Properties

Label 234.2.b.a
Level $234$
Weight $2$
Character orbit 234.b
Analytic conductor $1.868$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 234 = 2 \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 234.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(1.86849940730\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-1}) \)
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 78)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of \(i = \sqrt{-1}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + i q^{2} - q^{4} + 2 i q^{5} + 2 i q^{7} - i q^{8} +O(q^{10}) \) Copy content Toggle raw display \( q + i q^{2} - q^{4} + 2 i q^{5} + 2 i q^{7} - i q^{8} - 2 q^{10} + (2 i - 3) q^{13} - 2 q^{14} + q^{16} + 2 q^{17} + 6 i q^{19} - 2 i q^{20} - 4 q^{23} + q^{25} + ( - 3 i - 2) q^{26} - 2 i q^{28} + 10 q^{29} - 10 i q^{31} + i q^{32} + 2 i q^{34} - 4 q^{35} - 8 i q^{37} - 6 q^{38} + 2 q^{40} + 10 i q^{41} + 4 q^{43} - 4 i q^{46} - 12 i q^{47} + 3 q^{49} + i q^{50} + ( - 2 i + 3) q^{52} + 6 q^{53} + 2 q^{56} + 10 i q^{58} + 4 i q^{59} + 2 q^{61} + 10 q^{62} - q^{64} + ( - 6 i - 4) q^{65} + 2 i q^{67} - 2 q^{68} - 4 i q^{70} + 4 i q^{73} + 8 q^{74} - 6 i q^{76} + 2 i q^{80} - 10 q^{82} - 4 i q^{83} + 4 i q^{85} + 4 i q^{86} - 6 i q^{89} + ( - 6 i - 4) q^{91} + 4 q^{92} + 12 q^{94} - 12 q^{95} + 12 i q^{97} + 3 i q^{98} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{4}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 2 q^{4} - 4 q^{10} - 6 q^{13} - 4 q^{14} + 2 q^{16} + 4 q^{17} - 8 q^{23} + 2 q^{25} - 4 q^{26} + 20 q^{29} - 8 q^{35} - 12 q^{38} + 4 q^{40} + 8 q^{43} + 6 q^{49} + 6 q^{52} + 12 q^{53} + 4 q^{56} + 4 q^{61} + 20 q^{62} - 2 q^{64} - 8 q^{65} - 4 q^{68} + 16 q^{74} - 20 q^{82} - 8 q^{91} + 8 q^{92} + 24 q^{94} - 24 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/234\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(209\)
\(\chi(n)\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
181.1
1.00000i
1.00000i
1.00000i 0 −1.00000 2.00000i 0 2.00000i 1.00000i 0 −2.00000
181.2 1.00000i 0 −1.00000 2.00000i 0 2.00000i 1.00000i 0 −2.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
13.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 234.2.b.a 2
3.b odd 2 1 78.2.b.a 2
4.b odd 2 1 1872.2.c.b 2
12.b even 2 1 624.2.c.a 2
13.b even 2 1 inner 234.2.b.a 2
13.d odd 4 1 3042.2.a.c 1
13.d odd 4 1 3042.2.a.n 1
15.d odd 2 1 1950.2.b.c 2
15.e even 4 1 1950.2.f.d 2
15.e even 4 1 1950.2.f.g 2
21.c even 2 1 3822.2.c.d 2
24.f even 2 1 2496.2.c.m 2
24.h odd 2 1 2496.2.c.f 2
39.d odd 2 1 78.2.b.a 2
39.f even 4 1 1014.2.a.b 1
39.f even 4 1 1014.2.a.g 1
39.h odd 6 2 1014.2.i.c 4
39.i odd 6 2 1014.2.i.c 4
39.k even 12 2 1014.2.e.b 2
39.k even 12 2 1014.2.e.e 2
52.b odd 2 1 1872.2.c.b 2
156.h even 2 1 624.2.c.a 2
156.l odd 4 1 8112.2.a.g 1
156.l odd 4 1 8112.2.a.j 1
195.e odd 2 1 1950.2.b.c 2
195.s even 4 1 1950.2.f.d 2
195.s even 4 1 1950.2.f.g 2
273.g even 2 1 3822.2.c.d 2
312.b odd 2 1 2496.2.c.f 2
312.h even 2 1 2496.2.c.m 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
78.2.b.a 2 3.b odd 2 1
78.2.b.a 2 39.d odd 2 1
234.2.b.a 2 1.a even 1 1 trivial
234.2.b.a 2 13.b even 2 1 inner
624.2.c.a 2 12.b even 2 1
624.2.c.a 2 156.h even 2 1
1014.2.a.b 1 39.f even 4 1
1014.2.a.g 1 39.f even 4 1
1014.2.e.b 2 39.k even 12 2
1014.2.e.e 2 39.k even 12 2
1014.2.i.c 4 39.h odd 6 2
1014.2.i.c 4 39.i odd 6 2
1872.2.c.b 2 4.b odd 2 1
1872.2.c.b 2 52.b odd 2 1
1950.2.b.c 2 15.d odd 2 1
1950.2.b.c 2 195.e odd 2 1
1950.2.f.d 2 15.e even 4 1
1950.2.f.d 2 195.s even 4 1
1950.2.f.g 2 15.e even 4 1
1950.2.f.g 2 195.s even 4 1
2496.2.c.f 2 24.h odd 2 1
2496.2.c.f 2 312.b odd 2 1
2496.2.c.m 2 24.f even 2 1
2496.2.c.m 2 312.h even 2 1
3042.2.a.c 1 13.d odd 4 1
3042.2.a.n 1 13.d odd 4 1
3822.2.c.d 2 21.c even 2 1
3822.2.c.d 2 273.g even 2 1
8112.2.a.g 1 156.l odd 4 1
8112.2.a.j 1 156.l odd 4 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{2} + 4 \) acting on \(S_{2}^{\mathrm{new}}(234, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} + 1 \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} + 4 \) Copy content Toggle raw display
$7$ \( T^{2} + 4 \) Copy content Toggle raw display
$11$ \( T^{2} \) Copy content Toggle raw display
$13$ \( T^{2} + 6T + 13 \) Copy content Toggle raw display
$17$ \( (T - 2)^{2} \) Copy content Toggle raw display
$19$ \( T^{2} + 36 \) Copy content Toggle raw display
$23$ \( (T + 4)^{2} \) Copy content Toggle raw display
$29$ \( (T - 10)^{2} \) Copy content Toggle raw display
$31$ \( T^{2} + 100 \) Copy content Toggle raw display
$37$ \( T^{2} + 64 \) Copy content Toggle raw display
$41$ \( T^{2} + 100 \) Copy content Toggle raw display
$43$ \( (T - 4)^{2} \) Copy content Toggle raw display
$47$ \( T^{2} + 144 \) Copy content Toggle raw display
$53$ \( (T - 6)^{2} \) Copy content Toggle raw display
$59$ \( T^{2} + 16 \) Copy content Toggle raw display
$61$ \( (T - 2)^{2} \) Copy content Toggle raw display
$67$ \( T^{2} + 4 \) Copy content Toggle raw display
$71$ \( T^{2} \) Copy content Toggle raw display
$73$ \( T^{2} + 16 \) Copy content Toggle raw display
$79$ \( T^{2} \) Copy content Toggle raw display
$83$ \( T^{2} + 16 \) Copy content Toggle raw display
$89$ \( T^{2} + 36 \) Copy content Toggle raw display
$97$ \( T^{2} + 144 \) Copy content Toggle raw display
show more
show less