Properties

Label 234.2.f.c.133.4
Level $234$
Weight $2$
Character 234.133
Analytic conductor $1.868$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [234,2,Mod(133,234)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(234, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([4, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("234.133");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 234 = 2 \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 234.f (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.86849940730\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 3 x^{11} + 4 x^{10} - 6 x^{9} + 22 x^{8} - 45 x^{7} + 75 x^{6} - 135 x^{5} + 198 x^{4} + \cdots + 729 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 3 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 133.4
Root \(-1.29053 - 1.15522i\) of defining polynomial
Character \(\chi\) \(=\) 234.133
Dual form 234.2.f.c.139.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} +(0.355184 + 1.69524i) q^{3} +1.00000 q^{4} +(-2.14571 - 3.71649i) q^{5} +(-0.355184 - 1.69524i) q^{6} +(-0.751135 - 1.30100i) q^{7} -1.00000 q^{8} +(-2.74769 + 1.20424i) q^{9} +O(q^{10})\) \(q-1.00000 q^{2} +(0.355184 + 1.69524i) q^{3} +1.00000 q^{4} +(-2.14571 - 3.71649i) q^{5} +(-0.355184 - 1.69524i) q^{6} +(-0.751135 - 1.30100i) q^{7} -1.00000 q^{8} +(-2.74769 + 1.20424i) q^{9} +(2.14571 + 3.71649i) q^{10} -4.24294 q^{11} +(0.355184 + 1.69524i) q^{12} +(-3.60531 - 0.0419947i) q^{13} +(0.751135 + 1.30100i) q^{14} +(5.53822 - 4.95754i) q^{15} +1.00000 q^{16} +(0.0242456 - 0.0419947i) q^{17} +(2.74769 - 1.20424i) q^{18} +(2.87736 - 4.98373i) q^{19} +(-2.14571 - 3.71649i) q^{20} +(1.93873 - 1.73545i) q^{21} +4.24294 q^{22} +(3.41675 - 5.91799i) q^{23} +(-0.355184 - 1.69524i) q^{24} +(-6.70818 + 11.6189i) q^{25} +(3.60531 + 0.0419947i) q^{26} +(-3.01742 - 4.23027i) q^{27} +(-0.751135 - 1.30100i) q^{28} +2.21264 q^{29} +(-5.53822 + 4.95754i) q^{30} +(3.74769 + 6.49119i) q^{31} -1.00000 q^{32} +(-1.50702 - 7.19280i) q^{33} +(-0.0242456 + 0.0419947i) q^{34} +(-3.22344 + 5.58317i) q^{35} +(-2.74769 + 1.20424i) q^{36} +(-1.35174 - 2.34128i) q^{37} +(-2.87736 + 4.98373i) q^{38} +(-1.20936 - 6.12678i) q^{39} +(2.14571 + 3.71649i) q^{40} +(-3.68986 + 6.39103i) q^{41} +(-1.93873 + 1.73545i) q^{42} +(-2.89251 - 5.00997i) q^{43} -4.24294 q^{44} +(10.3713 + 7.62778i) q^{45} +(-3.41675 + 5.91799i) q^{46} +(-1.67341 + 2.89842i) q^{47} +(0.355184 + 1.69524i) q^{48} +(2.37159 - 4.10772i) q^{49} +(6.70818 - 11.6189i) q^{50} +(0.0798028 + 0.0261864i) q^{51} +(-3.60531 - 0.0419947i) q^{52} +1.82220 q^{53} +(3.01742 + 4.23027i) q^{54} +(9.10413 + 15.7688i) q^{55} +(0.751135 + 1.30100i) q^{56} +(9.47061 + 3.10767i) q^{57} -2.21264 q^{58} -1.88614 q^{59} +(5.53822 - 4.95754i) q^{60} +(-0.877519 - 1.51991i) q^{61} +(-3.74769 - 6.49119i) q^{62} +(3.63061 + 2.67021i) q^{63} +1.00000 q^{64} +(7.57989 + 13.4892i) q^{65} +(1.50702 + 7.19280i) q^{66} +(1.73270 - 3.00113i) q^{67} +(0.0242456 - 0.0419947i) q^{68} +(11.2460 + 3.69025i) q^{69} +(3.22344 - 5.58317i) q^{70} +(0.645714 - 1.11841i) q^{71} +(2.74769 - 1.20424i) q^{72} -12.9836 q^{73} +(1.35174 + 2.34128i) q^{74} +(-22.0795 - 7.24514i) q^{75} +(2.87736 - 4.98373i) q^{76} +(3.18702 + 5.52008i) q^{77} +(1.20936 + 6.12678i) q^{78} +(4.24521 - 7.35292i) q^{79} +(-2.14571 - 3.71649i) q^{80} +(6.09959 - 6.61778i) q^{81} +(3.68986 - 6.39103i) q^{82} +(-0.370694 + 0.642060i) q^{83} +(1.93873 - 1.73545i) q^{84} -0.208097 q^{85} +(2.89251 + 5.00997i) q^{86} +(0.785893 + 3.75096i) q^{87} +4.24294 q^{88} +(0.288865 + 0.500328i) q^{89} +(-10.3713 - 7.62778i) q^{90} +(2.65344 + 4.72206i) q^{91} +(3.41675 - 5.91799i) q^{92} +(-9.67301 + 8.65880i) q^{93} +(1.67341 - 2.89842i) q^{94} -24.6959 q^{95} +(-0.355184 - 1.69524i) q^{96} +(-2.59585 - 4.49614i) q^{97} +(-2.37159 + 4.10772i) q^{98} +(11.6583 - 5.10953i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 12 q^{2} + 12 q^{4} - 3 q^{5} + q^{7} - 12 q^{8} + 4 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 12 q - 12 q^{2} + 12 q^{4} - 3 q^{5} + q^{7} - 12 q^{8} + 4 q^{9} + 3 q^{10} - 8 q^{11} - 5 q^{13} - q^{14} + 11 q^{15} + 12 q^{16} - q^{17} - 4 q^{18} + 9 q^{19} - 3 q^{20} + 8 q^{21} + 8 q^{22} + 7 q^{23} - q^{25} + 5 q^{26} - 9 q^{27} + q^{28} - 2 q^{29} - 11 q^{30} + 8 q^{31} - 12 q^{32} - 4 q^{33} + q^{34} - 3 q^{35} + 4 q^{36} + 15 q^{37} - 9 q^{38} + 18 q^{39} + 3 q^{40} - 19 q^{41} - 8 q^{42} - 2 q^{43} - 8 q^{44} - 5 q^{45} - 7 q^{46} - 23 q^{47} - 27 q^{49} + q^{50} + 8 q^{51} - 5 q^{52} - 4 q^{53} + 9 q^{54} + 24 q^{55} - q^{56} - 16 q^{57} + 2 q^{58} + 8 q^{59} + 11 q^{60} - 8 q^{61} - 8 q^{62} + 12 q^{64} + 7 q^{65} + 4 q^{66} + 14 q^{67} - q^{68} - 6 q^{69} + 3 q^{70} - 15 q^{71} - 4 q^{72} - 90 q^{73} - 15 q^{74} - 56 q^{75} + 9 q^{76} + 4 q^{77} - 18 q^{78} - 12 q^{79} - 3 q^{80} + 28 q^{81} + 19 q^{82} + 24 q^{83} + 8 q^{84} - 14 q^{85} + 2 q^{86} + 36 q^{87} + 8 q^{88} + 23 q^{89} + 5 q^{90} + 8 q^{91} + 7 q^{92} + 6 q^{93} + 23 q^{94} + 14 q^{95} - 4 q^{97} + 27 q^{98} + 31 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/234\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(209\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) 0.355184 + 1.69524i 0.205065 + 0.978748i
\(4\) 1.00000 0.500000
\(5\) −2.14571 3.71649i −0.959593 1.66206i −0.723490 0.690335i \(-0.757463\pi\)
−0.236103 0.971728i \(-0.575870\pi\)
\(6\) −0.355184 1.69524i −0.145003 0.692080i
\(7\) −0.751135 1.30100i −0.283902 0.491733i 0.688440 0.725293i \(-0.258296\pi\)
−0.972342 + 0.233560i \(0.924963\pi\)
\(8\) −1.00000 −0.353553
\(9\) −2.74769 + 1.20424i −0.915896 + 0.401415i
\(10\) 2.14571 + 3.71649i 0.678534 + 1.17526i
\(11\) −4.24294 −1.27929 −0.639647 0.768669i \(-0.720919\pi\)
−0.639647 + 0.768669i \(0.720919\pi\)
\(12\) 0.355184 + 1.69524i 0.102533 + 0.489374i
\(13\) −3.60531 0.0419947i −0.999932 0.0116472i
\(14\) 0.751135 + 1.30100i 0.200749 + 0.347708i
\(15\) 5.53822 4.95754i 1.42996 1.28003i
\(16\) 1.00000 0.250000
\(17\) 0.0242456 0.0419947i 0.00588043 0.0101852i −0.863070 0.505084i \(-0.831462\pi\)
0.868951 + 0.494899i \(0.164795\pi\)
\(18\) 2.74769 1.20424i 0.647637 0.283843i
\(19\) 2.87736 4.98373i 0.660111 1.14335i −0.320476 0.947257i \(-0.603843\pi\)
0.980586 0.196088i \(-0.0628240\pi\)
\(20\) −2.14571 3.71649i −0.479796 0.831032i
\(21\) 1.93873 1.73545i 0.423065 0.378707i
\(22\) 4.24294 0.904597
\(23\) 3.41675 5.91799i 0.712442 1.23399i −0.251496 0.967858i \(-0.580923\pi\)
0.963938 0.266127i \(-0.0857441\pi\)
\(24\) −0.355184 1.69524i −0.0725016 0.346040i
\(25\) −6.70818 + 11.6189i −1.34164 + 2.32378i
\(26\) 3.60531 + 0.0419947i 0.707059 + 0.00823584i
\(27\) −3.01742 4.23027i −0.580703 0.814116i
\(28\) −0.751135 1.30100i −0.141951 0.245867i
\(29\) 2.21264 0.410877 0.205438 0.978670i \(-0.434138\pi\)
0.205438 + 0.978670i \(0.434138\pi\)
\(30\) −5.53822 + 4.95754i −1.01114 + 0.905119i
\(31\) 3.74769 + 6.49119i 0.673105 + 1.16585i 0.977019 + 0.213152i \(0.0683731\pi\)
−0.303914 + 0.952699i \(0.598294\pi\)
\(32\) −1.00000 −0.176777
\(33\) −1.50702 7.19280i −0.262339 1.25211i
\(34\) −0.0242456 + 0.0419947i −0.00415809 + 0.00720203i
\(35\) −3.22344 + 5.58317i −0.544861 + 0.943728i
\(36\) −2.74769 + 1.20424i −0.457948 + 0.200707i
\(37\) −1.35174 2.34128i −0.222224 0.384904i 0.733259 0.679950i \(-0.237998\pi\)
−0.955483 + 0.295046i \(0.904665\pi\)
\(38\) −2.87736 + 4.98373i −0.466769 + 0.808467i
\(39\) −1.20936 6.12678i −0.193652 0.981070i
\(40\) 2.14571 + 3.71649i 0.339267 + 0.587628i
\(41\) −3.68986 + 6.39103i −0.576260 + 0.998111i 0.419644 + 0.907689i \(0.362155\pi\)
−0.995904 + 0.0904220i \(0.971178\pi\)
\(42\) −1.93873 + 1.73545i −0.299152 + 0.267786i
\(43\) −2.89251 5.00997i −0.441103 0.764013i 0.556669 0.830735i \(-0.312079\pi\)
−0.997772 + 0.0667219i \(0.978746\pi\)
\(44\) −4.24294 −0.639647
\(45\) 10.3713 + 7.62778i 1.54606 + 1.13708i
\(46\) −3.41675 + 5.91799i −0.503772 + 0.872559i
\(47\) −1.67341 + 2.89842i −0.244091 + 0.422779i −0.961876 0.273487i \(-0.911823\pi\)
0.717784 + 0.696265i \(0.245156\pi\)
\(48\) 0.355184 + 1.69524i 0.0512664 + 0.244687i
\(49\) 2.37159 4.10772i 0.338799 0.586817i
\(50\) 6.70818 11.6189i 0.948680 1.64316i
\(51\) 0.0798028 + 0.0261864i 0.0111746 + 0.00366683i
\(52\) −3.60531 0.0419947i −0.499966 0.00582362i
\(53\) 1.82220 0.250299 0.125149 0.992138i \(-0.460059\pi\)
0.125149 + 0.992138i \(0.460059\pi\)
\(54\) 3.01742 + 4.23027i 0.410619 + 0.575667i
\(55\) 9.10413 + 15.7688i 1.22760 + 2.12627i
\(56\) 0.751135 + 1.30100i 0.100375 + 0.173854i
\(57\) 9.47061 + 3.10767i 1.25441 + 0.411622i
\(58\) −2.21264 −0.290534
\(59\) −1.88614 −0.245555 −0.122777 0.992434i \(-0.539180\pi\)
−0.122777 + 0.992434i \(0.539180\pi\)
\(60\) 5.53822 4.95754i 0.714981 0.640016i
\(61\) −0.877519 1.51991i −0.112355 0.194604i 0.804364 0.594136i \(-0.202506\pi\)
−0.916719 + 0.399532i \(0.869173\pi\)
\(62\) −3.74769 6.49119i −0.475957 0.824382i
\(63\) 3.63061 + 2.67021i 0.457414 + 0.336414i
\(64\) 1.00000 0.125000
\(65\) 7.57989 + 13.4892i 0.940169 + 1.67313i
\(66\) 1.50702 + 7.19280i 0.185502 + 0.885373i
\(67\) 1.73270 3.00113i 0.211683 0.366646i −0.740558 0.671992i \(-0.765439\pi\)
0.952241 + 0.305346i \(0.0987721\pi\)
\(68\) 0.0242456 0.0419947i 0.00294022 0.00509260i
\(69\) 11.2460 + 3.69025i 1.35386 + 0.444253i
\(70\) 3.22344 5.58317i 0.385275 0.667316i
\(71\) 0.645714 1.11841i 0.0766322 0.132731i −0.825163 0.564895i \(-0.808917\pi\)
0.901795 + 0.432164i \(0.142250\pi\)
\(72\) 2.74769 1.20424i 0.323818 0.141922i
\(73\) −12.9836 −1.51962 −0.759808 0.650148i \(-0.774707\pi\)
−0.759808 + 0.650148i \(0.774707\pi\)
\(74\) 1.35174 + 2.34128i 0.157136 + 0.272168i
\(75\) −22.0795 7.24514i −2.54952 0.836597i
\(76\) 2.87736 4.98373i 0.330055 0.571673i
\(77\) 3.18702 + 5.52008i 0.363195 + 0.629072i
\(78\) 1.20936 + 6.12678i 0.136933 + 0.693721i
\(79\) 4.24521 7.35292i 0.477623 0.827268i −0.522048 0.852916i \(-0.674832\pi\)
0.999671 + 0.0256486i \(0.00816509\pi\)
\(80\) −2.14571 3.71649i −0.239898 0.415516i
\(81\) 6.09959 6.61778i 0.677732 0.735309i
\(82\) 3.68986 6.39103i 0.407477 0.705771i
\(83\) −0.370694 + 0.642060i −0.0406889 + 0.0704753i −0.885653 0.464348i \(-0.846289\pi\)
0.844964 + 0.534824i \(0.179622\pi\)
\(84\) 1.93873 1.73545i 0.211532 0.189353i
\(85\) −0.208097 −0.0225713
\(86\) 2.89251 + 5.00997i 0.311907 + 0.540239i
\(87\) 0.785893 + 3.75096i 0.0842566 + 0.402145i
\(88\) 4.24294 0.452299
\(89\) 0.288865 + 0.500328i 0.0306196 + 0.0530347i 0.880929 0.473248i \(-0.156919\pi\)
−0.850310 + 0.526283i \(0.823585\pi\)
\(90\) −10.3713 7.62778i −1.09323 0.804039i
\(91\) 2.65344 + 4.72206i 0.278156 + 0.495007i
\(92\) 3.41675 5.91799i 0.356221 0.616993i
\(93\) −9.67301 + 8.65880i −1.00304 + 0.897876i
\(94\) 1.67341 2.89842i 0.172599 0.298950i
\(95\) −24.6959 −2.53375
\(96\) −0.355184 1.69524i −0.0362508 0.173020i
\(97\) −2.59585 4.49614i −0.263569 0.456514i 0.703619 0.710577i \(-0.251566\pi\)
−0.967188 + 0.254063i \(0.918233\pi\)
\(98\) −2.37159 + 4.10772i −0.239567 + 0.414942i
\(99\) 11.6583 5.10953i 1.17170 0.513528i
\(100\) −6.70818 + 11.6189i −0.670818 + 1.16189i
\(101\) −0.165943 −0.0165119 −0.00825596 0.999966i \(-0.502628\pi\)
−0.00825596 + 0.999966i \(0.502628\pi\)
\(102\) −0.0798028 0.0261864i −0.00790166 0.00259284i
\(103\) −5.53079 9.57962i −0.544965 0.943908i −0.998609 0.0527245i \(-0.983209\pi\)
0.453644 0.891183i \(-0.350124\pi\)
\(104\) 3.60531 + 0.0419947i 0.353529 + 0.00411792i
\(105\) −10.6097 3.48147i −1.03540 0.339756i
\(106\) −1.82220 −0.176988
\(107\) −4.39210 7.60734i −0.424600 0.735429i 0.571783 0.820405i \(-0.306252\pi\)
−0.996383 + 0.0849760i \(0.972919\pi\)
\(108\) −3.01742 4.23027i −0.290351 0.407058i
\(109\) 8.91409 0.853815 0.426907 0.904295i \(-0.359603\pi\)
0.426907 + 0.904295i \(0.359603\pi\)
\(110\) −9.10413 15.7688i −0.868045 1.50350i
\(111\) 3.48892 3.12311i 0.331153 0.296432i
\(112\) −0.751135 1.30100i −0.0709756 0.122933i
\(113\) −3.72239 −0.350173 −0.175086 0.984553i \(-0.556020\pi\)
−0.175086 + 0.984553i \(0.556020\pi\)
\(114\) −9.47061 3.10767i −0.887004 0.291060i
\(115\) −29.3255 −2.73462
\(116\) 2.21264 0.205438
\(117\) 9.95683 4.22628i 0.920510 0.390720i
\(118\) 1.88614 0.173633
\(119\) −0.0728470 −0.00667788
\(120\) −5.53822 + 4.95754i −0.505568 + 0.452559i
\(121\) 7.00252 0.636592
\(122\) 0.877519 + 1.51991i 0.0794468 + 0.137606i
\(123\) −12.1449 3.98522i −1.09507 0.359335i
\(124\) 3.74769 + 6.49119i 0.336552 + 0.582926i
\(125\) 36.1182 3.23051
\(126\) −3.63061 2.67021i −0.323441 0.237881i
\(127\) 1.13354 + 1.96334i 0.100585 + 0.174218i 0.911926 0.410355i \(-0.134595\pi\)
−0.811341 + 0.584573i \(0.801262\pi\)
\(128\) −1.00000 −0.0883883
\(129\) 7.46573 6.68295i 0.657321 0.588401i
\(130\) −7.57989 13.4892i −0.664800 1.18308i
\(131\) 5.37112 + 9.30305i 0.469277 + 0.812811i 0.999383 0.0351201i \(-0.0111814\pi\)
−0.530106 + 0.847931i \(0.677848\pi\)
\(132\) −1.50702 7.19280i −0.131169 0.626053i
\(133\) −8.64513 −0.749628
\(134\) −1.73270 + 3.00113i −0.149683 + 0.259258i
\(135\) −9.24721 + 20.2911i −0.795874 + 1.74638i
\(136\) −0.0242456 + 0.0419947i −0.00207905 + 0.00360102i
\(137\) 5.95858 + 10.3206i 0.509076 + 0.881745i 0.999945 + 0.0105118i \(0.00334607\pi\)
−0.490869 + 0.871233i \(0.663321\pi\)
\(138\) −11.2460 3.69025i −0.957322 0.314135i
\(139\) −0.333976 −0.0283275 −0.0141638 0.999900i \(-0.504509\pi\)
−0.0141638 + 0.999900i \(0.504509\pi\)
\(140\) −3.22344 + 5.58317i −0.272431 + 0.471864i
\(141\) −5.50790 1.80735i −0.463849 0.152207i
\(142\) −0.645714 + 1.11841i −0.0541871 + 0.0938549i
\(143\) 15.2971 + 0.178181i 1.27921 + 0.0149002i
\(144\) −2.74769 + 1.20424i −0.228974 + 0.100354i
\(145\) −4.74769 8.22324i −0.394274 0.682903i
\(146\) 12.9836 1.07453
\(147\) 7.80592 + 2.56143i 0.643822 + 0.211263i
\(148\) −1.35174 2.34128i −0.111112 0.192452i
\(149\) 13.3045 1.08995 0.544975 0.838453i \(-0.316539\pi\)
0.544975 + 0.838453i \(0.316539\pi\)
\(150\) 22.0795 + 7.24514i 1.80278 + 0.591563i
\(151\) 6.07725 10.5261i 0.494560 0.856603i −0.505420 0.862873i \(-0.668663\pi\)
0.999980 + 0.00627026i \(0.00199590\pi\)
\(152\) −2.87736 + 4.98373i −0.233384 + 0.404234i
\(153\) −0.0160476 + 0.144586i −0.00129737 + 0.0116891i
\(154\) −3.18702 5.52008i −0.256817 0.444821i
\(155\) 16.0829 27.8565i 1.29181 2.23749i
\(156\) −1.20936 6.12678i −0.0968259 0.490535i
\(157\) −4.11819 7.13291i −0.328667 0.569268i 0.653581 0.756857i \(-0.273266\pi\)
−0.982248 + 0.187589i \(0.939933\pi\)
\(158\) −4.24521 + 7.35292i −0.337731 + 0.584967i
\(159\) 0.647217 + 3.08907i 0.0513276 + 0.244979i
\(160\) 2.14571 + 3.71649i 0.169634 + 0.293814i
\(161\) −10.2658 −0.809056
\(162\) −6.09959 + 6.61778i −0.479229 + 0.519942i
\(163\) −1.74521 + 3.02279i −0.136695 + 0.236763i −0.926244 0.376925i \(-0.876981\pi\)
0.789549 + 0.613688i \(0.210315\pi\)
\(164\) −3.68986 + 6.39103i −0.288130 + 0.499055i
\(165\) −23.4983 + 21.0345i −1.82934 + 1.63754i
\(166\) 0.370694 0.642060i 0.0287714 0.0498335i
\(167\) 10.2219 17.7049i 0.790995 1.37004i −0.134356 0.990933i \(-0.542897\pi\)
0.925351 0.379111i \(-0.123770\pi\)
\(168\) −1.93873 + 1.73545i −0.149576 + 0.133893i
\(169\) 12.9965 + 0.302807i 0.999729 + 0.0232929i
\(170\) 0.208097 0.0159603
\(171\) −1.90445 + 17.1588i −0.145637 + 1.31216i
\(172\) −2.89251 5.00997i −0.220551 0.382006i
\(173\) −5.88402 10.1914i −0.447354 0.774839i 0.550859 0.834598i \(-0.314300\pi\)
−0.998213 + 0.0597590i \(0.980967\pi\)
\(174\) −0.785893 3.75096i −0.0595784 0.284359i
\(175\) 20.1550 1.52357
\(176\) −4.24294 −0.319823
\(177\) −0.669926 3.19746i −0.0503548 0.240336i
\(178\) −0.288865 0.500328i −0.0216513 0.0375012i
\(179\) −0.270676 0.468825i −0.0202313 0.0350416i 0.855732 0.517418i \(-0.173107\pi\)
−0.875964 + 0.482377i \(0.839774\pi\)
\(180\) 10.3713 + 7.62778i 0.773032 + 0.568541i
\(181\) −22.8671 −1.69970 −0.849848 0.527028i \(-0.823306\pi\)
−0.849848 + 0.527028i \(0.823306\pi\)
\(182\) −2.65344 4.72206i −0.196686 0.350023i
\(183\) 2.26493 2.02745i 0.167428 0.149874i
\(184\) −3.41675 + 5.91799i −0.251886 + 0.436280i
\(185\) −5.80088 + 10.0474i −0.426490 + 0.738702i
\(186\) 9.67301 8.65880i 0.709260 0.634894i
\(187\) −0.102873 + 0.178181i −0.00752280 + 0.0130299i
\(188\) −1.67341 + 2.89842i −0.122046 + 0.211389i
\(189\) −3.23711 + 7.10318i −0.235465 + 0.516680i
\(190\) 24.6959 1.79163
\(191\) 3.02741 + 5.24364i 0.219056 + 0.379416i 0.954520 0.298148i \(-0.0963689\pi\)
−0.735464 + 0.677564i \(0.763036\pi\)
\(192\) 0.355184 + 1.69524i 0.0256332 + 0.122344i
\(193\) −0.837352 + 1.45034i −0.0602739 + 0.104397i −0.894588 0.446892i \(-0.852531\pi\)
0.834314 + 0.551290i \(0.185864\pi\)
\(194\) 2.59585 + 4.49614i 0.186371 + 0.322804i
\(195\) −20.1752 + 17.6409i −1.44477 + 1.26329i
\(196\) 2.37159 4.10772i 0.169399 0.293408i
\(197\) −6.37148 11.0357i −0.453949 0.786263i 0.544678 0.838645i \(-0.316652\pi\)
−0.998627 + 0.0523825i \(0.983318\pi\)
\(198\) −11.6583 + 5.10953i −0.828517 + 0.363119i
\(199\) −4.54939 + 7.87977i −0.322498 + 0.558582i −0.981003 0.193994i \(-0.937856\pi\)
0.658505 + 0.752576i \(0.271189\pi\)
\(200\) 6.70818 11.6189i 0.474340 0.821581i
\(201\) 5.70307 + 1.87140i 0.402263 + 0.131998i
\(202\) 0.165943 0.0116757
\(203\) −1.66199 2.87865i −0.116649 0.202042i
\(204\) 0.0798028 + 0.0261864i 0.00558731 + 0.00183341i
\(205\) 31.6696 2.21190
\(206\) 5.53079 + 9.57962i 0.385349 + 0.667443i
\(207\) −2.26147 + 20.3754i −0.157183 + 1.41619i
\(208\) −3.60531 0.0419947i −0.249983 0.00291181i
\(209\) −12.2084 + 21.1456i −0.844475 + 1.46267i
\(210\) 10.6097 + 3.48147i 0.732141 + 0.240244i
\(211\) 9.79869 16.9718i 0.674570 1.16839i −0.302025 0.953300i \(-0.597663\pi\)
0.976594 0.215089i \(-0.0690041\pi\)
\(212\) 1.82220 0.125149
\(213\) 2.12532 + 0.697401i 0.145625 + 0.0477851i
\(214\) 4.39210 + 7.60734i 0.300238 + 0.520027i
\(215\) −12.4130 + 21.4999i −0.846558 + 1.46628i
\(216\) 3.01742 + 4.23027i 0.205309 + 0.287833i
\(217\) 5.63004 9.75152i 0.382192 0.661976i
\(218\) −8.91409 −0.603738
\(219\) −4.61157 22.0103i −0.311621 1.48732i
\(220\) 9.10413 + 15.7688i 0.613800 + 1.06313i
\(221\) −0.0891765 + 0.150386i −0.00599866 + 0.0101160i
\(222\) −3.48892 + 3.12311i −0.234161 + 0.209609i
\(223\) 4.52761 0.303191 0.151596 0.988443i \(-0.451559\pi\)
0.151596 + 0.988443i \(0.451559\pi\)
\(224\) 0.751135 + 1.30100i 0.0501873 + 0.0869270i
\(225\) 4.43998 40.0034i 0.295999 2.66690i
\(226\) 3.72239 0.247610
\(227\) −4.95437 8.58121i −0.328833 0.569555i 0.653448 0.756972i \(-0.273322\pi\)
−0.982281 + 0.187416i \(0.939989\pi\)
\(228\) 9.47061 + 3.10767i 0.627207 + 0.205811i
\(229\) 0.0362267 + 0.0627465i 0.00239393 + 0.00414640i 0.867220 0.497925i \(-0.165905\pi\)
−0.864826 + 0.502072i \(0.832571\pi\)
\(230\) 29.3255 1.93367
\(231\) −8.22589 + 7.36341i −0.541224 + 0.484477i
\(232\) −2.21264 −0.145267
\(233\) −23.4584 −1.53681 −0.768404 0.639965i \(-0.778949\pi\)
−0.768404 + 0.639965i \(0.778949\pi\)
\(234\) −9.95683 + 4.22628i −0.650899 + 0.276281i
\(235\) 14.3626 0.936913
\(236\) −1.88614 −0.122777
\(237\) 13.9728 + 4.58502i 0.907631 + 0.297829i
\(238\) 0.0728470 0.00472197
\(239\) 1.52229 + 2.63668i 0.0984685 + 0.170552i 0.911051 0.412294i \(-0.135272\pi\)
−0.812582 + 0.582846i \(0.801939\pi\)
\(240\) 5.53822 4.95754i 0.357491 0.320008i
\(241\) −1.99311 3.45216i −0.128387 0.222373i 0.794665 0.607049i \(-0.207647\pi\)
−0.923052 + 0.384675i \(0.874313\pi\)
\(242\) −7.00252 −0.450139
\(243\) 13.3852 + 7.98975i 0.858662 + 0.512543i
\(244\) −0.877519 1.51991i −0.0561774 0.0973021i
\(245\) −20.3550 −1.30044
\(246\) 12.1449 + 3.98522i 0.774331 + 0.254088i
\(247\) −10.5830 + 17.8470i −0.673383 + 1.13558i
\(248\) −3.74769 6.49119i −0.237978 0.412191i
\(249\) −1.22011 0.400366i −0.0773214 0.0253722i
\(250\) −36.1182 −2.28432
\(251\) 7.25721 12.5699i 0.458071 0.793402i −0.540788 0.841159i \(-0.681874\pi\)
0.998859 + 0.0477567i \(0.0152072\pi\)
\(252\) 3.63061 + 2.67021i 0.228707 + 0.168207i
\(253\) −14.4971 + 25.1096i −0.911422 + 1.57863i
\(254\) −1.13354 1.96334i −0.0711244 0.123191i
\(255\) −0.0739126 0.352775i −0.00462859 0.0220916i
\(256\) 1.00000 0.0625000
\(257\) −13.3068 + 23.0481i −0.830057 + 1.43770i 0.0679355 + 0.997690i \(0.478359\pi\)
−0.897992 + 0.440011i \(0.854975\pi\)
\(258\) −7.46573 + 6.68295i −0.464796 + 0.416063i
\(259\) −2.03068 + 3.51723i −0.126180 + 0.218550i
\(260\) 7.57989 + 13.4892i 0.470085 + 0.836563i
\(261\) −6.07964 + 2.66456i −0.376320 + 0.164932i
\(262\) −5.37112 9.30305i −0.331829 0.574744i
\(263\) 13.4095 0.826863 0.413432 0.910535i \(-0.364330\pi\)
0.413432 + 0.910535i \(0.364330\pi\)
\(264\) 1.50702 + 7.19280i 0.0927508 + 0.442687i
\(265\) −3.90993 6.77219i −0.240185 0.416012i
\(266\) 8.64513 0.530067
\(267\) −0.745578 + 0.667404i −0.0456286 + 0.0408445i
\(268\) 1.73270 3.00113i 0.105842 0.183323i
\(269\) 10.6794 18.4972i 0.651133 1.12780i −0.331715 0.943380i \(-0.607627\pi\)
0.982848 0.184416i \(-0.0590394\pi\)
\(270\) 9.24721 20.2911i 0.562768 1.23488i
\(271\) −3.34991 5.80222i −0.203493 0.352460i 0.746159 0.665768i \(-0.231896\pi\)
−0.949651 + 0.313308i \(0.898563\pi\)
\(272\) 0.0242456 0.0419947i 0.00147011 0.00254630i
\(273\) −7.06258 + 6.17542i −0.427447 + 0.373753i
\(274\) −5.95858 10.3206i −0.359971 0.623488i
\(275\) 28.4624 49.2983i 1.71635 2.97280i
\(276\) 11.2460 + 3.69025i 0.676929 + 0.222127i
\(277\) 5.13691 + 8.89739i 0.308647 + 0.534592i 0.978067 0.208292i \(-0.0667905\pi\)
−0.669420 + 0.742885i \(0.733457\pi\)
\(278\) 0.333976 0.0200306
\(279\) −18.1145 13.3226i −1.08448 0.797605i
\(280\) 3.22344 5.58317i 0.192638 0.333658i
\(281\) 0.675072 1.16926i 0.0402714 0.0697521i −0.845187 0.534470i \(-0.820511\pi\)
0.885459 + 0.464718i \(0.153844\pi\)
\(282\) 5.50790 + 1.80735i 0.327990 + 0.107626i
\(283\) 3.63466 6.29542i 0.216058 0.374224i −0.737541 0.675302i \(-0.764013\pi\)
0.953599 + 0.301078i \(0.0973465\pi\)
\(284\) 0.645714 1.11841i 0.0383161 0.0663654i
\(285\) −8.77159 41.8656i −0.519584 2.47990i
\(286\) −15.2971 0.178181i −0.904536 0.0105361i
\(287\) 11.0863 0.654406
\(288\) 2.74769 1.20424i 0.161909 0.0709608i
\(289\) 8.49882 + 14.7204i 0.499931 + 0.865906i
\(290\) 4.74769 + 8.22324i 0.278794 + 0.482885i
\(291\) 6.70005 5.99755i 0.392764 0.351583i
\(292\) −12.9836 −0.759808
\(293\) −31.3528 −1.83165 −0.915826 0.401574i \(-0.868463\pi\)
−0.915826 + 0.401574i \(0.868463\pi\)
\(294\) −7.80592 2.56143i −0.455251 0.149385i
\(295\) 4.04712 + 7.00982i 0.235632 + 0.408127i
\(296\) 1.35174 + 2.34128i 0.0785681 + 0.136084i
\(297\) 12.8027 + 17.9488i 0.742889 + 1.04149i
\(298\) −13.3045 −0.770710
\(299\) −12.5670 + 21.1927i −0.726766 + 1.22560i
\(300\) −22.0795 7.24514i −1.27476 0.418298i
\(301\) −4.34533 + 7.52632i −0.250460 + 0.433810i
\(302\) −6.07725 + 10.5261i −0.349707 + 0.605710i
\(303\) −0.0589402 0.281313i −0.00338602 0.0161610i
\(304\) 2.87736 4.98373i 0.165028 0.285836i
\(305\) −3.76581 + 6.52257i −0.215630 + 0.373482i
\(306\) 0.0160476 0.144586i 0.000917381 0.00826543i
\(307\) 9.56515 0.545912 0.272956 0.962027i \(-0.411999\pi\)
0.272956 + 0.962027i \(0.411999\pi\)
\(308\) 3.18702 + 5.52008i 0.181597 + 0.314536i
\(309\) 14.2753 12.7786i 0.812094 0.726947i
\(310\) −16.0829 + 27.8565i −0.913450 + 1.58214i
\(311\) −0.316125 0.547545i −0.0179258 0.0310484i 0.856923 0.515444i \(-0.172373\pi\)
−0.874849 + 0.484395i \(0.839040\pi\)
\(312\) 1.20936 + 6.12678i 0.0684663 + 0.346861i
\(313\) −5.25048 + 9.09409i −0.296775 + 0.514029i −0.975396 0.220459i \(-0.929244\pi\)
0.678622 + 0.734488i \(0.262578\pi\)
\(314\) 4.11819 + 7.13291i 0.232403 + 0.402533i
\(315\) 2.13352 19.2226i 0.120210 1.08307i
\(316\) 4.24521 7.35292i 0.238812 0.413634i
\(317\) 9.36121 16.2141i 0.525778 0.910674i −0.473771 0.880648i \(-0.657108\pi\)
0.999549 0.0300261i \(-0.00955904\pi\)
\(318\) −0.647217 3.08907i −0.0362941 0.173227i
\(319\) −9.38808 −0.525632
\(320\) −2.14571 3.71649i −0.119949 0.207758i
\(321\) 11.3363 10.1477i 0.632729 0.566388i
\(322\) 10.2658 0.572089
\(323\) −0.139527 0.241667i −0.00776347 0.0134467i
\(324\) 6.09959 6.61778i 0.338866 0.367654i
\(325\) 24.6730 41.6080i 1.36861 2.30800i
\(326\) 1.74521 3.02279i 0.0966581 0.167417i
\(327\) 3.16614 + 15.1115i 0.175088 + 0.835670i
\(328\) 3.68986 6.39103i 0.203739 0.352885i
\(329\) 5.02782 0.277193
\(330\) 23.4983 21.0345i 1.29354 1.15791i
\(331\) 11.4289 + 19.7955i 0.628192 + 1.08806i 0.987914 + 0.155001i \(0.0495379\pi\)
−0.359723 + 0.933059i \(0.617129\pi\)
\(332\) −0.370694 + 0.642060i −0.0203445 + 0.0352376i
\(333\) 6.53363 + 4.80528i 0.358040 + 0.263328i
\(334\) −10.2219 + 17.7049i −0.559318 + 0.968767i
\(335\) −14.8715 −0.812519
\(336\) 1.93873 1.73545i 0.105766 0.0946766i
\(337\) 17.2502 + 29.8782i 0.939679 + 1.62757i 0.766071 + 0.642756i \(0.222209\pi\)
0.173608 + 0.984815i \(0.444458\pi\)
\(338\) −12.9965 0.302807i −0.706915 0.0164706i
\(339\) −1.32213 6.31035i −0.0718083 0.342731i
\(340\) −0.208097 −0.0112856
\(341\) −15.9012 27.5417i −0.861099 1.49147i
\(342\) 1.90445 17.1588i 0.102981 0.927840i
\(343\) −17.6414 −0.952548
\(344\) 2.89251 + 5.00997i 0.155953 + 0.270119i
\(345\) −10.4159 49.7138i −0.560775 2.67650i
\(346\) 5.88402 + 10.1914i 0.316327 + 0.547894i
\(347\) −22.3954 −1.20225 −0.601125 0.799155i \(-0.705280\pi\)
−0.601125 + 0.799155i \(0.705280\pi\)
\(348\) 0.785893 + 3.75096i 0.0421283 + 0.201072i
\(349\) −27.8257 −1.48948 −0.744739 0.667356i \(-0.767426\pi\)
−0.744739 + 0.667356i \(0.767426\pi\)
\(350\) −20.1550 −1.07733
\(351\) 10.7011 + 15.3781i 0.571181 + 0.820824i
\(352\) 4.24294 0.226149
\(353\) 37.0443 1.97167 0.985834 0.167725i \(-0.0536420\pi\)
0.985834 + 0.167725i \(0.0536420\pi\)
\(354\) 0.669926 + 3.19746i 0.0356062 + 0.169943i
\(355\) −5.54207 −0.294143
\(356\) 0.288865 + 0.500328i 0.0153098 + 0.0265174i
\(357\) −0.0258741 0.123493i −0.00136940 0.00653596i
\(358\) 0.270676 + 0.468825i 0.0143057 + 0.0247782i
\(359\) −15.9020 −0.839276 −0.419638 0.907692i \(-0.637843\pi\)
−0.419638 + 0.907692i \(0.637843\pi\)
\(360\) −10.3713 7.62778i −0.546616 0.402019i
\(361\) −7.05835 12.2254i −0.371492 0.643443i
\(362\) 22.8671 1.20187
\(363\) 2.48718 + 11.8710i 0.130543 + 0.623064i
\(364\) 2.65344 + 4.72206i 0.139078 + 0.247503i
\(365\) 27.8591 + 48.2534i 1.45821 + 2.52570i
\(366\) −2.26493 + 2.02745i −0.118390 + 0.105977i
\(367\) 25.4758 1.32983 0.664914 0.746920i \(-0.268468\pi\)
0.664914 + 0.746920i \(0.268468\pi\)
\(368\) 3.41675 5.91799i 0.178110 0.308496i
\(369\) 2.44223 22.0041i 0.127137 1.14549i
\(370\) 5.80088 10.0474i 0.301574 0.522341i
\(371\) −1.36872 2.37069i −0.0710604 0.123080i
\(372\) −9.67301 + 8.65880i −0.501522 + 0.448938i
\(373\) −29.4233 −1.52348 −0.761740 0.647883i \(-0.775654\pi\)
−0.761740 + 0.647883i \(0.775654\pi\)
\(374\) 0.102873 0.178181i 0.00531942 0.00921351i
\(375\) 12.8286 + 61.2291i 0.662466 + 3.16186i
\(376\) 1.67341 2.89842i 0.0862993 0.149475i
\(377\) −7.97724 0.0929191i −0.410849 0.00478557i
\(378\) 3.23711 7.10318i 0.166499 0.365348i
\(379\) 15.6605 + 27.1247i 0.804424 + 1.39330i 0.916679 + 0.399624i \(0.130859\pi\)
−0.112255 + 0.993679i \(0.535807\pi\)
\(380\) −24.6959 −1.26687
\(381\) −2.92573 + 2.61897i −0.149890 + 0.134174i
\(382\) −3.02741 5.24364i −0.154896 0.268288i
\(383\) −9.84210 −0.502908 −0.251454 0.967869i \(-0.580909\pi\)
−0.251454 + 0.967869i \(0.580909\pi\)
\(384\) −0.355184 1.69524i −0.0181254 0.0865099i
\(385\) 13.6769 23.6890i 0.697038 1.20730i
\(386\) 0.837352 1.45034i 0.0426201 0.0738202i
\(387\) 13.9809 + 10.2825i 0.710691 + 0.522691i
\(388\) −2.59585 4.49614i −0.131784 0.228257i
\(389\) −8.42401 + 14.5908i −0.427114 + 0.739784i −0.996615 0.0822068i \(-0.973803\pi\)
0.569501 + 0.821991i \(0.307137\pi\)
\(390\) 20.1752 17.6409i 1.02161 0.893280i
\(391\) −0.165683 0.286971i −0.00837893 0.0145127i
\(392\) −2.37159 + 4.10772i −0.119783 + 0.207471i
\(393\) −13.8632 + 12.4096i −0.699305 + 0.625983i
\(394\) 6.37148 + 11.0357i 0.320990 + 0.555972i
\(395\) −36.4360 −1.83329
\(396\) 11.6583 5.10953i 0.585850 0.256764i
\(397\) 10.0323 17.3764i 0.503506 0.872097i −0.496486 0.868045i \(-0.665377\pi\)
0.999992 0.00405255i \(-0.00128997\pi\)
\(398\) 4.54939 7.87977i 0.228040 0.394977i
\(399\) −3.07061 14.6556i −0.153723 0.733697i
\(400\) −6.70818 + 11.6189i −0.335409 + 0.580945i
\(401\) 9.57225 16.5796i 0.478015 0.827947i −0.521667 0.853149i \(-0.674690\pi\)
0.999682 + 0.0252024i \(0.00802302\pi\)
\(402\) −5.70307 1.87140i −0.284443 0.0933368i
\(403\) −13.2390 23.5601i −0.659480 1.17361i
\(404\) −0.165943 −0.00825596
\(405\) −37.6829 8.46918i −1.87248 0.420837i
\(406\) 1.66199 + 2.87865i 0.0824832 + 0.142865i
\(407\) 5.73534 + 9.93390i 0.284290 + 0.492405i
\(408\) −0.0798028 0.0261864i −0.00395083 0.00129642i
\(409\) −25.6832 −1.26995 −0.634976 0.772532i \(-0.718990\pi\)
−0.634976 + 0.772532i \(0.718990\pi\)
\(410\) −31.6696 −1.56405
\(411\) −15.3795 + 13.7669i −0.758613 + 0.679073i
\(412\) −5.53079 9.57962i −0.272483 0.471954i
\(413\) 1.41675 + 2.45388i 0.0697135 + 0.120747i
\(414\) 2.26147 20.3754i 0.111145 1.00140i
\(415\) 3.18161 0.156179
\(416\) 3.60531 + 0.0419947i 0.176765 + 0.00205896i
\(417\) −0.118623 0.566171i −0.00580899 0.0277255i
\(418\) 12.2084 21.1456i 0.597134 1.03427i
\(419\) 5.95225 10.3096i 0.290786 0.503657i −0.683210 0.730222i \(-0.739416\pi\)
0.973996 + 0.226566i \(0.0727498\pi\)
\(420\) −10.6097 3.48147i −0.517702 0.169878i
\(421\) −7.55605 + 13.0875i −0.368259 + 0.637844i −0.989293 0.145940i \(-0.953379\pi\)
0.621034 + 0.783783i \(0.286713\pi\)
\(422\) −9.79869 + 16.9718i −0.476993 + 0.826176i
\(423\) 1.10759 9.97916i 0.0538528 0.485203i
\(424\) −1.82220 −0.0884940
\(425\) 0.325288 + 0.563416i 0.0157788 + 0.0273297i
\(426\) −2.12532 0.697401i −0.102972 0.0337892i
\(427\) −1.31827 + 2.28331i −0.0637956 + 0.110497i
\(428\) −4.39210 7.60734i −0.212300 0.367714i
\(429\) 5.13122 + 25.9956i 0.247738 + 1.25508i
\(430\) 12.4130 21.4999i 0.598607 1.03682i
\(431\) −14.0198 24.2830i −0.675310 1.16967i −0.976378 0.216069i \(-0.930677\pi\)
0.301068 0.953603i \(-0.402657\pi\)
\(432\) −3.01742 4.23027i −0.145176 0.203529i
\(433\) −13.1577 + 22.7899i −0.632321 + 1.09521i 0.354755 + 0.934959i \(0.384564\pi\)
−0.987076 + 0.160253i \(0.948769\pi\)
\(434\) −5.63004 + 9.75152i −0.270251 + 0.468088i
\(435\) 12.2541 10.9692i 0.587538 0.525935i
\(436\) 8.91409 0.426907
\(437\) −19.6624 34.0563i −0.940581 1.62913i
\(438\) 4.61157 + 22.0103i 0.220349 + 1.05170i
\(439\) −7.98913 −0.381301 −0.190650 0.981658i \(-0.561060\pi\)
−0.190650 + 0.981658i \(0.561060\pi\)
\(440\) −9.10413 15.7688i −0.434022 0.751749i
\(441\) −1.56970 + 14.1427i −0.0747476 + 0.673462i
\(442\) 0.0891765 0.150386i 0.00424170 0.00715311i
\(443\) 0.708370 1.22693i 0.0336557 0.0582934i −0.848707 0.528863i \(-0.822618\pi\)
0.882363 + 0.470570i \(0.155952\pi\)
\(444\) 3.48892 3.12311i 0.165577 0.148216i
\(445\) 1.23964 2.14712i 0.0587647 0.101783i
\(446\) −4.52761 −0.214388
\(447\) 4.72555 + 22.5544i 0.223511 + 1.06679i
\(448\) −0.751135 1.30100i −0.0354878 0.0614667i
\(449\) 15.3503 26.5875i 0.724426 1.25474i −0.234784 0.972048i \(-0.575438\pi\)
0.959210 0.282695i \(-0.0912283\pi\)
\(450\) −4.43998 + 40.0034i −0.209303 + 1.88578i
\(451\) 15.6558 27.1167i 0.737205 1.27688i
\(452\) −3.72239 −0.175086
\(453\) 20.0028 + 6.56371i 0.939816 + 0.308390i
\(454\) 4.95437 + 8.58121i 0.232520 + 0.402736i
\(455\) 11.8560 19.9937i 0.555816 0.937317i
\(456\) −9.47061 3.10767i −0.443502 0.145530i
\(457\) 9.15912 0.428445 0.214223 0.976785i \(-0.431278\pi\)
0.214223 + 0.976785i \(0.431278\pi\)
\(458\) −0.0362267 0.0627465i −0.00169276 0.00293195i
\(459\) −0.250808 + 0.0241500i −0.0117067 + 0.00112723i
\(460\) −29.3255 −1.36731
\(461\) 0.921259 + 1.59567i 0.0429073 + 0.0743176i 0.886681 0.462381i \(-0.153005\pi\)
−0.843774 + 0.536698i \(0.819671\pi\)
\(462\) 8.22589 7.36341i 0.382703 0.342577i
\(463\) 16.5132 + 28.6016i 0.767432 + 1.32923i 0.938951 + 0.344050i \(0.111799\pi\)
−0.171520 + 0.985181i \(0.554868\pi\)
\(464\) 2.21264 0.102719
\(465\) 52.9358 + 17.3703i 2.45484 + 0.805529i
\(466\) 23.4584 1.08669
\(467\) 39.8056 1.84198 0.920992 0.389581i \(-0.127380\pi\)
0.920992 + 0.389581i \(0.127380\pi\)
\(468\) 9.95683 4.22628i 0.460255 0.195360i
\(469\) −5.20598 −0.240390
\(470\) −14.3626 −0.662498
\(471\) 10.6293 9.51481i 0.489772 0.438419i
\(472\) 1.88614 0.0868167
\(473\) 12.2727 + 21.2570i 0.564300 + 0.977397i
\(474\) −13.9728 4.58502i −0.641792 0.210597i
\(475\) 38.6036 + 66.8635i 1.77126 + 3.06791i
\(476\) −0.0728470 −0.00333894
\(477\) −5.00685 + 2.19438i −0.229248 + 0.100474i
\(478\) −1.52229 2.63668i −0.0696278 0.120599i
\(479\) 1.22167 0.0558197 0.0279098 0.999610i \(-0.491115\pi\)
0.0279098 + 0.999610i \(0.491115\pi\)
\(480\) −5.53822 + 4.95754i −0.252784 + 0.226280i
\(481\) 4.77511 + 8.49779i 0.217726 + 0.387466i
\(482\) 1.99311 + 3.45216i 0.0907836 + 0.157242i
\(483\) −3.64623 17.4030i −0.165909 0.791862i
\(484\) 7.00252 0.318296
\(485\) −11.1399 + 19.2949i −0.505837 + 0.876136i
\(486\) −13.3852 7.98975i −0.607165 0.362422i
\(487\) 18.6227 32.2555i 0.843877 1.46164i −0.0427162 0.999087i \(-0.513601\pi\)
0.886593 0.462550i \(-0.153066\pi\)
\(488\) 0.877519 + 1.51991i 0.0397234 + 0.0688030i
\(489\) −5.74423 1.88490i −0.259763 0.0852383i
\(490\) 20.3550 0.919547
\(491\) −14.9729 + 25.9338i −0.675717 + 1.17038i 0.300542 + 0.953769i \(0.402832\pi\)
−0.976259 + 0.216607i \(0.930501\pi\)
\(492\) −12.1449 3.98522i −0.547535 0.179667i
\(493\) 0.0536468 0.0929191i 0.00241613 0.00418486i
\(494\) 10.5830 17.8470i 0.476153 0.802976i
\(495\) −44.0048 32.3642i −1.97787 1.45466i
\(496\) 3.74769 + 6.49119i 0.168276 + 0.291463i
\(497\) −1.94008 −0.0870243
\(498\) 1.22011 + 0.400366i 0.0546745 + 0.0179408i
\(499\) 15.3917 + 26.6592i 0.689027 + 1.19343i 0.972153 + 0.234348i \(0.0752954\pi\)
−0.283125 + 0.959083i \(0.591371\pi\)
\(500\) 36.1182 1.61526
\(501\) 33.6447 + 11.0401i 1.50313 + 0.493236i
\(502\) −7.25721 + 12.5699i −0.323905 + 0.561020i
\(503\) 9.77265 16.9267i 0.435741 0.754726i −0.561615 0.827399i \(-0.689820\pi\)
0.997356 + 0.0726733i \(0.0231530\pi\)
\(504\) −3.63061 2.67021i −0.161720 0.118940i
\(505\) 0.356066 + 0.616724i 0.0158447 + 0.0274439i
\(506\) 14.4971 25.1096i 0.644473 1.11626i
\(507\) 4.10280 + 22.1397i 0.182212 + 0.983259i
\(508\) 1.13354 + 1.96334i 0.0502925 + 0.0871092i
\(509\) −8.53574 + 14.7843i −0.378340 + 0.655304i −0.990821 0.135181i \(-0.956838\pi\)
0.612481 + 0.790485i \(0.290172\pi\)
\(510\) 0.0739126 + 0.352775i 0.00327291 + 0.0156211i
\(511\) 9.75244 + 16.8917i 0.431423 + 0.747246i
\(512\) −1.00000 −0.0441942
\(513\) −29.7647 + 2.86601i −1.31414 + 0.126537i
\(514\) 13.3068 23.0481i 0.586939 1.01661i
\(515\) −23.7350 + 41.1102i −1.04589 + 1.81153i
\(516\) 7.46573 6.68295i 0.328661 0.294201i
\(517\) 7.10016 12.2978i 0.312265 0.540858i
\(518\) 2.03068 3.51723i 0.0892228 0.154538i
\(519\) 15.1870 13.5947i 0.666636 0.596739i
\(520\) −7.57989 13.4892i −0.332400 0.591540i
\(521\) 26.0051 1.13930 0.569651 0.821887i \(-0.307078\pi\)
0.569651 + 0.821887i \(0.307078\pi\)
\(522\) 6.07964 2.66456i 0.266099 0.116625i
\(523\) −16.6348 28.8123i −0.727388 1.25987i −0.957984 0.286823i \(-0.907401\pi\)
0.230596 0.973050i \(-0.425933\pi\)
\(524\) 5.37112 + 9.30305i 0.234638 + 0.406406i
\(525\) 7.15873 + 34.1676i 0.312433 + 1.49120i
\(526\) −13.4095 −0.584681
\(527\) 0.363461 0.0158326
\(528\) −1.50702 7.19280i −0.0655847 0.313027i
\(529\) −11.8484 20.5220i −0.515147 0.892260i
\(530\) 3.90993 + 6.77219i 0.169836 + 0.294165i
\(531\) 5.18253 2.27137i 0.224903 0.0985693i
\(532\) −8.64513 −0.374814
\(533\) 13.5715 22.8867i 0.587846 0.991331i
\(534\) 0.745578 0.667404i 0.0322643 0.0288814i
\(535\) −18.8484 + 32.6463i −0.814886 + 1.41142i
\(536\) −1.73270 + 3.00113i −0.0748414 + 0.129629i
\(537\) 0.698632 0.625381i 0.0301482 0.0269872i
\(538\) −10.6794 + 18.4972i −0.460421 + 0.797472i
\(539\) −10.0625 + 17.4288i −0.433423 + 0.750711i
\(540\) −9.24721 + 20.2911i −0.397937 + 0.873192i
\(541\) −31.6760 −1.36186 −0.680928 0.732351i \(-0.738423\pi\)
−0.680928 + 0.732351i \(0.738423\pi\)
\(542\) 3.34991 + 5.80222i 0.143891 + 0.249227i
\(543\) −8.12201 38.7652i −0.348549 1.66357i
\(544\) −0.0242456 + 0.0419947i −0.00103952 + 0.00180051i
\(545\) −19.1271 33.1291i −0.819314 1.41909i
\(546\) 7.06258 6.17542i 0.302251 0.264284i
\(547\) 5.57763 9.66074i 0.238482 0.413063i −0.721797 0.692105i \(-0.756683\pi\)
0.960279 + 0.279042i \(0.0900168\pi\)
\(548\) 5.95858 + 10.3206i 0.254538 + 0.440873i
\(549\) 4.24149 + 3.11949i 0.181022 + 0.133136i
\(550\) −28.4624 + 49.2983i −1.21364 + 2.10209i
\(551\) 6.36655 11.0272i 0.271224 0.469774i
\(552\) −11.2460 3.69025i −0.478661 0.157067i
\(553\) −12.7549 −0.542394
\(554\) −5.13691 8.89739i −0.218246 0.378014i
\(555\) −19.0932 6.26522i −0.810461 0.265944i
\(556\) −0.333976 −0.0141638
\(557\) 18.8367 + 32.6261i 0.798137 + 1.38241i 0.920828 + 0.389969i \(0.127514\pi\)
−0.122691 + 0.992445i \(0.539153\pi\)
\(558\) 18.1145 + 13.3226i 0.766846 + 0.563992i
\(559\) 10.2180 + 18.1839i 0.432174 + 0.769098i
\(560\) −3.22344 + 5.58317i −0.136215 + 0.235932i
\(561\) −0.338598 0.111107i −0.0142956 0.00469095i
\(562\) −0.675072 + 1.16926i −0.0284762 + 0.0493222i
\(563\) 14.7622 0.622152 0.311076 0.950385i \(-0.399311\pi\)
0.311076 + 0.950385i \(0.399311\pi\)
\(564\) −5.50790 1.80735i −0.231924 0.0761034i
\(565\) 7.98718 + 13.8342i 0.336023 + 0.582009i
\(566\) −3.63466 + 6.29542i −0.152776 + 0.264616i
\(567\) −13.1914 2.96475i −0.553986 0.124508i
\(568\) −0.645714 + 1.11841i −0.0270936 + 0.0469274i
\(569\) −7.50302 −0.314543 −0.157272 0.987555i \(-0.550270\pi\)
−0.157272 + 0.987555i \(0.550270\pi\)
\(570\) 8.77159 + 41.8656i 0.367402 + 1.75356i
\(571\) −9.01702 15.6179i −0.377351 0.653591i 0.613325 0.789830i \(-0.289832\pi\)
−0.990676 + 0.136240i \(0.956498\pi\)
\(572\) 15.2971 + 0.178181i 0.639603 + 0.00745012i
\(573\) −7.81394 + 6.99465i −0.326432 + 0.292206i
\(574\) −11.0863 −0.462735
\(575\) 45.8404 + 79.3978i 1.91168 + 3.31112i
\(576\) −2.74769 + 1.20424i −0.114487 + 0.0501769i
\(577\) −34.2209 −1.42463 −0.712317 0.701858i \(-0.752354\pi\)
−0.712317 + 0.701858i \(0.752354\pi\)
\(578\) −8.49882 14.7204i −0.353504 0.612288i
\(579\) −2.75608 0.904378i −0.114539 0.0375847i
\(580\) −4.74769 8.22324i −0.197137 0.341451i
\(581\) 1.11376 0.0462067
\(582\) −6.70005 + 5.99755i −0.277726 + 0.248607i
\(583\) −7.73149 −0.320206
\(584\) 12.9836 0.537265
\(585\) −37.0714 27.9360i −1.53272 1.15501i
\(586\) 31.3528 1.29517
\(587\) −44.1578 −1.82259 −0.911293 0.411758i \(-0.864915\pi\)
−0.911293 + 0.411758i \(0.864915\pi\)
\(588\) 7.80592 + 2.56143i 0.321911 + 0.105631i
\(589\) 43.1337 1.77729
\(590\) −4.04712 7.00982i −0.166617 0.288590i
\(591\) 16.4452 14.7209i 0.676464 0.605537i
\(592\) −1.35174 2.34128i −0.0555561 0.0962259i
\(593\) 11.4553 0.470412 0.235206 0.971946i \(-0.424424\pi\)
0.235206 + 0.971946i \(0.424424\pi\)
\(594\) −12.8027 17.9488i −0.525302 0.736447i
\(595\) 0.156309 + 0.270735i 0.00640804 + 0.0110991i
\(596\) 13.3045 0.544975
\(597\) −14.9740 4.91355i −0.612845 0.201098i
\(598\) 12.5670 21.1927i 0.513901 0.866633i
\(599\) 12.8270 + 22.2171i 0.524099 + 0.907766i 0.999606 + 0.0280543i \(0.00893113\pi\)
−0.475507 + 0.879712i \(0.657736\pi\)
\(600\) 22.0795 + 7.24514i 0.901392 + 0.295782i
\(601\) 1.35828 0.0554053 0.0277026 0.999616i \(-0.491181\pi\)
0.0277026 + 0.999616i \(0.491181\pi\)
\(602\) 4.34533 7.52632i 0.177102 0.306750i
\(603\) −1.14683 + 10.3328i −0.0467027 + 0.420783i
\(604\) 6.07725 10.5261i 0.247280 0.428301i
\(605\) −15.0254 26.0248i −0.610869 1.05806i
\(606\) 0.0589402 + 0.281313i 0.00239428 + 0.0114276i
\(607\) 4.77195 0.193688 0.0968438 0.995300i \(-0.469125\pi\)
0.0968438 + 0.995300i \(0.469125\pi\)
\(608\) −2.87736 + 4.98373i −0.116692 + 0.202117i
\(609\) 4.28970 3.83993i 0.173827 0.155602i
\(610\) 3.76581 6.52257i 0.152473 0.264091i
\(611\) 6.15486 10.3794i 0.248999 0.419907i
\(612\) −0.0160476 + 0.144586i −0.000648686 + 0.00584454i
\(613\) 7.76439 + 13.4483i 0.313601 + 0.543172i 0.979139 0.203191i \(-0.0651313\pi\)
−0.665538 + 0.746364i \(0.731798\pi\)
\(614\) −9.56515 −0.386018
\(615\) 11.2485 + 53.6875i 0.453584 + 2.16489i
\(616\) −3.18702 5.52008i −0.128409 0.222410i
\(617\) −1.04258 −0.0419727 −0.0209863 0.999780i \(-0.506681\pi\)
−0.0209863 + 0.999780i \(0.506681\pi\)
\(618\) −14.2753 + 12.7786i −0.574237 + 0.514029i
\(619\) 16.1897 28.0413i 0.650718 1.12708i −0.332231 0.943198i \(-0.607801\pi\)
0.982949 0.183878i \(-0.0588652\pi\)
\(620\) 16.0829 27.8565i 0.645906 1.11874i
\(621\) −35.3444 + 3.40328i −1.41832 + 0.136569i
\(622\) 0.316125 + 0.547545i 0.0126755 + 0.0219546i
\(623\) 0.433953 0.751629i 0.0173860 0.0301134i
\(624\) −1.20936 6.12678i −0.0484130 0.245268i
\(625\) −43.9584 76.1383i −1.75834 3.04553i
\(626\) 5.25048 9.09409i 0.209851 0.363473i
\(627\) −40.1832 13.1857i −1.60476 0.526585i
\(628\) −4.11819 7.13291i −0.164334 0.284634i
\(629\) −0.131095 −0.00522710
\(630\) −2.13352 + 19.2226i −0.0850015 + 0.765848i
\(631\) 0.440036 0.762164i 0.0175175 0.0303413i −0.857134 0.515094i \(-0.827757\pi\)
0.874651 + 0.484753i \(0.161090\pi\)
\(632\) −4.24521 + 7.35292i −0.168865 + 0.292483i
\(633\) 32.2517 + 10.5830i 1.28189 + 0.420638i
\(634\) −9.36121 + 16.2141i −0.371781 + 0.643944i
\(635\) 4.86449 8.42554i 0.193041 0.334358i
\(636\) 0.647217 + 3.08907i 0.0256638 + 0.122490i
\(637\) −8.72282 + 14.7100i −0.345611 + 0.582831i
\(638\) 9.38808 0.371678
\(639\) −0.427383 + 3.85064i −0.0169070 + 0.152329i
\(640\) 2.14571 + 3.71649i 0.0848168 + 0.146907i
\(641\) −2.55527 4.42586i −0.100927 0.174811i 0.811140 0.584852i \(-0.198848\pi\)
−0.912067 + 0.410041i \(0.865514\pi\)
\(642\) −11.3363 + 10.1477i −0.447407 + 0.400497i
\(643\) −22.5308 −0.888528 −0.444264 0.895896i \(-0.646535\pi\)
−0.444264 + 0.895896i \(0.646535\pi\)
\(644\) −10.2658 −0.404528
\(645\) −40.8564 13.4066i −1.60872 0.527884i
\(646\) 0.139527 + 0.241667i 0.00548960 + 0.00950827i
\(647\) −2.31086 4.00252i −0.0908492 0.157355i 0.817020 0.576610i \(-0.195625\pi\)
−0.907869 + 0.419255i \(0.862291\pi\)
\(648\) −6.09959 + 6.61778i −0.239615 + 0.259971i
\(649\) 8.00278 0.314136
\(650\) −24.6730 + 41.6080i −0.967754 + 1.63200i
\(651\) 18.5309 + 6.08070i 0.726283 + 0.238322i
\(652\) −1.74521 + 3.02279i −0.0683476 + 0.118382i
\(653\) 18.3289 31.7465i 0.717264 1.24234i −0.244815 0.969570i \(-0.578727\pi\)
0.962080 0.272769i \(-0.0879393\pi\)
\(654\) −3.16614 15.1115i −0.123806 0.590908i
\(655\) 23.0498 39.9234i 0.900629 1.55993i
\(656\) −3.68986 + 6.39103i −0.144065 + 0.249528i
\(657\) 35.6749 15.6354i 1.39181 0.609996i
\(658\) −5.02782 −0.196005
\(659\) −15.1961 26.3204i −0.591957 1.02530i −0.993969 0.109665i \(-0.965022\pi\)
0.402012 0.915634i \(-0.368311\pi\)
\(660\) −23.4983 + 21.0345i −0.914671 + 0.818768i
\(661\) 14.7804 25.6004i 0.574890 0.995739i −0.421164 0.906985i \(-0.638378\pi\)
0.996054 0.0887539i \(-0.0282885\pi\)
\(662\) −11.4289 19.7955i −0.444199 0.769374i
\(663\) −0.286614 0.0977613i −0.0111312 0.00379673i
\(664\) 0.370694 0.642060i 0.0143857 0.0249168i
\(665\) 18.5500 + 32.1295i 0.719338 + 1.24593i
\(666\) −6.53363 4.80528i −0.253173 0.186201i
\(667\) 7.56003 13.0944i 0.292726 0.507016i
\(668\) 10.2219 17.7049i 0.395498 0.685022i
\(669\) 1.60813 + 7.67539i 0.0621740 + 0.296748i
\(670\) 14.8715 0.574538
\(671\) 3.72326 + 6.44887i 0.143735 + 0.248956i
\(672\) −1.93873 + 1.73545i −0.0747880 + 0.0669465i
\(673\) 4.77045 0.183887 0.0919437 0.995764i \(-0.470692\pi\)
0.0919437 + 0.995764i \(0.470692\pi\)
\(674\) −17.2502 29.8782i −0.664453 1.15087i
\(675\) 69.3925 6.68172i 2.67092 0.257180i
\(676\) 12.9965 + 0.302807i 0.499864 + 0.0116464i
\(677\) 13.6686 23.6747i 0.525327 0.909893i −0.474238 0.880397i \(-0.657276\pi\)
0.999565 0.0294965i \(-0.00939039\pi\)
\(678\) 1.32213 + 6.31035i 0.0507762 + 0.242347i
\(679\) −3.89967 + 6.75443i −0.149656 + 0.259211i
\(680\) 0.208097 0.00798015
\(681\) 12.7875 11.4468i 0.490019 0.438641i
\(682\) 15.9012 + 27.5417i 0.608889 + 1.05463i
\(683\) −0.345146 + 0.597811i −0.0132066 + 0.0228746i −0.872553 0.488519i \(-0.837537\pi\)
0.859347 + 0.511394i \(0.170871\pi\)
\(684\) −1.90445 + 17.1588i −0.0728186 + 0.656082i
\(685\) 25.5708 44.2900i 0.977011 1.69223i
\(686\) 17.6414 0.673553
\(687\) −0.0935033 + 0.0836995i −0.00356737 + 0.00319334i
\(688\) −2.89251 5.00997i −0.110276 0.191003i
\(689\) −6.56960 0.0765228i −0.250282 0.00291529i
\(690\) 10.4159 + 49.7138i 0.396528 + 1.89257i
\(691\) −36.0393 −1.37100 −0.685501 0.728072i \(-0.740417\pi\)
−0.685501 + 0.728072i \(0.740417\pi\)
\(692\) −5.88402 10.1914i −0.223677 0.387420i
\(693\) −15.4045 11.3295i −0.585167 0.430373i
\(694\) 22.3954 0.850119
\(695\) 0.716618 + 1.24122i 0.0271829 + 0.0470821i
\(696\) −0.785893 3.75096i −0.0297892 0.142180i
\(697\) 0.178926 + 0.309909i 0.00677731 + 0.0117386i
\(698\) 27.8257 1.05322
\(699\) −8.33203 39.7676i −0.315146 1.50415i
\(700\) 20.1550 0.761787
\(701\) −25.5695 −0.965748 −0.482874 0.875690i \(-0.660407\pi\)
−0.482874 + 0.875690i \(0.660407\pi\)
\(702\) −10.7011 15.3781i −0.403886 0.580410i
\(703\) −15.5577 −0.586770
\(704\) −4.24294 −0.159912
\(705\) 5.10136 + 24.3481i 0.192128 + 0.917002i
\(706\) −37.0443 −1.39418
\(707\) 0.124645 + 0.215892i 0.00468778 + 0.00811947i
\(708\) −0.669926 3.19746i −0.0251774 0.120168i
\(709\) 2.04951 + 3.54985i 0.0769708 + 0.133317i 0.901942 0.431858i \(-0.142142\pi\)
−0.824971 + 0.565175i \(0.808809\pi\)
\(710\) 5.54207 0.207990
\(711\) −2.80980 + 25.3158i −0.105376 + 0.949416i
\(712\) −0.288865 0.500328i −0.0108257 0.0187506i
\(713\) 51.2197 1.91819
\(714\) 0.0258741 + 0.123493i 0.000968313 + 0.00462162i
\(715\) −32.1610 57.2337i −1.20275 2.14042i
\(716\) −0.270676 0.468825i −0.0101157 0.0175208i
\(717\) −3.92911 + 3.51715i −0.146735 + 0.131350i
\(718\) 15.9020 0.593457
\(719\) −20.6867 + 35.8304i −0.771483 + 1.33625i 0.165268 + 0.986249i \(0.447151\pi\)
−0.936750 + 0.349998i \(0.886182\pi\)
\(720\) 10.3713 + 7.62778i 0.386516 + 0.284271i
\(721\) −8.30875 + 14.3912i −0.309434 + 0.535955i
\(722\) 7.05835 + 12.2254i 0.262685 + 0.454983i
\(723\) 5.14433 4.60495i 0.191320 0.171260i
\(724\) −22.8671 −0.849848
\(725\) −14.8428 + 25.7084i −0.551247 + 0.954787i
\(726\) −2.48718 11.8710i −0.0923079 0.440573i
\(727\) 20.7179 35.8844i 0.768383 1.33088i −0.170056 0.985434i \(-0.554395\pi\)
0.938439 0.345445i \(-0.112272\pi\)
\(728\) −2.65344 4.72206i −0.0983429 0.175011i
\(729\) −8.79035 + 25.5290i −0.325569 + 0.945518i
\(730\) −27.8591 48.2534i −1.03111 1.78594i
\(731\) −0.280523 −0.0103755
\(732\) 2.26493 2.02745i 0.0837142 0.0749368i
\(733\) 12.8351 + 22.2310i 0.474074 + 0.821121i 0.999559 0.0296822i \(-0.00944952\pi\)
−0.525485 + 0.850803i \(0.676116\pi\)
\(734\) −25.4758 −0.940330
\(735\) −7.22978 34.5067i −0.266674 1.27280i
\(736\) −3.41675 + 5.91799i −0.125943 + 0.218140i
\(737\) −7.35175 + 12.7336i −0.270805 + 0.469048i
\(738\) −2.44223 + 22.0041i −0.0898998 + 0.809980i
\(739\) 8.08326 + 14.0006i 0.297348 + 0.515021i 0.975528 0.219874i \(-0.0705646\pi\)
−0.678181 + 0.734895i \(0.737231\pi\)
\(740\) −5.80088 + 10.0474i −0.213245 + 0.369351i
\(741\) −34.0140 11.6018i −1.24953 0.426204i
\(742\) 1.36872 + 2.37069i 0.0502473 + 0.0870309i
\(743\) 6.93550 12.0126i 0.254439 0.440701i −0.710304 0.703895i \(-0.751443\pi\)
0.964743 + 0.263194i \(0.0847759\pi\)
\(744\) 9.67301 8.65880i 0.354630 0.317447i
\(745\) −28.5477 49.4461i −1.04591 1.81156i
\(746\) 29.4233 1.07726
\(747\) 0.245353 2.21059i 0.00897701 0.0808812i
\(748\) −0.102873 + 0.178181i −0.00376140 + 0.00651494i
\(749\) −6.59812 + 11.4283i −0.241090 + 0.417580i
\(750\) −12.8286 61.2291i −0.468434 2.23577i
\(751\) −5.85703 + 10.1447i −0.213726 + 0.370184i −0.952878 0.303355i \(-0.901893\pi\)
0.739152 + 0.673539i \(0.235227\pi\)
\(752\) −1.67341 + 2.89842i −0.0610228 + 0.105695i
\(753\) 23.8866 + 7.83811i 0.870475 + 0.285637i
\(754\) 7.97724 + 0.0929191i 0.290514 + 0.00338391i
\(755\) −52.1602 −1.89830
\(756\) −3.23711 + 7.10318i −0.117732 + 0.258340i
\(757\) 1.02202 + 1.77019i 0.0371459 + 0.0643386i 0.884001 0.467486i \(-0.154840\pi\)
−0.846855 + 0.531824i \(0.821507\pi\)
\(758\) −15.6605 27.1247i −0.568814 0.985215i
\(759\) −47.7160 15.6575i −1.73198 0.568331i
\(760\) 24.6959 0.895816
\(761\) 22.6436 0.820831 0.410415 0.911899i \(-0.365384\pi\)
0.410415 + 0.911899i \(0.365384\pi\)
\(762\) 2.92573 2.61897i 0.105988 0.0948751i
\(763\) −6.69569 11.5973i −0.242400 0.419849i
\(764\) 3.02741 + 5.24364i 0.109528 + 0.189708i
\(765\) 0.571786 0.250600i 0.0206730 0.00906045i
\(766\) 9.84210 0.355610
\(767\) 6.80012 + 0.0792079i 0.245538 + 0.00286003i