 2.59808i 0.0838525 0.145237i
\(321\) 5.19615i 0.290021i
\(322\) −4.50000 + 7.79423i −0.250775 + 0.434355i
\(323\) 1.50000 + 2.59808i 0.0834622 + 0.144561i
\(324\) 9.00000 0.500000
\(325\) 10.0000 + 10.3923i 0.554700 + 0.576461i
\(326\) 5.50000 + 9.52628i 0.304617 + 0.527612i
\(327\) 3.00000 + 1.73205i 0.165900 + 0.0957826i
\(328\) 9.00000 0.496942
\(329\) −1.50000 2.59808i −0.0826977 0.143237i
\(330\) 0 0
\(331\) 5.00000 0.274825 0.137412 0.990514i \(-0.456121\pi\)
0.137412 + 0.990514i \(0.456121\pi\)
\(332\) −1.50000 + 2.59808i −0.0823232 + 0.142588i
\(333\) 7.50000 12.9904i 0.410997 0.711868i
\(334\) 4.50000 7.79423i 0.246229 0.426481i
\(335\) −1.50000 + 2.59808i −0.0819538 + 0.141948i
\(336\) 1.50000 0.866025i 0.0818317 0.0472456i
\(337\) 6.50000 11.2583i 0.354078 0.613280i −0.632882 0.774248i \(-0.718128\pi\)
0.986960 + 0.160968i \(0.0514616\pi\)
\(338\) 0.500000 12.9904i 0.0271964 0.706584i
\(339\) 10.3923i 0.564433i
\(340\) 4.50000 7.79423i 0.244047 0.422701i
\(341\) 0 0
\(342\) 1.50000 2.59808i 0.0811107 0.140488i
\(343\) 13.0000 0.701934
\(344\) 7.00000 0.377415
\(345\) 40.5000 23.3827i 2.18045 1.25888i
\(346\) 10.5000 18.1865i 0.564483 0.977714i
\(347\) 6.00000 + 10.3923i 0.322097 + 0.557888i 0.980921 0.194409i \(-0.0622790\pi\)
−0.658824 + 0.752297i \(0.728946\pi\)
\(348\) 9.00000 + 5.19615i 0.482451 + 0.278543i
\(349\) 5.00000 8.66025i 0.267644 0.463573i −0.700609 0.713545i \(-0.747088\pi\)
0.968253 + 0.249973i \(0.0804216\pi\)
\(350\) 4.00000 0.213809
\(351\) −4.50000 18.1865i −0.240192 0.970725i
\(352\) 0 0
\(353\) −3.00000 + 5.19615i −0.159674 + 0.276563i −0.934751 0.355303i \(-0.884378\pi\)
0.775077 + 0.631867i \(0.217711\pi\)
\(354\) 18.0000 + 10.3923i 0.956689 + 0.552345i
\(355\) −22.5000 38.9711i −1.19418 2.06837i
\(356\) −7.50000 + 12.9904i −0.397499 + 0.688489i
\(357\) 4.50000 2.59808i 0.238165 0.137505i
\(358\) −9.00000 −0.475665
\(359\) 24.0000 1.26667 0.633336 0.773877i \(-0.281685\pi\)
0.633336 + 0.773877i \(0.281685\pi\)
\(360\) −9.00000 −0.474342
\(361\) 9.00000 + 15.5885i 0.473684 + 0.820445i
\(362\) −11.0000 + 19.0526i −0.578147 + 1.00138i
\(363\) 19.0526i 1.00000i
\(364\) −2.50000 2.59808i −0.131036 0.136176i
\(365\) 21.0000 36.3731i 1.09919 1.90385i
\(366\) −10.5000 + 6.06218i −0.548844 + 0.316875i
\(367\) 8.00000 13.8564i 0.417597 0.723299i −0.578101 0.815966i \(-0.696206\pi\)
0.995697 + 0.0926670i \(0.0295392\pi\)
\(368\) −4.50000 + 7.79423i −0.234579 + 0.406302i
\(369\) −13.5000 23.3827i −0.702782 1.21725i
\(370\) −7.50000 + 12.9904i −0.389906 + 0.675338i
\(371\) −6.00000 −0.311504
\(372\) −1.50000 0.866025i −0.0777714 0.0449013i
\(373\) −7.00000 12.1244i −0.362446 0.627775i 0.625917 0.779890i \(-0.284725\pi\)
−0.988363 + 0.152115i \(0.951392\pi\)
\(374\) 0 0
\(375\) 4.50000 + 2.59808i 0.232379 + 0.134164i
\(376\) −1.50000 2.59808i −0.0773566 0.133986i
\(377\) 6.00000 20.7846i 0.309016 1.07046i
\(378\) −4.50000 2.59808i −0.231455 0.133631i
\(379\) −14.5000 25.1147i −0.744815 1.29006i −0.950281 0.311393i \(-0.899204\pi\)
0.205466 0.978664i \(-0.434129\pi\)
\(380\) −1.50000 + 2.59808i −0.0769484 + 0.133278i
\(381\) 19.0526i 0.976092i
\(382\) 1.50000 2.59808i 0.0767467 0.132929i
\(383\) 18.0000 + 31.1769i 0.919757 + 1.59307i 0.799783 + 0.600289i \(0.204948\pi\)
0.119974 + 0.992777i \(0.461719\pi\)
\(384\) 1.50000 0.866025i 0.0765466 0.0441942i
\(385\) 0 0
\(386\) 11.5000 19.9186i 0.585335 1.01383i
\(387\) −10.5000 18.1865i −0.533745 0.924473i
\(388\) 6.50000 + 11.2583i 0.329988 + 0.571555i
\(389\) −4.50000 7.79423i −0.228159 0.395183i 0.729103 0.684403i \(-0.239937\pi\)
−0.957263 + 0.289220i \(0.906604\pi\)
\(390\) 4.50000 + 18.1865i 0.227866 + 0.920911i
\(391\) −13.5000 + 23.3827i −0.682724 + 1.18251i
\(392\) 6.00000 0.303046
\(393\) 22.5000 12.9904i 1.13497 0.655278i
\(394\) −21.0000 −1.05796
\(395\) −15.0000 −0.754732
\(396\) 0 0
\(397\) 3.50000 6.06218i 0.175660 0.304252i −0.764730 0.644351i \(-0.777127\pi\)
0.940389 + 0.340099i \(0.110461\pi\)
\(398\) −9.50000 16.4545i −0.476192 0.824789i
\(399\) −1.50000 + 0.866025i −0.0750939 + 0.0433555i
\(400\) 4.00000 0.200000
\(401\) −9.00000 −0.449439 −0.224719 0.974424i \(-0.572147\pi\)
−0.224719 + 0.974424i \(0.572147\pi\)
\(402\) −1.50000 + 0.866025i −0.0748132 + 0.0431934i
\(403\) −1.00000 + 3.46410i −0.0498135 + 0.172559i
\(404\) −6.00000 −0.298511
\(405\) 13.5000 + 23.3827i 0.670820 + 1.16190i
\(406\) −3.00000 5.19615i −0.148888 0.257881i
\(407\) 0 0
\(408\) 4.50000 2.59808i 0.222783 0.128624i
\(409\) −7.00000 12.1244i −0.346128 0.599511i 0.639430 0.768849i \(-0.279170\pi\)
−0.985558 + 0.169338i \(0.945837\pi\)
\(410\) 13.5000 + 23.3827i 0.666717 + 1.15479i
\(411\) 4.50000 + 2.59808i 0.221969 + 0.128154i
\(412\) −13.0000 −0.640464
\(413\) −6.00000 10.3923i −0.295241 0.511372i
\(414\) 27.0000 1.32698
\(415\) −9.00000 −0.441793
\(416\) −2.50000 2.59808i −0.122573 0.127381i
\(417\) 6.92820i 0.339276i
\(418\) 0 0
\(419\) −21.0000 −1.02592 −0.512959 0.858413i \(-0.671451\pi\)
−0.512959 + 0.858413i \(0.671451\pi\)
\(420\) 4.50000 + 2.59808i 0.219578 + 0.126773i
\(421\) 9.50000 + 16.4545i 0.463002 + 0.801942i 0.999109 0.0422075i \(-0.0134391\pi\)
−0.536107 + 0.844150i \(0.680106\pi\)
\(422\) −6.50000 + 11.2583i −0.316415 + 0.548047i
\(423\) −4.50000 + 7.79423i −0.218797 + 0.378968i
\(424\) −6.00000 −0.291386
\(425\) 12.0000 0.582086
\(426\) 25.9808i 1.25877i
\(427\) 7.00000 0.338754
\(428\) 1.50000 2.59808i 0.0725052 0.125583i
\(429\) 0 0
\(430\) 10.5000 + 18.1865i 0.506355 + 0.877033i
\(431\) 4.50000 + 7.79423i 0.216757 + 0.375435i 0.953815 0.300395i \(-0.0971186\pi\)
−0.737057 + 0.675830i \(0.763785\pi\)
\(432\) −4.50000 2.59808i −0.216506 0.125000i
\(433\) −5.50000 + 9.52628i −0.264313 + 0.457804i −0.967383 0.253317i \(-0.918479\pi\)
0.703070 + 0.711120i \(0.251812\pi\)
\(434\) 0.500000 + 0.866025i 0.0240008 + 0.0415705i
\(435\) 31.1769i 1.49482i
\(436\) −1.00000 1.73205i −0.0478913 0.0829502i
\(437\) 4.50000 7.79423i 0.215264 0.372849i
\(438\) 21.0000 12.1244i 1.00342 0.579324i
\(439\) −16.0000 + 27.7128i −0.763638 + 1.32266i 0.177325 + 0.984152i \(0.443256\pi\)
−0.940963 + 0.338508i \(0.890078\pi\)
\(440\) 0 0
\(441\) −9.00000 15.5885i −0.428571 0.742307i
\(442\) −7.50000 7.79423i −0.356739 0.370734i
\(443\) 4.50000 + 7.79423i 0.213801 + 0.370315i 0.952901 0.303281i \(-0.0980821\pi\)
−0.739100 + 0.673596i \(0.764749\pi\)
\(444\) −7.50000 + 4.33013i −0.355934 + 0.205499i
\(445\) −45.0000 −2.13320
\(446\) 4.00000 + 6.92820i 0.189405 + 0.328060i
\(447\) 10.3923i 0.491539i
\(448\) −1.00000 −0.0472456
\(449\) 4.50000 7.79423i 0.212368 0.367832i −0.740087 0.672511i \(-0.765216\pi\)
0.952455 + 0.304679i \(0.0985491\pi\)
\(450\) −6.00000 10.3923i −0.282843 0.489898i
\(451\) 0 0
\(452\) −3.00000 + 5.19615i −0.141108 + 0.244406i
\(453\) 32.9090i 1.54620i
\(454\) 4.50000 7.79423i 0.211195 0.365801i
\(455\) 3.00000 10.3923i 0.140642 0.487199i
\(456\) −1.50000 + 0.866025i −0.0702439 + 0.0405554i
\(457\) 5.00000 8.66025i 0.233890 0.405110i −0.725059 0.688686i \(-0.758188\pi\)
0.958950 + 0.283577i \(0.0915211\pi\)
\(458\) 2.50000 + 4.33013i 0.116817 + 0.202334i
\(459\) −13.5000 7.79423i −0.630126 0.363803i
\(460\) −27.0000 −1.25888
\(461\) −27.0000 −1.25752 −0.628758 0.777601i \(-0.716436\pi\)
−0.628758 + 0.777601i \(0.716436\pi\)
\(462\) 0 0
\(463\) −5.50000 + 9.52628i −0.255607 + 0.442724i −0.965060 0.262029i \(-0.915609\pi\)
0.709453 + 0.704752i \(0.248942\pi\)
\(464\) −3.00000 5.19615i −0.139272 0.241225i
\(465\) 5.19615i 0.240966i
\(466\) 3.00000 5.19615i 0.138972 0.240707i
\(467\) 12.0000 0.555294 0.277647 0.960683i \(-0.410445\pi\)
0.277647 + 0.960683i \(0.410445\pi\)
\(468\) −3.00000 + 10.3923i −0.138675 + 0.480384i
\(469\) 1.00000 0.0461757
\(470\) 4.50000 7.79423i 0.207570 0.359521i
\(471\) −25.5000 + 14.7224i −1.17498 + 0.678374i
\(472\) −6.00000 10.3923i −0.276172 0.478345i
\(473\) 0 0
\(474\) −7.50000 4.33013i −0.344486 0.198889i
\(475\) −4.00000 −0.183533
\(476\) −3.00000 −0.137505
\(477\) 9.00000 + 15.5885i 0.412082 + 0.713746i
\(478\) 7.50000 + 12.9904i 0.343042 + 0.594166i
\(479\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(480\) 4.50000 + 2.59808i 0.205396 + 0.118585i
\(481\) 12.5000 + 12.9904i 0.569951 + 0.592310i
\(482\) −12.5000 + 21.6506i −0.569359 + 0.986159i
\(483\) −13.5000 7.79423i −0.614271 0.354650i
\(484\) 5.50000 9.52628i 0.250000 0.433013i
\(485\) −19.5000 + 33.7750i −0.885449 + 1.53364i
\(486\) 15.5885i 0.707107i
\(487\) 9.50000 16.4545i 0.430486 0.745624i −0.566429 0.824110i \(-0.691675\pi\)
0.996915 + 0.0784867i \(0.0250088\pi\)
\(488\) 7.00000 0.316875
\(489\) −16.5000 + 9.52628i −0.746156 + 0.430793i
\(490\) 9.00000 + 15.5885i 0.406579 + 0.704215i
\(491\) 15.0000 0.676941 0.338470 0.940977i \(-0.390091\pi\)
0.338470 + 0.940977i \(0.390091\pi\)
\(492\) 15.5885i 0.702782i
\(493\) −9.00000 15.5885i −0.405340 0.702069i
\(494\) 2.50000 + 2.59808i 0.112480 + 0.116893i
\(495\) 0 0
\(496\) 0.500000 + 0.866025i 0.0224507 + 0.0388857i
\(497\) −7.50000 + 12.9904i −0.336421 + 0.582698i
\(498\) −4.50000 2.59808i −0.201650 0.116423i
\(499\) −2.50000 + 4.33013i −0.111915 + 0.193843i −0.916542 0.399937i \(-0.869032\pi\)
0.804627 + 0.593780i \(0.202365\pi\)
\(500\) −1.50000 2.59808i −0.0670820 0.116190i
\(501\) 13.5000 + 7.79423i 0.603136 + 0.348220i
\(502\) 13.5000 + 23.3827i 0.602534 + 1.04362i
\(503\) 19.5000 33.7750i 0.869462 1.50595i 0.00691465 0.999976i \(-0.497799\pi\)
0.862547 0.505976i \(-0.168868\pi\)
\(504\) 1.50000 + 2.59808i 0.0668153 + 0.115728i
\(505\) −9.00000 15.5885i −0.400495 0.693677i
\(506\) 0 0
\(507\) 22.5000 + 0.866025i 0.999260 + 0.0384615i
\(508\) −5.50000 + 9.52628i −0.244023 + 0.422660i
\(509\) −39.0000 −1.72864 −0.864322 0.502938i \(-0.832252\pi\)
−0.864322 + 0.502938i \(0.832252\pi\)
\(510\) 13.5000 + 7.79423i 0.597790 + 0.345134i
\(511\) −14.0000 −0.619324
\(512\) −1.00000 −0.0441942
\(513\) 4.50000 + 2.59808i 0.198680 + 0.114708i
\(514\) 7.50000 12.9904i 0.330811 0.572981i
\(515\) −19.5000 33.7750i −0.859273 1.48830i
\(516\) 12.1244i 0.533745i
\(517\) 0 0
\(518\) 5.00000 0.219687
\(519\) 31.5000 + 18.1865i 1.38270 + 0.798300i
\(520\) 3.00000 10.3923i 0.131559 0.455733i
\(521\) −6.00000 −0.262865 −0.131432 0.991325i \(-0.541958\pi\)
−0.131432 + 0.991325i \(0.541958\pi\)
\(522\) −9.00000 + 15.5885i −0.393919 + 0.682288i
\(523\) 21.5000 + 37.2391i 0.940129 + 1.62835i 0.765222 + 0.643767i \(0.222629\pi\)
0.174908 + 0.984585i \(0.444037\pi\)
\(524\) −15.0000 −0.655278
\(525\) 6.92820i 0.302372i
\(526\) 0 0
\(527\) 1.50000 + 2.59808i 0.0653410 + 0.113174i
\(528\) 0 0
\(529\) 58.0000 2.52174
\(530\) −9.00000 15.5885i −0.390935 0.677119i
\(531\) −18.0000 + 31.1769i −0.781133 + 1.35296i
\(532\) 1.00000 0.0433555
\(533\) 31.5000 7.79423i 1.36442 0.337606i
\(534\) −22.5000 12.9904i −0.973670 0.562149i
\(535\) 9.00000 0.389104
\(536\) 1.00000 0.0431934
\(537\) 15.5885i 0.672692i
\(538\) 10.5000 + 18.1865i 0.452687 + 0.784077i
\(539\) 0 0
\(540\) 15.5885i 0.670820i
\(541\) −34.0000 −1.46177 −0.730887 0.682498i \(-0.760893\pi\)
−0.730887 + 0.682498i \(0.760893\pi\)
\(542\) −11.0000 −0.472490
\(543\) −33.0000 19.0526i −1.41617 0.817624i
\(544\) −3.00000 −0.128624
\(545\) 3.00000 5.19615i 0.128506 0.222579i
\(546\) 4.50000 4.33013i 0.192582 0.185312i
\(547\) 12.5000 + 21.6506i 0.534461 + 0.925714i 0.999189 + 0.0402607i \(0.0128188\pi\)
−0.464728 + 0.885454i \(0.653848\pi\)
\(548\) −1.50000 2.59808i −0.0640768 0.110984i
\(549\) −10.5000 18.1865i −0.448129 0.776182i
\(550\) 0 0
\(551\) 3.00000 + 5.19615i 0.127804 + 0.221364i
\(552\) −13.5000 7.79423i −0.574598 0.331744i
\(553\) 2.50000 + 4.33013i 0.106311 + 0.184136i
\(554\) 8.50000 14.7224i 0.361130 0.625496i
\(555\) −22.5000 12.9904i −0.955072 0.551411i
\(556\) 2.00000 3.46410i 0.0848189 0.146911i
\(557\) −4.50000 7.79423i −0.190671 0.330252i 0.754802 0.655953i \(-0.227733\pi\)
−0.945473 + 0.325701i \(0.894400\pi\)
\(558\) 1.50000 2.59808i 0.0635001 0.109985i
\(559\) 24.5000 6.06218i 1.03624 0.256403i
\(560\) −1.50000 2.59808i −0.0633866 0.109789i
\(561\) 0 0
\(562\) −3.00000 −0.126547
\(563\) 18.0000 + 31.1769i 0.758610 + 1.31395i 0.943560 + 0.331202i \(0.107454\pi\)
−0.184950 + 0.982748i \(0.559212\pi\)
\(564\) 4.50000 2.59808i 0.189484 0.109399i
\(565\) −18.0000 −0.757266
\(566\) −0.500000 + 0.866025i −0.0210166 + 0.0364018i
\(567\) 4.50000 7.79423i 0.188982 0.327327i
\(568\) −7.50000 + 12.9904i −0.314693 + 0.545064i
\(569\) −15.0000 + 25.9808i −0.628833 + 1.08917i 0.358954 + 0.933355i \(0.383134\pi\)
−0.987786 + 0.155815i \(0.950200\pi\)
\(570\) −4.50000 2.59808i −0.188484 0.108821i
\(571\) 9.50000 16.4545i 0.397563 0.688599i −0.595862 0.803087i \(-0.703189\pi\)
0.993425 + 0.114488i \(0.0365228\pi\)
\(572\) 0 0
\(573\) 4.50000 + 2.59808i 0.187990 + 0.108536i
\(574\) 4.50000 7.79423i 0.187826 0.325325i
\(575\) −18.0000 31.1769i −0.750652 1.30017i
\(576\) 1.50000 + 2.59808i 0.0625000 + 0.108253i
\(577\) −34.0000 −1.41544 −0.707719 0.706494i \(-0.750276\pi\)
−0.707719 + 0.706494i \(0.750276\pi\)
\(578\) 8.00000 0.332756
\(579\) 34.5000 + 19.9186i 1.43377 + 0.827788i
\(580\) 9.00000 15.5885i 0.373705 0.647275i
\(581\) 1.50000 + 2.59808i 0.0622305 + 0.107786i
\(582\) −19.5000 + 11.2583i −0.808301 + 0.466673i
\(583\) 0 0
\(584\) −14.0000 −0.579324
\(585\) −31.5000 + 7.79423i −1.30236 + 0.322252i
\(586\) 6.00000 0.247858
\(587\) 6.00000 10.3923i 0.247647 0.428936i −0.715226 0.698893i \(-0.753676\pi\)
0.962872 + 0.269957i \(0.0870095\pi\)
\(588\) 10.3923i 0.428571i
\(589\) −0.500000 0.866025i −0.0206021 0.0356840i
\(590\) 18.0000 31.1769i 0.741048 1.28353i
\(591\) 36.3731i 1.49619i
\(592\) 5.00000 0.205499
\(593\) 6.00000 0.246390 0.123195 0.992382i \(-0.460686\pi\)
0.123195 + 0.992382i \(0.460686\pi\)
\(594\) 0 0
\(595\) −4.50000 7.79423i −0.184482 0.319532i
\(596\) −3.00000 + 5.19615i −0.122885 + 0.212843i
\(597\) 28.5000 16.4545i 1.16643 0.673437i
\(598\) −9.00000 + 31.1769i −0.368037 + 1.27492i
\(599\) 16.5000 28.5788i 0.674172 1.16770i −0.302539 0.953137i \(-0.597834\pi\)
0.976710 0.214563i \(-0.0688326\pi\)
\(600\) 6.92820i 0.282843i
\(601\) 5.00000 8.66025i 0.203954 0.353259i −0.745845 0.666120i \(-0.767954\pi\)
0.949799 + 0.312861i \(0.101287\pi\)
\(602\) 3.50000 6.06218i 0.142649 0.247076i
\(603\) −1.50000 2.59808i −0.0610847 0.105802i
\(604\) 9.50000 16.4545i 0.386550 0.669523i
\(605\) 33.0000 1.34164
\(606\) 10.3923i 0.422159i
\(607\) −4.00000 6.92820i −0.162355 0.281207i 0.773358 0.633970i \(-0.218576\pi\)
−0.935713 + 0.352763i \(0.885242\pi\)
\(608\) 1.00000 0.0405554
\(609\) 9.00000 5.19615i 0.364698 0.210559i
\(610\) 10.5000 + 18.1865i 0.425133 + 0.736351i
\(611\) −7.50000 7.79423i −0.303418 0.315321i
\(612\) 4.50000 + 7.79423i 0.181902 + 0.315063i
\(613\) 15.5000 + 26.8468i 0.626039 + 1.08433i 0.988339 + 0.152270i \(0.0486583\pi\)
−0.362300 + 0.932062i \(0.618008\pi\)
\(614\) −14.0000 + 24.2487i −0.564994 + 0.978598i
\(615\) −40.5000 + 23.3827i −1.63312 + 0.942881i
\(616\) 0 0
\(617\) −3.00000 5.19615i −0.120775 0.209189i 0.799298 0.600935i \(-0.205205\pi\)
−0.920074 + 0.391745i \(0.871871\pi\)
\(618\) 22.5167i 0.905753i
\(619\) −17.5000 30.3109i −0.703384 1.21830i −0.967271 0.253744i \(-0.918338\pi\)
0.263887 0.964554i \(-0.414995\pi\)
\(620\) −1.50000 + 2.59808i −0.0602414 + 0.104341i
\(621\) 46.7654i 1.87663i
\(622\) 13.5000 + 23.3827i 0.541301 + 0.937560i
\(623\) 7.50000 + 12.9904i 0.300481 + 0.520449i
\(624\) 4.50000 4.33013i 0.180144 0.173344i
\(625\) 14.5000 25.1147i 0.580000 1.00459i
\(626\) 1.00000 0.0399680
\(627\) 0 0
\(628\) 17.0000 0.678374
\(629\) 15.0000 0.598089
\(630\) −4.50000 + 7.79423i −0.179284 + 0.310530i
\(631\) −14.5000 + 25.1147i −0.577236 + 0.999802i 0.418559 + 0.908190i \(0.362535\pi\)
−0.995795 + 0.0916122i \(0.970798\pi\)
\(632\) 2.50000 + 4.33013i 0.0994447 + 0.172243i
\(633\) −19.5000 11.2583i −0.775055 0.447478i
\(634\) −9.00000 −0.357436
\(635\) −33.0000 −1.30957
\(636\) 10.3923i 0.412082i
\(637\) 21.0000 5.19615i 0.832050 0.205879i
\(638\) 0 0
\(639\) 45.0000 1.78017
\(640\) −1.50000 2.59808i −0.0592927 0.102698i
\(641\) 27.0000 1.06644 0.533218 0.845978i \(-0.320983\pi\)
0.533218 + 0.845978i \(0.320983\pi\)
\(642\) 4.50000 + 2.59808i 0.177601 + 0.102538i
\(643\) 8.00000 + 13.8564i 0.315489 + 0.546443i 0.979541 0.201243i \(-0.0644981\pi\)
−0.664052 + 0.747686i \(0.731165\pi\)
\(644\) 4.50000 + 7.79423i 0.177325 + 0.307136i
\(645\) −31.5000 + 18.1865i −1.24031 + 0.716094i
\(646\) 3.00000 0.118033
\(647\) 10.5000 + 18.1865i 0.412798 + 0.714986i 0.995194 0.0979182i \(-0.0312184\pi\)
−0.582397 + 0.812905i \(0.697885\pi\)
\(648\) 4.50000 7.79423i 0.176777 0.306186i
\(649\) 0 0
\(650\) 14.0000 3.46410i 0.549125 0.135873i
\(651\) −1.50000 + 0.866025i −0.0587896 + 0.0339422i
\(652\) 11.0000 0.430793
\(653\) 21.0000 0.821794 0.410897 0.911682i \(-0.365216\pi\)
0.410897 + 0.911682i \(0.365216\pi\)
\(654\) 3.00000 1.73205i 0.117309 0.0677285i
\(655\) −22.5000 38.9711i −0.879148 1.52273i
\(656\) 4.50000 7.79423i 0.175695 0.304314i
\(657\) 21.0000 + 36.3731i 0.819288 + 1.41905i
\(658\) −3.00000 −0.116952
\(659\) 21.0000 0.818044 0.409022 0.912525i \(-0.365870\pi\)
0.409022 + 0.912525i \(0.365870\pi\)
\(660\) 0 0
\(661\) 5.00000 0.194477 0.0972387 0.995261i \(-0.468999\pi\)
0.0972387 + 0.995261i \(0.468999\pi\)
\(662\) 2.50000 4.33013i 0.0971653 0.168295i
\(663\) 13.5000 12.9904i 0.524297 0.504505i
\(664\) 1.50000 + 2.59808i 0.0582113 + 0.100825i
\(665\) 1.50000 + 2.59808i 0.0581675 + 0.100749i
\(666\) −7.50000 12.9904i −0.290619 0.503367i
\(667\) −27.0000 + 46.7654i −1.04544 + 1.81076i
\(668\) −4.50000 7.79423i −0.174110 0.301568i
\(669\) −12.0000 + 6.92820i −0.463947 + 0.267860i
\(670\) 1.50000 + 2.59808i 0.0579501 + 0.100372i
\(671\) 0 0
\(672\) 1.73205i 0.0668153i
\(673\) −7.00000 + 12.1244i −0.269830 + 0.467360i −0.968818 0.247774i \(-0.920301\pi\)
0.698988 + 0.715134i \(0.253634\pi\)
\(674\) −6.50000 11.2583i −0.250371 0.433655i
\(675\) 18.0000 10.3923i 0.692820 0.400000i
\(676\) −11.0000 6.92820i −0.423077 0.266469i
\(677\) −16.5000 28.5788i −0.634147 1.09837i −0.986695 0.162581i \(-0.948018\pi\)
0.352549 0.935793i \(-0.385315\pi\)
\(678\) −9.00000 5.19615i −0.345643 0.199557i
\(679\) 13.0000 0.498894
\(680\) −4.50000 7.79423i −0.172567 0.298895i
\(681\) 13.5000 + 7.79423i 0.517321 + 0.298675i
\(682\) 0 0
\(683\) 10.5000 18.1865i 0.401771 0.695888i −0.592168 0.805814i \(-0.701728\pi\)
0.993940 + 0.109926i \(0.0350613\pi\)
\(684\) −1.50000 2.59808i −0.0573539 0.0993399i
\(685\) 4.50000 7.79423i 0.171936 0.297802i
\(686\) 6.50000 11.2583i 0.248171 0.429845i
\(687\) −7.50000 + 4.33013i −0.286143 + 0.165205i
\(688\) 3.50000 6.06218i 0.133436 0.231118i
\(689\) −21.0000 + 5.19615i −0.800036 + 0.197958i
\(690\) 46.7654i 1.78033i
\(691\) −10.0000 + 17.3205i −0.380418 + 0.658903i −0.991122 0.132956i \(-0.957553\pi\)
0.610704 + 0.791859i \(0.290887\pi\)
\(692\) −10.5000 18.1865i −0.399150 0.691348i
\(693\) 0 0
\(694\) 12.0000 0.455514
\(695\) 12.0000 0.455186
\(696\) 9.00000 5.19615i 0.341144 0.196960i
\(697\) 13.5000 23.3827i 0.511349 0.885682i
\(698\) −5.00000 8.66025i −0.189253 0.327795i
\(699\) 9.00000 + 5.19615i 0.340411 + 0.196537i
\(700\) 2.00000 3.46410i 0.0755929 0.130931i
\(701\) −18.0000 −0.679851 −0.339925 0.940452i \(-0.610402\pi\)
−0.339925 + 0.940452i \(0.610402\pi\)
\(702\) −18.0000 5.19615i −0.679366 0.196116i
\(703\) −5.00000 −0.188579
\(704\) 0 0
\(705\) 13.5000 + 7.79423i 0.508439 + 0.293548i
\(706\) 3.00000 + 5.19615i 0.112906 + 0.195560i
\(707\) −3.00000 + 5.19615i −0.112827 + 0.195421i
\(708\) 18.0000 10.3923i 0.676481 0.390567i
\(709\) −19.0000 −0.713560 −0.356780 0.934188i \(-0.616125\pi\)
−0.356780 + 0.934188i \(0.616125\pi\)
\(710\) −45.0000 −1.68882
\(711\) 7.50000 12.9904i 0.281272 0.487177i
\(712\) 7.50000 + 12.9904i 0.281074 + 0.486835i
\(713\) 4.50000 7.79423i 0.168526 0.291896i
\(714\) 5.19615i 0.194461i
\(715\) 0 0
\(716\) −4.50000 + 7.79423i −0.168173 + 0.291284i
\(717\) −22.5000 + 12.9904i −0.840278 + 0.485135i
\(718\) 12.0000 20.7846i 0.447836 0.775675i
\(719\) 13.5000 23.3827i 0.503465 0.872027i −0.496527 0.868021i \(-0.665392\pi\)
0.999992 0.00400572i \(-0.00127506\pi\)
\(720\) −4.50000 + 7.79423i −0.167705 + 0.290474i
\(721\) −6.50000 + 11.2583i −0.242073 + 0.419282i
\(722\) 18.0000 0.669891
\(723\) −37.5000 21.6506i −1.39464 0.805196i
\(724\) 11.0000 + 19.0526i 0.408812 + 0.708083i
\(725\) 24.0000 0.891338
\(726\) 16.5000 + 9.52628i 0.612372 + 0.353553i
\(727\) 15.5000 + 26.8468i 0.574863 + 0.995692i 0.996056 + 0.0887213i \(0.0282781\pi\)
−0.421193 + 0.906971i \(0.638389\pi\)
\(728\) −3.50000 + 0.866025i −0.129719 + 0.0320970i
\(729\) −27.0000 −1.00000
\(730\) −21.0000 36.3731i −0.777245 1.34623i
\(731\) 10.5000 18.1865i 0.388357 0.672653i
\(732\) 12.1244i 0.448129i
\(733\) 9.50000 16.4545i 0.350891 0.607760i −0.635515 0.772088i \(-0.719212\pi\)
0.986406 + 0.164328i \(0.0525456\pi\)
\(734\) −8.00000 13.8564i −0.295285 0.511449i
\(735\) −27.0000 + 15.5885i −0.995910 + 0.574989i
\(736\) 4.50000 + 7.79423i 0.165872 + 0.287299i
\(737\) 0 0
\(738\) −27.0000 −0.993884
\(739\) 3.50000 + 6.06218i 0.128750 + 0.223001i 0.923192 0.384338i \(-0.125570\pi\)
−0.794443 + 0.607339i \(0.792237\pi\)
\(740\) 7.50000 + 12.9904i 0.275705 + 0.477536i
\(741\) −4.50000 + 4.33013i −0.165312 + 0.159071i
\(742\) −3.00000 + 5.19615i −0.110133 + 0.190757i
\(743\) −27.0000 −0.990534 −0.495267 0.868741i \(-0.664930\pi\)
−0.495267 + 0.868741i \(0.664930\pi\)
\(744\) −1.50000 + 0.866025i −0.0549927 + 0.0317500i
\(745\) −18.0000 −0.659469
\(746\) −14.0000 −0.512576
\(747\) 4.50000 7.79423i 0.164646 0.285176i
\(748\) 0 0
\(749\) −1.50000 2.59808i −0.0548088 0.0949316i
\(750\) 4.50000 2.59808i 0.164317 0.0948683i
\(751\) 53.0000 1.93400 0.966999 0.254781i \(-0.0820034\pi\)
0.966999 + 0.254781i \(0.0820034\pi\)
\(752\) −3.00000 −0.109399
\(753\) −40.5000 + 23.3827i −1.47590 + 0.852112i
\(754\) −15.0000 15.5885i −0.546268 0.567698i
\(755\) 57.0000 2.07444
\(756\) −4.50000 + 2.59808i −0.163663 + 0.0944911i
\(757\) 3.50000 + 6.06218i 0.127210 + 0.220334i 0.922595 0.385771i \(-0.126065\pi\)
−0.795385 + 0.606105i \(0.792731\pi\)
\(758\) −29.0000 −1.05333
\(759\) 0 0
\(760\) 1.50000 + 2.59808i 0.0544107 + 0.0942421i
\(761\) −3.00000 5.19615i −0.108750 0.188360i 0.806514 0.591215i \(-0.201351\pi\)
−0.915264 + 0.402854i \(0.868018\pi\)
\(762\) −16.5000 9.52628i −0.597732 0.345101i
\(763\) −2.00000 −0.0724049
\(764\) −1.50000 2.59808i −0.0542681 0.0939951i
\(765\) −13.5000 + 23.3827i −0.488094 + 0.845403i
\(766\) 36.0000 1.30073
\(767\) −30.0000 31.1769i −1.08324 1.12573i
\(768\) 1.73205i 0.0625000i
\(769\) 47.0000 1.69486 0.847432 0.530904i \(-0.178148\pi\)
0.847432 + 0.530904i \(0.178148\pi\)
\(770\) 0 0
\(771\) 22.5000 + 12.9904i 0.810318 + 0.467837i
\(772\) −11.5000 19.9186i −0.413894 0.716886i
\(773\) 1.50000 2.59808i 0.0539513 0.0934463i −0.837788 0.545995i \(-0.816152\pi\)
0.891740 + 0.452549i \(0.149485\pi\)
\(774\) −21.0000 −0.754829
\(775\) −4.00000 −0.143684
\(776\) 13.0000 0.466673
\(777\) 8.66025i 0.310685i
\(778\) −9.00000 −0.322666
\(779\) −4.50000 + 7.79423i −0.161229 + 0.279257i
\(780\) 18.0000 + 5.19615i 0.644503 + 0.186052i
\(781\) 0 0
\(782\) 13.5000 + 23.3827i 0.482759 + 0.836163i
\(783\) −27.0000 15.5885i −0.964901 0.557086i
\(784\) 3.00000 5.19615i 0.107143 0.185577i
\(785\) 25.5000 + 44.1673i 0.910134 + 1.57640i
\(786\) 25.9808i 0.926703i
\(787\) −4.00000 6.92820i −0.142585 0.246964i 0.785885 0.618373i \(-0.212208\pi\)
−0.928469 + 0.371409i \(0.878875\pi\)
\(788\) −10.5000 + 18.1865i −0.374047 + 0.647868i
\(789\) 0 0
\(790\) −7.50000 + 12.9904i −0.266838 + 0.462177i
\(791\) 3.00000 + 5.19615i 0.106668 + 0.184754i
\(792\) 0 0
\(793\) 24.5000 6.06218i 0.870021 0.215274i
\(794\) −3.50000 6.06218i −0.124210 0.215139i
\(795\) 27.0000 15.5885i 0.957591 0.552866i
\(796\) −19.0000 −0.673437
\(797\) −15.0000 25.9808i −0.531327 0.920286i −0.999331 0.0365596i \(-0.988360\pi\)
0.468004 0.883726i \(-0.344973\pi\)
\(798\) 1.73205i 0.0613139i
\(799\) −9.00000 −0.318397
\(800\) 2.00000 3.46410i 0.0707107 0.122474i
\(801\) 22.5000 38.9711i 0.794998 1.37698i
\(802\) −4.50000 + 7.79423i −0.158901 + 0.275224i
\(803\) 0 0
\(804\) 1.73205i 0.0610847i
\(805\) −13.5000 + 23.3827i −0.475812 + 0.824131i
\(806\) 2.50000 + 2.59808i 0.0880587 + 0.0915133i
\(807\) −31.5000 + 18.1865i −1.10885 + 0.640196i
\(808\) −3.00000 + 5.19615i −0.105540 + 0.182800i
\(809\) 22.5000 + 38.9711i 0.791058 + 1.37015i 0.925312 + 0.379206i \(0.123803\pi\)
−0.134255 + 0.990947i \(0.542864\pi\)
\(810\) 27.0000 0.948683
\(811\) 20.0000 0.702295 0.351147 0.936320i \(-0.385792\pi\)
0.351147 + 0.936320i \(0.385792\pi\)
\(812\) −6.00000 −0.210559
\(813\) 19.0526i 0.668202i
\(814\) 0 0
\(815\) 16.5000 + 28.5788i 0.577970 + 1.00107i
\(816\) 5.19615i 0.181902i
\(817\) −3.50000 + 6.06218i −0.122449 + 0.212089i
\(818\) −14.0000 −0.489499
\(819\) 7.50000 + 7.79423i 0.262071 + 0.272352i
\(820\) 27.0000 0.942881
\(821\) −3.00000 + 5.19615i −0.104701 + 0.181347i −0.913616 0.406578i \(-0.866722\pi\)
0.808915 + 0.587925i \(0.200055\pi\)
\(822\) 4.50000 2.59808i 0.156956 0.0906183i
\(823\) 8.00000 + 13.8564i 0.278862 + 0.483004i 0.971102 0.238664i \(-0.0767093\pi\)
−0.692240 + 0.721668i \(0.743376\pi\)
\(824\) −6.50000 + 11.2583i −0.226438 + 0.392203i
\(825\) 0 0
\(826\) −12.0000 −0.417533
\(827\) 12.0000 0.417281 0.208640 0.977992i \(-0.433096\pi\)
0.208640 + 0.977992i \(0.433096\pi\)
\(828\) 13.5000 23.3827i 0.469157 0.812605i
\(829\) −26.5000 45.8993i −0.920383 1.59415i −0.798823 0.601566i \(-0.794544\pi\)
−0.121560 0.992584i \(-0.538790\pi\)
\(830\) −4.50000 + 7.79423i −0.156197 + 0.270542i
\(831\) 25.5000 + 14.7224i 0.884585 + 0.510716i
\(832\) −3.50000 + 0.866025i −0.121341 + 0.0300240i
\(833\) 9.00000 15.5885i 0.311832 0.540108i
\(834\) 6.00000 + 3.46410i 0.207763 + 0.119952i
\(835\) 13.5000 23.3827i 0.467187 0.809191i
\(836\) 0 0
\(837\) 4.50000 + 2.59808i 0.155543 + 0.0898027i
\(838\) −10.5000 + 18.1865i −0.362716 + 0.628243i
\(839\) −57.0000 −1.96786 −0.983929 0.178559i \(-0.942857\pi\)
−0.983929 + 0.178559i \(0.942857\pi\)
\(840\) 4.50000 2.59808i 0.155265 0.0896421i
\(841\) −3.50000 6.06218i −0.120690 0.209041i
\(842\) 19.0000 0.654783
\(843\) 5.19615i 0.178965i
\(844\) 6.50000 + 11.2583i 0.223739 + 0.387528i
\(845\) 1.50000 38.9711i 0.0516016 1.34065i
\(846\) 4.50000 + 7.79423i 0.154713 + 0.267971i
\(847\) −5.50000 9.52628i −0.188982 0.327327i
\(848\) −3.00000 + 5.19615i −0.103020 + 0.178437i
\(849\) −1.50000 0.866025i −0.0514799 0.0297219i
\(850\) 6.00000 10.3923i 0.205798 0.356453i
\(851\) −22.5000 38.9711i −0.771290 1.33591i
\(852\) −22.5000 12.9904i −0.770837 0.445043i
\(853\) 9.50000 + 16.4545i 0.325274 + 0.563391i 0.981568 0.191115i \(-0.0612102\pi\)
−0.656294 + 0.754505i \(0.727877\pi\)
\(854\) 3.50000 6.06218i 0.119768 0.207443i
\(855\) 4.50000 7.79423i 0.153897 0.266557i
\(856\) −1.50000 2.59808i −0.0512689 0.0888004i
\(857\) 16.5000 + 28.5788i 0.563629 + 0.976235i 0.997176 + 0.0751033i \(0.0239287\pi\)
−0.433546 + 0.901131i \(0.642738\pi\)
\(858\) 0 0
\(859\) −20.5000 + 35.5070i −0.699451 + 1.21148i 0.269206 + 0.963083i \(0.413239\pi\)
−0.968657 + 0.248402i \(0.920095\pi\)
\(860\) 21.0000 0.716094
\(861\) 13.5000 + 7.79423i 0.460079 + 0.265627i
\(862\) 9.00000 0.306541
\(863\) −12.0000 −0.408485 −0.204242 0.978920i \(-0.565473\pi\)
−0.204242 + 0.978920i \(0.565473\pi\)
\(864\) −4.50000 + 2.59808i −0.153093 + 0.0883883i
\(865\) 31.5000 54.5596i 1.07103 1.85508i
\(866\) 5.50000 + 9.52628i 0.186898 + 0.323716i
\(867\) 13.8564i 0.470588i
\(868\) 1.00000 0.0339422
\(869\) 0 0
\(870\) 27.0000 + 15.5885i 0.915386 + 0.528498i
\(871\) 3.50000 0.866025i 0.118593 0.0293442i
\(872\) −2.00000 −0.0677285
\(873\) −19.5000 33.7750i −0.659975 1.14311i
\(874\) −4.50000 7.79423i −0.152215 0.263644i
\(875\) −3.00000 −0.101419
\(876\) 24.2487i 0.819288i
\(877\) 5.00000 + 8.66025i 0.168838 + 0.292436i 0.938012 0.346604i \(-0.112665\pi\)
−0.769174 + 0.639040i \(0.779332\pi\)
\(878\) 16.0000 + 27.7128i 0.539974 + 0.935262i
\(879\) 10.3923i 0.350524i
\(880\) 0 0
\(881\) 22.5000 + 38.9711i 0.758044 + 1.31297i 0.943847 + 0.330384i \(0.107178\pi\)
−0.185802 + 0.982587i \(0.559488\pi\)
\(882\) −18.0000 −0.606092
\(883\) 8.00000 0.269221 0.134611 0.990899i \(-0.457022\pi\)
0.134611 + 0.990899i \(0.457022\pi\)
\(884\) −10.5000 + 2.59808i −0.353153 + 0.0873828i
\(885\) 54.0000 + 31.1769i 1.81519 + 1.04800i
\(886\) 9.00000 0.302361
\(887\) 9.00000 0.302190 0.151095 0.988519i \(-0.451720\pi\)
0.151095 + 0.988519i \(0.451720\pi\)
\(888\) 8.66025i 0.290619i
\(889\) 5.50000 + 9.52628i 0.184464 + 0.319501i
\(890\) −22.5000 + 38.9711i −0.754202 + 1.30632i
\(891\) 0 0
\(892\) 8.00000 0.267860
\(893\) 3.00000 0.100391
\(894\) −9.00000 5.19615i −0.301005 0.173785i
\(895\) −27.0000 −0.902510
\(896\) −0.500000 + 0.866025i −0.0167038 + 0.0289319i
\(897\) −54.0000 15.5885i −1.80301 0.520483i
\(898\) −4.50000 7.79423i −0.150167 0.260097i
\(899\) 3.00000 + 5.19615i 0.100056 + 0.173301i
\(900\) −12.0000 −0.400000
\(901\) −9.00000 + 15.5885i −0.299833 + 0.519327i
\(902\) 0 0
\(903\) 10.5000 + 6.06218i 0.349418 + 0.201737i
\(904\) 3.00000 + 5.19615i 0.0997785 + 0.172821i
\(905\) −33.0000 + 57.1577i −1.09696 + 1.89999i
\(906\) 28.5000 + 16.4545i 0.946849 + 0.546664i
\(907\) 20.0000 34.6410i 0.664089 1.15024i −0.315442 0.948945i \(-0.602153\pi\)
0.979531 0.201291i \(-0.0645138\pi\)
\(908\) −4.50000 7.79423i −0.149338 0.258661i
\(909\) 18.0000 0.597022
\(910\) −7.50000 7.79423i −0.248623 0.258376i
\(911\) 7.50000 + 12.9904i 0.248486 + 0.430391i 0.963106 0.269122i \(-0.0867336\pi\)
−0.714620 + 0.699513i \(0.753400\pi\)
\(912\) 1.73205i 0.0573539i
\(913\) 0 0
\(914\) −5.00000 8.66025i −0.165385 0.286456i
\(915\) −31.5000 + 18.1865i −1.04136 + 0.601228i
\(916\) 5.00000 0.165205
\(917\) −7.50000 + 12.9904i −0.247672 + 0.428980i
\(918\) −13.5000 + 7.79423i −0.445566 + 0.257248i
\(919\) 21.5000 37.2391i 0.709220 1.22840i −0.255927 0.966696i \(-0.582381\pi\)
0.965147 0.261708i \(-0.0842858\pi\)
\(920\) −13.5000 + 23.3827i −0.445082 + 0.770904i
\(921\) −42.0000 24.2487i −1.38395 0.799022i
\(922\) −13.5000 + 23.3827i −0.444599 + 0.770068i
\(923\) −15.0000 + 51.9615i −0.493731 + 1.71033i
\(924\) 0 0
\(925\) −10.0000 + 17.3205i −0.328798 + 0.569495i
\(926\) 5.50000 + 9.52628i 0.180741 + 0.313053i
\(927\) 39.0000 1.28093
\(928\) −6.00000 −0.196960
\(929\) −21.0000 −0.688988 −0.344494 0.938789i \(-0.611949\pi\)
−0.344494 + 0.938789i \(0.611949\pi\)
\(930\) −4.50000 2.59808i −0.147561 0.0851943i
\(931\) −3.00000 + 5.19615i −0.0983210 + 0.170297i
\(932\) −3.00000 5.19615i −0.0982683 0.170206i
\(933\) −40.5000 + 23.3827i −1.32591 + 0.765515i
\(934\) 6.00000 10.3923i 0.196326 0.340047i
\(935\) 0 0
\(936\) 7.50000 + 7.79423i 0.245145 + 0.254762i
\(937\) −22.0000 −0.718709 −0.359354 0.933201i \(-0.617003\pi\)
−0.359354 + 0.933201i \(0.617003\pi\)
\(938\) 0.500000 0.866025i 0.0163256 0.0282767i
\(939\) 1.73205i 0.0565233i
\(940\) −4.50000 7.79423i −0.146774 0.254220i
\(941\) 7.50000 12.9904i 0.244493 0.423474i −0.717496 0.696563i \(-0.754712\pi\)
0.961989 + 0.273088i \(0.0880451\pi\)
\(942\) 29.4449i 0.959366i
\(943\) −81.0000 −2.63772
\(944\) −12.0000 −0.390567
\(945\) −13.5000 7.79423i −0.439155 0.253546i
\(946\) 0 0
\(947\) 6.00000 10.3923i 0.194974 0.337705i −0.751918 0.659256i \(-0.770871\pi\)
0.946892 + 0.321552i \(0.104204\pi\)
\(948\) −7.50000 + 4.33013i −0.243589 + 0.140636i
\(949\) −49.0000 + 12.1244i −1.59061 + 0.393573i
\(950\) −2.00000 + 3.46410i −0.0648886 + 0.112390i
\(951\) 15.5885i 0.505490i
\(952\) −1.50000 + 2.59808i −0.0486153 + 0.0842041i
\(953\) 4.50000 7.79423i 0.145769 0.252480i −0.783890 0.620899i \(-0.786768\pi\)
0.929660 + 0.368419i \(0.120101\pi\)
\(954\) 18.0000 0.582772
\(955\) 4.50000 7.79423i 0.145617 0.252215i
\(956\) 15.0000 0.485135
\(957\) 0 0
\(958\) 0 0
\(959\) −3.00000 −0.0968751
\(960\) 4.50000 2.59808i 0.145237 0.0838525i
\(961\) 15.0000 + 25.9808i 0.483871 + 0.838089i
\(962\) 17.5000 4.33013i 0.564223 0.139609i
\(963\) −4.50000 + 7.79423i −0.145010 + 0.251166i
\(964\) 12.5000 + 21.6506i 0.402598 + 0.697320i
\(965\) 34.5000 59.7558i 1.11059 1.92361i
\(966\) −13.5000 + 7.79423i −0.434355 + 0.250775i
\(967\) 6.50000 11.2583i 0.209026 0.362043i −0.742382 0.669977i \(-0.766304\pi\)
0.951408 + 0.307933i \(0.0996374\pi\)
\(968\) −5.50000 9.52628i −0.176777 0.306186i
\(969\) 5.19615i 0.166924i
\(970\) 19.5000 + 33.7750i 0.626107 + 1.08445i
\(971\) −7.50000 + 12.9904i −0.240686 + 0.416881i −0.960910 0.276861i \(-0.910706\pi\)
0.720224 + 0.693742i \(0.244039\pi\)
\(972\) 13.5000 + 7.79423i 0.433013 + 0.250000i
\(973\) −2.00000 3.46410i −0.0641171 0.111054i
\(974\) −9.50000 16.4545i −0.304400 0.527236i
\(975\) 6.00000 + 24.2487i 0.192154 + 0.776580i
\(976\) 3.50000 6.06218i 0.112032 0.194046i
\(977\) 3.00000 0.0959785 0.0479893 0.998848i \(-0.484719\pi\)
0.0479893 + 0.998848i \(0.484719\pi\)
\(978\) 19.0526i 0.609234i
\(979\) 0 0
\(980\) 18.0000 0.574989
\(981\) 3.00000 + 5.19615i 0.0957826 + 0.165900i
\(982\) 7.50000 12.9904i 0.239335 0.414540i
\(983\) −16.5000 28.5788i −0.526268 0.911523i −0.999532 0.0306024i \(-0.990257\pi\)
0.473263 0.880921i \(-0.343076\pi\)
\(984\) 13.5000 + 7.79423i 0.430364 + 0.248471i
\(985\) −63.0000 −2.00735
\(986\) −18.0000 −0.573237
\(987\) 5.19615i 0.165395i
\(988\) 3.50000 0.866025i 0.111350 0.0275519i
\(989\) −63.0000 −2.00328
\(990\) 0 0
\(991\) 12.5000 + 21.6506i 0.397076 + 0.687755i 0.993364 0.115015i \(-0.0366917\pi\)
−0.596288 + 0.802771i \(0.703358\pi\)
\(992\) 1.00000 0.0317500
\(993\) 7.50000 + 4.33013i 0.238005 + 0.137412i
\(994\) 7.50000 + 12.9904i 0.237886 + 0.412030i
\(995\) −28.5000 49.3634i −0.903511 1.56493i
\(996\) −4.50000 + 2.59808i −0.142588 + 0.0823232i
\(997\) −31.0000 −0.981780 −0.490890 0.871222i \(-0.663328\pi\)
−0.490890 + 0.871222i \(0.663328\pi\)
\(998\) 2.50000 + 4.33013i 0.0791361 + 0.137068i
\(999\) 22.5000 12.9904i 0.711868 0.410997i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 234.2.g.b.211.1 yes 2
3.2 odd 2 702.2.g.a.523.1 2
9.2 odd 6 702.2.f.b.289.1 2
9.7 even 3 234.2.f.a.133.1 2
13.9 even 3 234.2.f.a.139.1 yes 2
39.35 odd 6 702.2.f.b.685.1 2
117.61 even 3 inner 234.2.g.b.61.1 yes 2
117.74 odd 6 702.2.g.a.451.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
234.2.f.a.133.1 2 9.7 even 3
234.2.f.a.139.1 yes 2 13.9 even 3
234.2.g.b.61.1 yes 2 117.61 even 3 inner
234.2.g.b.211.1 yes 2 1.1 even 1 trivial
702.2.f.b.289.1 2 9.2 odd 6
702.2.f.b.685.1 2 39.35 odd 6
702.2.g.a.451.1 2 117.74 odd 6
702.2.g.a.523.1 2 3.2 odd 2