Newspace parameters
Level: | \( N \) | \(=\) | \( 234 = 2 \cdot 3^{2} \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 234.b (of order \(2\), degree \(1\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(1.86849940730\) |
Analytic rank: | \(0\) |
Dimension: | \(2\) |
Coefficient field: | \(\Q(\sqrt{-1}) \) |
Defining polynomial: |
\( x^{2} + 1 \)
|
Coefficient ring: | \(\Z[a_1, a_2]\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | no (minimal twist has level 78) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of \(i = \sqrt{-1}\). We also show the integral \(q\)-expansion of the trace form.
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/234\mathbb{Z}\right)^\times\).
\(n\) | \(145\) | \(209\) |
\(\chi(n)\) | \(-1\) | \(1\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
181.1 |
|
− | 1.00000i | 0 | −1.00000 | − | 2.00000i | 0 | − | 2.00000i | 1.00000i | 0 | −2.00000 | |||||||||||||||||||||
181.2 | 1.00000i | 0 | −1.00000 | 2.00000i | 0 | 2.00000i | − | 1.00000i | 0 | −2.00000 | ||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
13.b | even | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 234.2.b.a | 2 | |
3.b | odd | 2 | 1 | 78.2.b.a | ✓ | 2 | |
4.b | odd | 2 | 1 | 1872.2.c.b | 2 | ||
12.b | even | 2 | 1 | 624.2.c.a | 2 | ||
13.b | even | 2 | 1 | inner | 234.2.b.a | 2 | |
13.d | odd | 4 | 1 | 3042.2.a.c | 1 | ||
13.d | odd | 4 | 1 | 3042.2.a.n | 1 | ||
15.d | odd | 2 | 1 | 1950.2.b.c | 2 | ||
15.e | even | 4 | 1 | 1950.2.f.d | 2 | ||
15.e | even | 4 | 1 | 1950.2.f.g | 2 | ||
21.c | even | 2 | 1 | 3822.2.c.d | 2 | ||
24.f | even | 2 | 1 | 2496.2.c.m | 2 | ||
24.h | odd | 2 | 1 | 2496.2.c.f | 2 | ||
39.d | odd | 2 | 1 | 78.2.b.a | ✓ | 2 | |
39.f | even | 4 | 1 | 1014.2.a.b | 1 | ||
39.f | even | 4 | 1 | 1014.2.a.g | 1 | ||
39.h | odd | 6 | 2 | 1014.2.i.c | 4 | ||
39.i | odd | 6 | 2 | 1014.2.i.c | 4 | ||
39.k | even | 12 | 2 | 1014.2.e.b | 2 | ||
39.k | even | 12 | 2 | 1014.2.e.e | 2 | ||
52.b | odd | 2 | 1 | 1872.2.c.b | 2 | ||
156.h | even | 2 | 1 | 624.2.c.a | 2 | ||
156.l | odd | 4 | 1 | 8112.2.a.g | 1 | ||
156.l | odd | 4 | 1 | 8112.2.a.j | 1 | ||
195.e | odd | 2 | 1 | 1950.2.b.c | 2 | ||
195.s | even | 4 | 1 | 1950.2.f.d | 2 | ||
195.s | even | 4 | 1 | 1950.2.f.g | 2 | ||
273.g | even | 2 | 1 | 3822.2.c.d | 2 | ||
312.b | odd | 2 | 1 | 2496.2.c.f | 2 | ||
312.h | even | 2 | 1 | 2496.2.c.m | 2 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
78.2.b.a | ✓ | 2 | 3.b | odd | 2 | 1 | |
78.2.b.a | ✓ | 2 | 39.d | odd | 2 | 1 | |
234.2.b.a | 2 | 1.a | even | 1 | 1 | trivial | |
234.2.b.a | 2 | 13.b | even | 2 | 1 | inner | |
624.2.c.a | 2 | 12.b | even | 2 | 1 | ||
624.2.c.a | 2 | 156.h | even | 2 | 1 | ||
1014.2.a.b | 1 | 39.f | even | 4 | 1 | ||
1014.2.a.g | 1 | 39.f | even | 4 | 1 | ||
1014.2.e.b | 2 | 39.k | even | 12 | 2 | ||
1014.2.e.e | 2 | 39.k | even | 12 | 2 | ||
1014.2.i.c | 4 | 39.h | odd | 6 | 2 | ||
1014.2.i.c | 4 | 39.i | odd | 6 | 2 | ||
1872.2.c.b | 2 | 4.b | odd | 2 | 1 | ||
1872.2.c.b | 2 | 52.b | odd | 2 | 1 | ||
1950.2.b.c | 2 | 15.d | odd | 2 | 1 | ||
1950.2.b.c | 2 | 195.e | odd | 2 | 1 | ||
1950.2.f.d | 2 | 15.e | even | 4 | 1 | ||
1950.2.f.d | 2 | 195.s | even | 4 | 1 | ||
1950.2.f.g | 2 | 15.e | even | 4 | 1 | ||
1950.2.f.g | 2 | 195.s | even | 4 | 1 | ||
2496.2.c.f | 2 | 24.h | odd | 2 | 1 | ||
2496.2.c.f | 2 | 312.b | odd | 2 | 1 | ||
2496.2.c.m | 2 | 24.f | even | 2 | 1 | ||
2496.2.c.m | 2 | 312.h | even | 2 | 1 | ||
3042.2.a.c | 1 | 13.d | odd | 4 | 1 | ||
3042.2.a.n | 1 | 13.d | odd | 4 | 1 | ||
3822.2.c.d | 2 | 21.c | even | 2 | 1 | ||
3822.2.c.d | 2 | 273.g | even | 2 | 1 | ||
8112.2.a.g | 1 | 156.l | odd | 4 | 1 | ||
8112.2.a.j | 1 | 156.l | odd | 4 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{5}^{2} + 4 \)
acting on \(S_{2}^{\mathrm{new}}(234, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T^{2} + 1 \)
$3$
\( T^{2} \)
$5$
\( T^{2} + 4 \)
$7$
\( T^{2} + 4 \)
$11$
\( T^{2} \)
$13$
\( T^{2} + 6T + 13 \)
$17$
\( (T - 2)^{2} \)
$19$
\( T^{2} + 36 \)
$23$
\( (T + 4)^{2} \)
$29$
\( (T - 10)^{2} \)
$31$
\( T^{2} + 100 \)
$37$
\( T^{2} + 64 \)
$41$
\( T^{2} + 100 \)
$43$
\( (T - 4)^{2} \)
$47$
\( T^{2} + 144 \)
$53$
\( (T - 6)^{2} \)
$59$
\( T^{2} + 16 \)
$61$
\( (T - 2)^{2} \)
$67$
\( T^{2} + 4 \)
$71$
\( T^{2} \)
$73$
\( T^{2} + 16 \)
$79$
\( T^{2} \)
$83$
\( T^{2} + 16 \)
$89$
\( T^{2} + 36 \)
$97$
\( T^{2} + 144 \)
show more
show less