Properties

Label 234.2.a.c.1.1
Level $234$
Weight $2$
Character 234.1
Self dual yes
Analytic conductor $1.868$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [234,2,Mod(1,234)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(234, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("234.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 234 = 2 \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 234.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(1.86849940730\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 78)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 234.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} +1.00000 q^{4} -2.00000 q^{5} +4.00000 q^{7} +1.00000 q^{8} +O(q^{10})\) \(q+1.00000 q^{2} +1.00000 q^{4} -2.00000 q^{5} +4.00000 q^{7} +1.00000 q^{8} -2.00000 q^{10} +4.00000 q^{11} +1.00000 q^{13} +4.00000 q^{14} +1.00000 q^{16} -2.00000 q^{17} -8.00000 q^{19} -2.00000 q^{20} +4.00000 q^{22} -1.00000 q^{25} +1.00000 q^{26} +4.00000 q^{28} -6.00000 q^{29} -4.00000 q^{31} +1.00000 q^{32} -2.00000 q^{34} -8.00000 q^{35} -2.00000 q^{37} -8.00000 q^{38} -2.00000 q^{40} +10.0000 q^{41} +4.00000 q^{43} +4.00000 q^{44} -8.00000 q^{47} +9.00000 q^{49} -1.00000 q^{50} +1.00000 q^{52} +10.0000 q^{53} -8.00000 q^{55} +4.00000 q^{56} -6.00000 q^{58} -4.00000 q^{59} -2.00000 q^{61} -4.00000 q^{62} +1.00000 q^{64} -2.00000 q^{65} -16.0000 q^{67} -2.00000 q^{68} -8.00000 q^{70} +8.00000 q^{71} +2.00000 q^{73} -2.00000 q^{74} -8.00000 q^{76} +16.0000 q^{77} +8.00000 q^{79} -2.00000 q^{80} +10.0000 q^{82} -12.0000 q^{83} +4.00000 q^{85} +4.00000 q^{86} +4.00000 q^{88} -14.0000 q^{89} +4.00000 q^{91} -8.00000 q^{94} +16.0000 q^{95} +10.0000 q^{97} +9.00000 q^{98} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) 0 0
\(4\) 1.00000 0.500000
\(5\) −2.00000 −0.894427 −0.447214 0.894427i \(-0.647584\pi\)
−0.447214 + 0.894427i \(0.647584\pi\)
\(6\) 0 0
\(7\) 4.00000 1.51186 0.755929 0.654654i \(-0.227186\pi\)
0.755929 + 0.654654i \(0.227186\pi\)
\(8\) 1.00000 0.353553
\(9\) 0 0
\(10\) −2.00000 −0.632456
\(11\) 4.00000 1.20605 0.603023 0.797724i \(-0.293963\pi\)
0.603023 + 0.797724i \(0.293963\pi\)
\(12\) 0 0
\(13\) 1.00000 0.277350
\(14\) 4.00000 1.06904
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) −2.00000 −0.485071 −0.242536 0.970143i \(-0.577979\pi\)
−0.242536 + 0.970143i \(0.577979\pi\)
\(18\) 0 0
\(19\) −8.00000 −1.83533 −0.917663 0.397360i \(-0.869927\pi\)
−0.917663 + 0.397360i \(0.869927\pi\)
\(20\) −2.00000 −0.447214
\(21\) 0 0
\(22\) 4.00000 0.852803
\(23\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(24\) 0 0
\(25\) −1.00000 −0.200000
\(26\) 1.00000 0.196116
\(27\) 0 0
\(28\) 4.00000 0.755929
\(29\) −6.00000 −1.11417 −0.557086 0.830455i \(-0.688081\pi\)
−0.557086 + 0.830455i \(0.688081\pi\)
\(30\) 0 0
\(31\) −4.00000 −0.718421 −0.359211 0.933257i \(-0.616954\pi\)
−0.359211 + 0.933257i \(0.616954\pi\)
\(32\) 1.00000 0.176777
\(33\) 0 0
\(34\) −2.00000 −0.342997
\(35\) −8.00000 −1.35225
\(36\) 0 0
\(37\) −2.00000 −0.328798 −0.164399 0.986394i \(-0.552568\pi\)
−0.164399 + 0.986394i \(0.552568\pi\)
\(38\) −8.00000 −1.29777
\(39\) 0 0
\(40\) −2.00000 −0.316228
\(41\) 10.0000 1.56174 0.780869 0.624695i \(-0.214777\pi\)
0.780869 + 0.624695i \(0.214777\pi\)
\(42\) 0 0
\(43\) 4.00000 0.609994 0.304997 0.952353i \(-0.401344\pi\)
0.304997 + 0.952353i \(0.401344\pi\)
\(44\) 4.00000 0.603023
\(45\) 0 0
\(46\) 0 0
\(47\) −8.00000 −1.16692 −0.583460 0.812142i \(-0.698301\pi\)
−0.583460 + 0.812142i \(0.698301\pi\)
\(48\) 0 0
\(49\) 9.00000 1.28571
\(50\) −1.00000 −0.141421
\(51\) 0 0
\(52\) 1.00000 0.138675
\(53\) 10.0000 1.37361 0.686803 0.726844i \(-0.259014\pi\)
0.686803 + 0.726844i \(0.259014\pi\)
\(54\) 0 0
\(55\) −8.00000 −1.07872
\(56\) 4.00000 0.534522
\(57\) 0 0
\(58\) −6.00000 −0.787839
\(59\) −4.00000 −0.520756 −0.260378 0.965507i \(-0.583847\pi\)
−0.260378 + 0.965507i \(0.583847\pi\)
\(60\) 0 0
\(61\) −2.00000 −0.256074 −0.128037 0.991769i \(-0.540868\pi\)
−0.128037 + 0.991769i \(0.540868\pi\)
\(62\) −4.00000 −0.508001
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) −2.00000 −0.248069
\(66\) 0 0
\(67\) −16.0000 −1.95471 −0.977356 0.211604i \(-0.932131\pi\)
−0.977356 + 0.211604i \(0.932131\pi\)
\(68\) −2.00000 −0.242536
\(69\) 0 0
\(70\) −8.00000 −0.956183
\(71\) 8.00000 0.949425 0.474713 0.880141i \(-0.342552\pi\)
0.474713 + 0.880141i \(0.342552\pi\)
\(72\) 0 0
\(73\) 2.00000 0.234082 0.117041 0.993127i \(-0.462659\pi\)
0.117041 + 0.993127i \(0.462659\pi\)
\(74\) −2.00000 −0.232495
\(75\) 0 0
\(76\) −8.00000 −0.917663
\(77\) 16.0000 1.82337
\(78\) 0 0
\(79\) 8.00000 0.900070 0.450035 0.893011i \(-0.351411\pi\)
0.450035 + 0.893011i \(0.351411\pi\)
\(80\) −2.00000 −0.223607
\(81\) 0 0
\(82\) 10.0000 1.10432
\(83\) −12.0000 −1.31717 −0.658586 0.752506i \(-0.728845\pi\)
−0.658586 + 0.752506i \(0.728845\pi\)
\(84\) 0 0
\(85\) 4.00000 0.433861
\(86\) 4.00000 0.431331
\(87\) 0 0
\(88\) 4.00000 0.426401
\(89\) −14.0000 −1.48400 −0.741999 0.670402i \(-0.766122\pi\)
−0.741999 + 0.670402i \(0.766122\pi\)
\(90\) 0 0
\(91\) 4.00000 0.419314
\(92\) 0 0
\(93\) 0 0
\(94\) −8.00000 −0.825137
\(95\) 16.0000 1.64157
\(96\) 0 0
\(97\) 10.0000 1.01535 0.507673 0.861550i \(-0.330506\pi\)
0.507673 + 0.861550i \(0.330506\pi\)
\(98\) 9.00000 0.909137
\(99\) 0 0
\(100\) −1.00000 −0.100000
\(101\) 2.00000 0.199007 0.0995037 0.995037i \(-0.468274\pi\)
0.0995037 + 0.995037i \(0.468274\pi\)
\(102\) 0 0
\(103\) 16.0000 1.57653 0.788263 0.615338i \(-0.210980\pi\)
0.788263 + 0.615338i \(0.210980\pi\)
\(104\) 1.00000 0.0980581
\(105\) 0 0
\(106\) 10.0000 0.971286
\(107\) −12.0000 −1.16008 −0.580042 0.814587i \(-0.696964\pi\)
−0.580042 + 0.814587i \(0.696964\pi\)
\(108\) 0 0
\(109\) −2.00000 −0.191565 −0.0957826 0.995402i \(-0.530535\pi\)
−0.0957826 + 0.995402i \(0.530535\pi\)
\(110\) −8.00000 −0.762770
\(111\) 0 0
\(112\) 4.00000 0.377964
\(113\) 6.00000 0.564433 0.282216 0.959351i \(-0.408930\pi\)
0.282216 + 0.959351i \(0.408930\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −6.00000 −0.557086
\(117\) 0 0
\(118\) −4.00000 −0.368230
\(119\) −8.00000 −0.733359
\(120\) 0 0
\(121\) 5.00000 0.454545
\(122\) −2.00000 −0.181071
\(123\) 0 0
\(124\) −4.00000 −0.359211
\(125\) 12.0000 1.07331
\(126\) 0 0
\(127\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(128\) 1.00000 0.0883883
\(129\) 0 0
\(130\) −2.00000 −0.175412
\(131\) −4.00000 −0.349482 −0.174741 0.984614i \(-0.555909\pi\)
−0.174741 + 0.984614i \(0.555909\pi\)
\(132\) 0 0
\(133\) −32.0000 −2.77475
\(134\) −16.0000 −1.38219
\(135\) 0 0
\(136\) −2.00000 −0.171499
\(137\) 10.0000 0.854358 0.427179 0.904167i \(-0.359507\pi\)
0.427179 + 0.904167i \(0.359507\pi\)
\(138\) 0 0
\(139\) 12.0000 1.01783 0.508913 0.860818i \(-0.330047\pi\)
0.508913 + 0.860818i \(0.330047\pi\)
\(140\) −8.00000 −0.676123
\(141\) 0 0
\(142\) 8.00000 0.671345
\(143\) 4.00000 0.334497
\(144\) 0 0
\(145\) 12.0000 0.996546
\(146\) 2.00000 0.165521
\(147\) 0 0
\(148\) −2.00000 −0.164399
\(149\) 6.00000 0.491539 0.245770 0.969328i \(-0.420959\pi\)
0.245770 + 0.969328i \(0.420959\pi\)
\(150\) 0 0
\(151\) 12.0000 0.976546 0.488273 0.872691i \(-0.337627\pi\)
0.488273 + 0.872691i \(0.337627\pi\)
\(152\) −8.00000 −0.648886
\(153\) 0 0
\(154\) 16.0000 1.28932
\(155\) 8.00000 0.642575
\(156\) 0 0
\(157\) 14.0000 1.11732 0.558661 0.829396i \(-0.311315\pi\)
0.558661 + 0.829396i \(0.311315\pi\)
\(158\) 8.00000 0.636446
\(159\) 0 0
\(160\) −2.00000 −0.158114
\(161\) 0 0
\(162\) 0 0
\(163\) −16.0000 −1.25322 −0.626608 0.779334i \(-0.715557\pi\)
−0.626608 + 0.779334i \(0.715557\pi\)
\(164\) 10.0000 0.780869
\(165\) 0 0
\(166\) −12.0000 −0.931381
\(167\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(168\) 0 0
\(169\) 1.00000 0.0769231
\(170\) 4.00000 0.306786
\(171\) 0 0
\(172\) 4.00000 0.304997
\(173\) 10.0000 0.760286 0.380143 0.924928i \(-0.375875\pi\)
0.380143 + 0.924928i \(0.375875\pi\)
\(174\) 0 0
\(175\) −4.00000 −0.302372
\(176\) 4.00000 0.301511
\(177\) 0 0
\(178\) −14.0000 −1.04934
\(179\) 12.0000 0.896922 0.448461 0.893802i \(-0.351972\pi\)
0.448461 + 0.893802i \(0.351972\pi\)
\(180\) 0 0
\(181\) −10.0000 −0.743294 −0.371647 0.928374i \(-0.621207\pi\)
−0.371647 + 0.928374i \(0.621207\pi\)
\(182\) 4.00000 0.296500
\(183\) 0 0
\(184\) 0 0
\(185\) 4.00000 0.294086
\(186\) 0 0
\(187\) −8.00000 −0.585018
\(188\) −8.00000 −0.583460
\(189\) 0 0
\(190\) 16.0000 1.16076
\(191\) 8.00000 0.578860 0.289430 0.957199i \(-0.406534\pi\)
0.289430 + 0.957199i \(0.406534\pi\)
\(192\) 0 0
\(193\) −14.0000 −1.00774 −0.503871 0.863779i \(-0.668091\pi\)
−0.503871 + 0.863779i \(0.668091\pi\)
\(194\) 10.0000 0.717958
\(195\) 0 0
\(196\) 9.00000 0.642857
\(197\) −18.0000 −1.28245 −0.641223 0.767354i \(-0.721573\pi\)
−0.641223 + 0.767354i \(0.721573\pi\)
\(198\) 0 0
\(199\) −8.00000 −0.567105 −0.283552 0.958957i \(-0.591513\pi\)
−0.283552 + 0.958957i \(0.591513\pi\)
\(200\) −1.00000 −0.0707107
\(201\) 0 0
\(202\) 2.00000 0.140720
\(203\) −24.0000 −1.68447
\(204\) 0 0
\(205\) −20.0000 −1.39686
\(206\) 16.0000 1.11477
\(207\) 0 0
\(208\) 1.00000 0.0693375
\(209\) −32.0000 −2.21349
\(210\) 0 0
\(211\) 12.0000 0.826114 0.413057 0.910705i \(-0.364461\pi\)
0.413057 + 0.910705i \(0.364461\pi\)
\(212\) 10.0000 0.686803
\(213\) 0 0
\(214\) −12.0000 −0.820303
\(215\) −8.00000 −0.545595
\(216\) 0 0
\(217\) −16.0000 −1.08615
\(218\) −2.00000 −0.135457
\(219\) 0 0
\(220\) −8.00000 −0.539360
\(221\) −2.00000 −0.134535
\(222\) 0 0
\(223\) −4.00000 −0.267860 −0.133930 0.990991i \(-0.542760\pi\)
−0.133930 + 0.990991i \(0.542760\pi\)
\(224\) 4.00000 0.267261
\(225\) 0 0
\(226\) 6.00000 0.399114
\(227\) −20.0000 −1.32745 −0.663723 0.747978i \(-0.731025\pi\)
−0.663723 + 0.747978i \(0.731025\pi\)
\(228\) 0 0
\(229\) 22.0000 1.45380 0.726900 0.686743i \(-0.240960\pi\)
0.726900 + 0.686743i \(0.240960\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −6.00000 −0.393919
\(233\) −18.0000 −1.17922 −0.589610 0.807688i \(-0.700718\pi\)
−0.589610 + 0.807688i \(0.700718\pi\)
\(234\) 0 0
\(235\) 16.0000 1.04372
\(236\) −4.00000 −0.260378
\(237\) 0 0
\(238\) −8.00000 −0.518563
\(239\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(240\) 0 0
\(241\) 10.0000 0.644157 0.322078 0.946713i \(-0.395619\pi\)
0.322078 + 0.946713i \(0.395619\pi\)
\(242\) 5.00000 0.321412
\(243\) 0 0
\(244\) −2.00000 −0.128037
\(245\) −18.0000 −1.14998
\(246\) 0 0
\(247\) −8.00000 −0.509028
\(248\) −4.00000 −0.254000
\(249\) 0 0
\(250\) 12.0000 0.758947
\(251\) −4.00000 −0.252478 −0.126239 0.992000i \(-0.540291\pi\)
−0.126239 + 0.992000i \(0.540291\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 6.00000 0.374270 0.187135 0.982334i \(-0.440080\pi\)
0.187135 + 0.982334i \(0.440080\pi\)
\(258\) 0 0
\(259\) −8.00000 −0.497096
\(260\) −2.00000 −0.124035
\(261\) 0 0
\(262\) −4.00000 −0.247121
\(263\) −8.00000 −0.493301 −0.246651 0.969104i \(-0.579330\pi\)
−0.246651 + 0.969104i \(0.579330\pi\)
\(264\) 0 0
\(265\) −20.0000 −1.22859
\(266\) −32.0000 −1.96205
\(267\) 0 0
\(268\) −16.0000 −0.977356
\(269\) 26.0000 1.58525 0.792624 0.609711i \(-0.208714\pi\)
0.792624 + 0.609711i \(0.208714\pi\)
\(270\) 0 0
\(271\) −4.00000 −0.242983 −0.121491 0.992592i \(-0.538768\pi\)
−0.121491 + 0.992592i \(0.538768\pi\)
\(272\) −2.00000 −0.121268
\(273\) 0 0
\(274\) 10.0000 0.604122
\(275\) −4.00000 −0.241209
\(276\) 0 0
\(277\) 22.0000 1.32185 0.660926 0.750451i \(-0.270164\pi\)
0.660926 + 0.750451i \(0.270164\pi\)
\(278\) 12.0000 0.719712
\(279\) 0 0
\(280\) −8.00000 −0.478091
\(281\) 26.0000 1.55103 0.775515 0.631329i \(-0.217490\pi\)
0.775515 + 0.631329i \(0.217490\pi\)
\(282\) 0 0
\(283\) −4.00000 −0.237775 −0.118888 0.992908i \(-0.537933\pi\)
−0.118888 + 0.992908i \(0.537933\pi\)
\(284\) 8.00000 0.474713
\(285\) 0 0
\(286\) 4.00000 0.236525
\(287\) 40.0000 2.36113
\(288\) 0 0
\(289\) −13.0000 −0.764706
\(290\) 12.0000 0.704664
\(291\) 0 0
\(292\) 2.00000 0.117041
\(293\) −26.0000 −1.51894 −0.759468 0.650545i \(-0.774541\pi\)
−0.759468 + 0.650545i \(0.774541\pi\)
\(294\) 0 0
\(295\) 8.00000 0.465778
\(296\) −2.00000 −0.116248
\(297\) 0 0
\(298\) 6.00000 0.347571
\(299\) 0 0
\(300\) 0 0
\(301\) 16.0000 0.922225
\(302\) 12.0000 0.690522
\(303\) 0 0
\(304\) −8.00000 −0.458831
\(305\) 4.00000 0.229039
\(306\) 0 0
\(307\) −8.00000 −0.456584 −0.228292 0.973593i \(-0.573314\pi\)
−0.228292 + 0.973593i \(0.573314\pi\)
\(308\) 16.0000 0.911685
\(309\) 0 0
\(310\) 8.00000 0.454369
\(311\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(312\) 0 0
\(313\) −6.00000 −0.339140 −0.169570 0.985518i \(-0.554238\pi\)
−0.169570 + 0.985518i \(0.554238\pi\)
\(314\) 14.0000 0.790066
\(315\) 0 0
\(316\) 8.00000 0.450035
\(317\) 6.00000 0.336994 0.168497 0.985702i \(-0.446109\pi\)
0.168497 + 0.985702i \(0.446109\pi\)
\(318\) 0 0
\(319\) −24.0000 −1.34374
\(320\) −2.00000 −0.111803
\(321\) 0 0
\(322\) 0 0
\(323\) 16.0000 0.890264
\(324\) 0 0
\(325\) −1.00000 −0.0554700
\(326\) −16.0000 −0.886158
\(327\) 0 0
\(328\) 10.0000 0.552158
\(329\) −32.0000 −1.76422
\(330\) 0 0
\(331\) 8.00000 0.439720 0.219860 0.975531i \(-0.429440\pi\)
0.219860 + 0.975531i \(0.429440\pi\)
\(332\) −12.0000 −0.658586
\(333\) 0 0
\(334\) 0 0
\(335\) 32.0000 1.74835
\(336\) 0 0
\(337\) 18.0000 0.980522 0.490261 0.871576i \(-0.336901\pi\)
0.490261 + 0.871576i \(0.336901\pi\)
\(338\) 1.00000 0.0543928
\(339\) 0 0
\(340\) 4.00000 0.216930
\(341\) −16.0000 −0.866449
\(342\) 0 0
\(343\) 8.00000 0.431959
\(344\) 4.00000 0.215666
\(345\) 0 0
\(346\) 10.0000 0.537603
\(347\) 12.0000 0.644194 0.322097 0.946707i \(-0.395612\pi\)
0.322097 + 0.946707i \(0.395612\pi\)
\(348\) 0 0
\(349\) 6.00000 0.321173 0.160586 0.987022i \(-0.448662\pi\)
0.160586 + 0.987022i \(0.448662\pi\)
\(350\) −4.00000 −0.213809
\(351\) 0 0
\(352\) 4.00000 0.213201
\(353\) −14.0000 −0.745145 −0.372572 0.928003i \(-0.621524\pi\)
−0.372572 + 0.928003i \(0.621524\pi\)
\(354\) 0 0
\(355\) −16.0000 −0.849192
\(356\) −14.0000 −0.741999
\(357\) 0 0
\(358\) 12.0000 0.634220
\(359\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(360\) 0 0
\(361\) 45.0000 2.36842
\(362\) −10.0000 −0.525588
\(363\) 0 0
\(364\) 4.00000 0.209657
\(365\) −4.00000 −0.209370
\(366\) 0 0
\(367\) 16.0000 0.835193 0.417597 0.908633i \(-0.362873\pi\)
0.417597 + 0.908633i \(0.362873\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 4.00000 0.207950
\(371\) 40.0000 2.07670
\(372\) 0 0
\(373\) 6.00000 0.310668 0.155334 0.987862i \(-0.450355\pi\)
0.155334 + 0.987862i \(0.450355\pi\)
\(374\) −8.00000 −0.413670
\(375\) 0 0
\(376\) −8.00000 −0.412568
\(377\) −6.00000 −0.309016
\(378\) 0 0
\(379\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(380\) 16.0000 0.820783
\(381\) 0 0
\(382\) 8.00000 0.409316
\(383\) 24.0000 1.22634 0.613171 0.789950i \(-0.289894\pi\)
0.613171 + 0.789950i \(0.289894\pi\)
\(384\) 0 0
\(385\) −32.0000 −1.63087
\(386\) −14.0000 −0.712581
\(387\) 0 0
\(388\) 10.0000 0.507673
\(389\) 26.0000 1.31825 0.659126 0.752032i \(-0.270926\pi\)
0.659126 + 0.752032i \(0.270926\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 9.00000 0.454569
\(393\) 0 0
\(394\) −18.0000 −0.906827
\(395\) −16.0000 −0.805047
\(396\) 0 0
\(397\) 6.00000 0.301131 0.150566 0.988600i \(-0.451890\pi\)
0.150566 + 0.988600i \(0.451890\pi\)
\(398\) −8.00000 −0.401004
\(399\) 0 0
\(400\) −1.00000 −0.0500000
\(401\) −6.00000 −0.299626 −0.149813 0.988714i \(-0.547867\pi\)
−0.149813 + 0.988714i \(0.547867\pi\)
\(402\) 0 0
\(403\) −4.00000 −0.199254
\(404\) 2.00000 0.0995037
\(405\) 0 0
\(406\) −24.0000 −1.19110
\(407\) −8.00000 −0.396545
\(408\) 0 0
\(409\) 2.00000 0.0988936 0.0494468 0.998777i \(-0.484254\pi\)
0.0494468 + 0.998777i \(0.484254\pi\)
\(410\) −20.0000 −0.987730
\(411\) 0 0
\(412\) 16.0000 0.788263
\(413\) −16.0000 −0.787309
\(414\) 0 0
\(415\) 24.0000 1.17811
\(416\) 1.00000 0.0490290
\(417\) 0 0
\(418\) −32.0000 −1.56517
\(419\) −4.00000 −0.195413 −0.0977064 0.995215i \(-0.531151\pi\)
−0.0977064 + 0.995215i \(0.531151\pi\)
\(420\) 0 0
\(421\) 22.0000 1.07221 0.536107 0.844150i \(-0.319894\pi\)
0.536107 + 0.844150i \(0.319894\pi\)
\(422\) 12.0000 0.584151
\(423\) 0 0
\(424\) 10.0000 0.485643
\(425\) 2.00000 0.0970143
\(426\) 0 0
\(427\) −8.00000 −0.387147
\(428\) −12.0000 −0.580042
\(429\) 0 0
\(430\) −8.00000 −0.385794
\(431\) 8.00000 0.385346 0.192673 0.981263i \(-0.438284\pi\)
0.192673 + 0.981263i \(0.438284\pi\)
\(432\) 0 0
\(433\) −30.0000 −1.44171 −0.720854 0.693087i \(-0.756250\pi\)
−0.720854 + 0.693087i \(0.756250\pi\)
\(434\) −16.0000 −0.768025
\(435\) 0 0
\(436\) −2.00000 −0.0957826
\(437\) 0 0
\(438\) 0 0
\(439\) 16.0000 0.763638 0.381819 0.924237i \(-0.375298\pi\)
0.381819 + 0.924237i \(0.375298\pi\)
\(440\) −8.00000 −0.381385
\(441\) 0 0
\(442\) −2.00000 −0.0951303
\(443\) 4.00000 0.190046 0.0950229 0.995475i \(-0.469708\pi\)
0.0950229 + 0.995475i \(0.469708\pi\)
\(444\) 0 0
\(445\) 28.0000 1.32733
\(446\) −4.00000 −0.189405
\(447\) 0 0
\(448\) 4.00000 0.188982
\(449\) −6.00000 −0.283158 −0.141579 0.989927i \(-0.545218\pi\)
−0.141579 + 0.989927i \(0.545218\pi\)
\(450\) 0 0
\(451\) 40.0000 1.88353
\(452\) 6.00000 0.282216
\(453\) 0 0
\(454\) −20.0000 −0.938647
\(455\) −8.00000 −0.375046
\(456\) 0 0
\(457\) −30.0000 −1.40334 −0.701670 0.712502i \(-0.747562\pi\)
−0.701670 + 0.712502i \(0.747562\pi\)
\(458\) 22.0000 1.02799
\(459\) 0 0
\(460\) 0 0
\(461\) 6.00000 0.279448 0.139724 0.990190i \(-0.455378\pi\)
0.139724 + 0.990190i \(0.455378\pi\)
\(462\) 0 0
\(463\) −20.0000 −0.929479 −0.464739 0.885448i \(-0.653852\pi\)
−0.464739 + 0.885448i \(0.653852\pi\)
\(464\) −6.00000 −0.278543
\(465\) 0 0
\(466\) −18.0000 −0.833834
\(467\) 4.00000 0.185098 0.0925490 0.995708i \(-0.470499\pi\)
0.0925490 + 0.995708i \(0.470499\pi\)
\(468\) 0 0
\(469\) −64.0000 −2.95525
\(470\) 16.0000 0.738025
\(471\) 0 0
\(472\) −4.00000 −0.184115
\(473\) 16.0000 0.735681
\(474\) 0 0
\(475\) 8.00000 0.367065
\(476\) −8.00000 −0.366679
\(477\) 0 0
\(478\) 0 0
\(479\) 16.0000 0.731059 0.365529 0.930800i \(-0.380888\pi\)
0.365529 + 0.930800i \(0.380888\pi\)
\(480\) 0 0
\(481\) −2.00000 −0.0911922
\(482\) 10.0000 0.455488
\(483\) 0 0
\(484\) 5.00000 0.227273
\(485\) −20.0000 −0.908153
\(486\) 0 0
\(487\) 4.00000 0.181257 0.0906287 0.995885i \(-0.471112\pi\)
0.0906287 + 0.995885i \(0.471112\pi\)
\(488\) −2.00000 −0.0905357
\(489\) 0 0
\(490\) −18.0000 −0.813157
\(491\) −36.0000 −1.62466 −0.812329 0.583200i \(-0.801800\pi\)
−0.812329 + 0.583200i \(0.801800\pi\)
\(492\) 0 0
\(493\) 12.0000 0.540453
\(494\) −8.00000 −0.359937
\(495\) 0 0
\(496\) −4.00000 −0.179605
\(497\) 32.0000 1.43540
\(498\) 0 0
\(499\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(500\) 12.0000 0.536656
\(501\) 0 0
\(502\) −4.00000 −0.178529
\(503\) −40.0000 −1.78351 −0.891756 0.452517i \(-0.850526\pi\)
−0.891756 + 0.452517i \(0.850526\pi\)
\(504\) 0 0
\(505\) −4.00000 −0.177998
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −42.0000 −1.86162 −0.930809 0.365507i \(-0.880896\pi\)
−0.930809 + 0.365507i \(0.880896\pi\)
\(510\) 0 0
\(511\) 8.00000 0.353899
\(512\) 1.00000 0.0441942
\(513\) 0 0
\(514\) 6.00000 0.264649
\(515\) −32.0000 −1.41009
\(516\) 0 0
\(517\) −32.0000 −1.40736
\(518\) −8.00000 −0.351500
\(519\) 0 0
\(520\) −2.00000 −0.0877058
\(521\) 14.0000 0.613351 0.306676 0.951814i \(-0.400783\pi\)
0.306676 + 0.951814i \(0.400783\pi\)
\(522\) 0 0
\(523\) −20.0000 −0.874539 −0.437269 0.899331i \(-0.644054\pi\)
−0.437269 + 0.899331i \(0.644054\pi\)
\(524\) −4.00000 −0.174741
\(525\) 0 0
\(526\) −8.00000 −0.348817
\(527\) 8.00000 0.348485
\(528\) 0 0
\(529\) −23.0000 −1.00000
\(530\) −20.0000 −0.868744
\(531\) 0 0
\(532\) −32.0000 −1.38738
\(533\) 10.0000 0.433148
\(534\) 0 0
\(535\) 24.0000 1.03761
\(536\) −16.0000 −0.691095
\(537\) 0 0
\(538\) 26.0000 1.12094
\(539\) 36.0000 1.55063
\(540\) 0 0
\(541\) −34.0000 −1.46177 −0.730887 0.682498i \(-0.760893\pi\)
−0.730887 + 0.682498i \(0.760893\pi\)
\(542\) −4.00000 −0.171815
\(543\) 0 0
\(544\) −2.00000 −0.0857493
\(545\) 4.00000 0.171341
\(546\) 0 0
\(547\) −28.0000 −1.19719 −0.598597 0.801050i \(-0.704275\pi\)
−0.598597 + 0.801050i \(0.704275\pi\)
\(548\) 10.0000 0.427179
\(549\) 0 0
\(550\) −4.00000 −0.170561
\(551\) 48.0000 2.04487
\(552\) 0 0
\(553\) 32.0000 1.36078
\(554\) 22.0000 0.934690
\(555\) 0 0
\(556\) 12.0000 0.508913
\(557\) −18.0000 −0.762684 −0.381342 0.924434i \(-0.624538\pi\)
−0.381342 + 0.924434i \(0.624538\pi\)
\(558\) 0 0
\(559\) 4.00000 0.169182
\(560\) −8.00000 −0.338062
\(561\) 0 0
\(562\) 26.0000 1.09674
\(563\) −4.00000 −0.168580 −0.0842900 0.996441i \(-0.526862\pi\)
−0.0842900 + 0.996441i \(0.526862\pi\)
\(564\) 0 0
\(565\) −12.0000 −0.504844
\(566\) −4.00000 −0.168133
\(567\) 0 0
\(568\) 8.00000 0.335673
\(569\) 30.0000 1.25767 0.628833 0.777541i \(-0.283533\pi\)
0.628833 + 0.777541i \(0.283533\pi\)
\(570\) 0 0
\(571\) −20.0000 −0.836974 −0.418487 0.908223i \(-0.637439\pi\)
−0.418487 + 0.908223i \(0.637439\pi\)
\(572\) 4.00000 0.167248
\(573\) 0 0
\(574\) 40.0000 1.66957
\(575\) 0 0
\(576\) 0 0
\(577\) 18.0000 0.749350 0.374675 0.927156i \(-0.377754\pi\)
0.374675 + 0.927156i \(0.377754\pi\)
\(578\) −13.0000 −0.540729
\(579\) 0 0
\(580\) 12.0000 0.498273
\(581\) −48.0000 −1.99138
\(582\) 0 0
\(583\) 40.0000 1.65663
\(584\) 2.00000 0.0827606
\(585\) 0 0
\(586\) −26.0000 −1.07405
\(587\) −4.00000 −0.165098 −0.0825488 0.996587i \(-0.526306\pi\)
−0.0825488 + 0.996587i \(0.526306\pi\)
\(588\) 0 0
\(589\) 32.0000 1.31854
\(590\) 8.00000 0.329355
\(591\) 0 0
\(592\) −2.00000 −0.0821995
\(593\) 42.0000 1.72473 0.862367 0.506284i \(-0.168981\pi\)
0.862367 + 0.506284i \(0.168981\pi\)
\(594\) 0 0
\(595\) 16.0000 0.655936
\(596\) 6.00000 0.245770
\(597\) 0 0
\(598\) 0 0
\(599\) 24.0000 0.980613 0.490307 0.871550i \(-0.336885\pi\)
0.490307 + 0.871550i \(0.336885\pi\)
\(600\) 0 0
\(601\) 26.0000 1.06056 0.530281 0.847822i \(-0.322086\pi\)
0.530281 + 0.847822i \(0.322086\pi\)
\(602\) 16.0000 0.652111
\(603\) 0 0
\(604\) 12.0000 0.488273
\(605\) −10.0000 −0.406558
\(606\) 0 0
\(607\) −16.0000 −0.649420 −0.324710 0.945814i \(-0.605267\pi\)
−0.324710 + 0.945814i \(0.605267\pi\)
\(608\) −8.00000 −0.324443
\(609\) 0 0
\(610\) 4.00000 0.161955
\(611\) −8.00000 −0.323645
\(612\) 0 0
\(613\) −2.00000 −0.0807792 −0.0403896 0.999184i \(-0.512860\pi\)
−0.0403896 + 0.999184i \(0.512860\pi\)
\(614\) −8.00000 −0.322854
\(615\) 0 0
\(616\) 16.0000 0.644658
\(617\) −6.00000 −0.241551 −0.120775 0.992680i \(-0.538538\pi\)
−0.120775 + 0.992680i \(0.538538\pi\)
\(618\) 0 0
\(619\) 32.0000 1.28619 0.643094 0.765787i \(-0.277650\pi\)
0.643094 + 0.765787i \(0.277650\pi\)
\(620\) 8.00000 0.321288
\(621\) 0 0
\(622\) 0 0
\(623\) −56.0000 −2.24359
\(624\) 0 0
\(625\) −19.0000 −0.760000
\(626\) −6.00000 −0.239808
\(627\) 0 0
\(628\) 14.0000 0.558661
\(629\) 4.00000 0.159490
\(630\) 0 0
\(631\) −36.0000 −1.43314 −0.716569 0.697517i \(-0.754288\pi\)
−0.716569 + 0.697517i \(0.754288\pi\)
\(632\) 8.00000 0.318223
\(633\) 0 0
\(634\) 6.00000 0.238290
\(635\) 0 0
\(636\) 0 0
\(637\) 9.00000 0.356593
\(638\) −24.0000 −0.950169
\(639\) 0 0
\(640\) −2.00000 −0.0790569
\(641\) −2.00000 −0.0789953 −0.0394976 0.999220i \(-0.512576\pi\)
−0.0394976 + 0.999220i \(0.512576\pi\)
\(642\) 0 0
\(643\) −16.0000 −0.630978 −0.315489 0.948929i \(-0.602169\pi\)
−0.315489 + 0.948929i \(0.602169\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 16.0000 0.629512
\(647\) −24.0000 −0.943537 −0.471769 0.881722i \(-0.656384\pi\)
−0.471769 + 0.881722i \(0.656384\pi\)
\(648\) 0 0
\(649\) −16.0000 −0.628055
\(650\) −1.00000 −0.0392232
\(651\) 0 0
\(652\) −16.0000 −0.626608
\(653\) 10.0000 0.391330 0.195665 0.980671i \(-0.437313\pi\)
0.195665 + 0.980671i \(0.437313\pi\)
\(654\) 0 0
\(655\) 8.00000 0.312586
\(656\) 10.0000 0.390434
\(657\) 0 0
\(658\) −32.0000 −1.24749
\(659\) 36.0000 1.40236 0.701180 0.712984i \(-0.252657\pi\)
0.701180 + 0.712984i \(0.252657\pi\)
\(660\) 0 0
\(661\) −2.00000 −0.0777910 −0.0388955 0.999243i \(-0.512384\pi\)
−0.0388955 + 0.999243i \(0.512384\pi\)
\(662\) 8.00000 0.310929
\(663\) 0 0
\(664\) −12.0000 −0.465690
\(665\) 64.0000 2.48181
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 32.0000 1.23627
\(671\) −8.00000 −0.308837
\(672\) 0 0
\(673\) −14.0000 −0.539660 −0.269830 0.962908i \(-0.586968\pi\)
−0.269830 + 0.962908i \(0.586968\pi\)
\(674\) 18.0000 0.693334
\(675\) 0 0
\(676\) 1.00000 0.0384615
\(677\) −38.0000 −1.46046 −0.730229 0.683202i \(-0.760587\pi\)
−0.730229 + 0.683202i \(0.760587\pi\)
\(678\) 0 0
\(679\) 40.0000 1.53506
\(680\) 4.00000 0.153393
\(681\) 0 0
\(682\) −16.0000 −0.612672
\(683\) −44.0000 −1.68361 −0.841807 0.539779i \(-0.818508\pi\)
−0.841807 + 0.539779i \(0.818508\pi\)
\(684\) 0 0
\(685\) −20.0000 −0.764161
\(686\) 8.00000 0.305441
\(687\) 0 0
\(688\) 4.00000 0.152499
\(689\) 10.0000 0.380970
\(690\) 0 0
\(691\) −32.0000 −1.21734 −0.608669 0.793424i \(-0.708296\pi\)
−0.608669 + 0.793424i \(0.708296\pi\)
\(692\) 10.0000 0.380143
\(693\) 0 0
\(694\) 12.0000 0.455514
\(695\) −24.0000 −0.910372
\(696\) 0 0
\(697\) −20.0000 −0.757554
\(698\) 6.00000 0.227103
\(699\) 0 0
\(700\) −4.00000 −0.151186
\(701\) 50.0000 1.88847 0.944237 0.329267i \(-0.106802\pi\)
0.944237 + 0.329267i \(0.106802\pi\)
\(702\) 0 0
\(703\) 16.0000 0.603451
\(704\) 4.00000 0.150756
\(705\) 0 0
\(706\) −14.0000 −0.526897
\(707\) 8.00000 0.300871
\(708\) 0 0
\(709\) 6.00000 0.225335 0.112667 0.993633i \(-0.464061\pi\)
0.112667 + 0.993633i \(0.464061\pi\)
\(710\) −16.0000 −0.600469
\(711\) 0 0
\(712\) −14.0000 −0.524672
\(713\) 0 0
\(714\) 0 0
\(715\) −8.00000 −0.299183
\(716\) 12.0000 0.448461
\(717\) 0 0
\(718\) 0 0
\(719\) 24.0000 0.895049 0.447524 0.894272i \(-0.352306\pi\)
0.447524 + 0.894272i \(0.352306\pi\)
\(720\) 0 0
\(721\) 64.0000 2.38348
\(722\) 45.0000 1.67473
\(723\) 0 0
\(724\) −10.0000 −0.371647
\(725\) 6.00000 0.222834
\(726\) 0 0
\(727\) −40.0000 −1.48352 −0.741759 0.670667i \(-0.766008\pi\)
−0.741759 + 0.670667i \(0.766008\pi\)
\(728\) 4.00000 0.148250
\(729\) 0 0
\(730\) −4.00000 −0.148047
\(731\) −8.00000 −0.295891
\(732\) 0 0
\(733\) −2.00000 −0.0738717 −0.0369358 0.999318i \(-0.511760\pi\)
−0.0369358 + 0.999318i \(0.511760\pi\)
\(734\) 16.0000 0.590571
\(735\) 0 0
\(736\) 0 0
\(737\) −64.0000 −2.35747
\(738\) 0 0
\(739\) 40.0000 1.47142 0.735712 0.677295i \(-0.236848\pi\)
0.735712 + 0.677295i \(0.236848\pi\)
\(740\) 4.00000 0.147043
\(741\) 0 0
\(742\) 40.0000 1.46845
\(743\) 24.0000 0.880475 0.440237 0.897881i \(-0.354894\pi\)
0.440237 + 0.897881i \(0.354894\pi\)
\(744\) 0 0
\(745\) −12.0000 −0.439646
\(746\) 6.00000 0.219676
\(747\) 0 0
\(748\) −8.00000 −0.292509
\(749\) −48.0000 −1.75388
\(750\) 0 0
\(751\) −40.0000 −1.45962 −0.729810 0.683650i \(-0.760392\pi\)
−0.729810 + 0.683650i \(0.760392\pi\)
\(752\) −8.00000 −0.291730
\(753\) 0 0
\(754\) −6.00000 −0.218507
\(755\) −24.0000 −0.873449
\(756\) 0 0
\(757\) 54.0000 1.96266 0.981332 0.192323i \(-0.0616021\pi\)
0.981332 + 0.192323i \(0.0616021\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 16.0000 0.580381
\(761\) 26.0000 0.942499 0.471250 0.882000i \(-0.343803\pi\)
0.471250 + 0.882000i \(0.343803\pi\)
\(762\) 0 0
\(763\) −8.00000 −0.289619
\(764\) 8.00000 0.289430
\(765\) 0 0
\(766\) 24.0000 0.867155
\(767\) −4.00000 −0.144432
\(768\) 0 0
\(769\) 2.00000 0.0721218 0.0360609 0.999350i \(-0.488519\pi\)
0.0360609 + 0.999350i \(0.488519\pi\)
\(770\) −32.0000 −1.15320
\(771\) 0 0
\(772\) −14.0000 −0.503871
\(773\) 54.0000 1.94225 0.971123 0.238581i \(-0.0766824\pi\)
0.971123 + 0.238581i \(0.0766824\pi\)
\(774\) 0 0
\(775\) 4.00000 0.143684
\(776\) 10.0000 0.358979
\(777\) 0 0
\(778\) 26.0000 0.932145
\(779\) −80.0000 −2.86630
\(780\) 0 0
\(781\) 32.0000 1.14505
\(782\) 0 0
\(783\) 0 0
\(784\) 9.00000 0.321429
\(785\) −28.0000 −0.999363
\(786\) 0 0
\(787\) 40.0000 1.42585 0.712923 0.701242i \(-0.247371\pi\)
0.712923 + 0.701242i \(0.247371\pi\)
\(788\) −18.0000 −0.641223
\(789\) 0 0
\(790\) −16.0000 −0.569254
\(791\) 24.0000 0.853342
\(792\) 0 0
\(793\) −2.00000 −0.0710221
\(794\) 6.00000 0.212932
\(795\) 0 0
\(796\) −8.00000 −0.283552
\(797\) 2.00000 0.0708436 0.0354218 0.999372i \(-0.488723\pi\)
0.0354218 + 0.999372i \(0.488723\pi\)
\(798\) 0 0
\(799\) 16.0000 0.566039
\(800\) −1.00000 −0.0353553
\(801\) 0 0
\(802\) −6.00000 −0.211867
\(803\) 8.00000 0.282314
\(804\) 0 0
\(805\) 0 0
\(806\) −4.00000 −0.140894
\(807\) 0 0
\(808\) 2.00000 0.0703598
\(809\) −2.00000 −0.0703163 −0.0351581 0.999382i \(-0.511193\pi\)
−0.0351581 + 0.999382i \(0.511193\pi\)
\(810\) 0 0
\(811\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(812\) −24.0000 −0.842235
\(813\) 0 0
\(814\) −8.00000 −0.280400
\(815\) 32.0000 1.12091
\(816\) 0 0
\(817\) −32.0000 −1.11954
\(818\) 2.00000 0.0699284
\(819\) 0 0
\(820\) −20.0000 −0.698430
\(821\) −42.0000 −1.46581 −0.732905 0.680331i \(-0.761836\pi\)
−0.732905 + 0.680331i \(0.761836\pi\)
\(822\) 0 0
\(823\) −16.0000 −0.557725 −0.278862 0.960331i \(-0.589957\pi\)
−0.278862 + 0.960331i \(0.589957\pi\)
\(824\) 16.0000 0.557386
\(825\) 0 0
\(826\) −16.0000 −0.556711
\(827\) −28.0000 −0.973655 −0.486828 0.873498i \(-0.661846\pi\)
−0.486828 + 0.873498i \(0.661846\pi\)
\(828\) 0 0
\(829\) −2.00000 −0.0694629 −0.0347314 0.999397i \(-0.511058\pi\)
−0.0347314 + 0.999397i \(0.511058\pi\)
\(830\) 24.0000 0.833052
\(831\) 0 0
\(832\) 1.00000 0.0346688
\(833\) −18.0000 −0.623663
\(834\) 0 0
\(835\) 0 0
\(836\) −32.0000 −1.10674
\(837\) 0 0
\(838\) −4.00000 −0.138178
\(839\) 40.0000 1.38095 0.690477 0.723355i \(-0.257401\pi\)
0.690477 + 0.723355i \(0.257401\pi\)
\(840\) 0 0
\(841\) 7.00000 0.241379
\(842\) 22.0000 0.758170
\(843\) 0 0
\(844\) 12.0000 0.413057
\(845\) −2.00000 −0.0688021
\(846\) 0 0
\(847\) 20.0000 0.687208
\(848\) 10.0000 0.343401
\(849\) 0 0
\(850\) 2.00000 0.0685994
\(851\) 0 0
\(852\) 0 0
\(853\) −2.00000 −0.0684787 −0.0342393 0.999414i \(-0.510901\pi\)
−0.0342393 + 0.999414i \(0.510901\pi\)
\(854\) −8.00000 −0.273754
\(855\) 0 0
\(856\) −12.0000 −0.410152
\(857\) −18.0000 −0.614868 −0.307434 0.951569i \(-0.599470\pi\)
−0.307434 + 0.951569i \(0.599470\pi\)
\(858\) 0 0
\(859\) −44.0000 −1.50126 −0.750630 0.660722i \(-0.770250\pi\)
−0.750630 + 0.660722i \(0.770250\pi\)
\(860\) −8.00000 −0.272798
\(861\) 0 0
\(862\) 8.00000 0.272481
\(863\) −40.0000 −1.36162 −0.680808 0.732462i \(-0.738371\pi\)
−0.680808 + 0.732462i \(0.738371\pi\)
\(864\) 0 0
\(865\) −20.0000 −0.680020
\(866\) −30.0000 −1.01944
\(867\) 0 0
\(868\) −16.0000 −0.543075
\(869\) 32.0000 1.08553
\(870\) 0 0
\(871\) −16.0000 −0.542139
\(872\) −2.00000 −0.0677285
\(873\) 0 0
\(874\) 0 0
\(875\) 48.0000 1.62270
\(876\) 0 0
\(877\) 22.0000 0.742887 0.371444 0.928456i \(-0.378863\pi\)
0.371444 + 0.928456i \(0.378863\pi\)
\(878\) 16.0000 0.539974
\(879\) 0 0
\(880\) −8.00000 −0.269680
\(881\) −26.0000 −0.875962 −0.437981 0.898984i \(-0.644306\pi\)
−0.437981 + 0.898984i \(0.644306\pi\)
\(882\) 0 0
\(883\) 4.00000 0.134611 0.0673054 0.997732i \(-0.478560\pi\)
0.0673054 + 0.997732i \(0.478560\pi\)
\(884\) −2.00000 −0.0672673
\(885\) 0 0
\(886\) 4.00000 0.134383
\(887\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 28.0000 0.938562
\(891\) 0 0
\(892\) −4.00000 −0.133930
\(893\) 64.0000 2.14168
\(894\) 0 0
\(895\) −24.0000 −0.802232
\(896\) 4.00000 0.133631
\(897\) 0 0
\(898\) −6.00000 −0.200223
\(899\) 24.0000 0.800445
\(900\) 0 0
\(901\) −20.0000 −0.666297
\(902\) 40.0000 1.33185
\(903\) 0 0
\(904\) 6.00000 0.199557
\(905\) 20.0000 0.664822
\(906\) 0 0
\(907\) 28.0000 0.929725 0.464862 0.885383i \(-0.346104\pi\)
0.464862 + 0.885383i \(0.346104\pi\)
\(908\) −20.0000 −0.663723
\(909\) 0 0
\(910\) −8.00000 −0.265197
\(911\) −40.0000 −1.32526 −0.662630 0.748947i \(-0.730560\pi\)
−0.662630 + 0.748947i \(0.730560\pi\)
\(912\) 0 0
\(913\) −48.0000 −1.58857
\(914\) −30.0000 −0.992312
\(915\) 0 0
\(916\) 22.0000 0.726900
\(917\) −16.0000 −0.528367
\(918\) 0 0
\(919\) −16.0000 −0.527791 −0.263896 0.964551i \(-0.585007\pi\)
−0.263896 + 0.964551i \(0.585007\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 6.00000 0.197599
\(923\) 8.00000 0.263323
\(924\) 0 0
\(925\) 2.00000 0.0657596
\(926\) −20.0000 −0.657241
\(927\) 0 0
\(928\) −6.00000 −0.196960
\(929\) −46.0000 −1.50921 −0.754606 0.656179i \(-0.772172\pi\)
−0.754606 + 0.656179i \(0.772172\pi\)
\(930\) 0 0
\(931\) −72.0000 −2.35970
\(932\) −18.0000 −0.589610
\(933\) 0 0
\(934\) 4.00000 0.130884
\(935\) 16.0000 0.523256
\(936\) 0 0
\(937\) 26.0000 0.849383 0.424691 0.905338i \(-0.360383\pi\)
0.424691 + 0.905338i \(0.360383\pi\)
\(938\) −64.0000 −2.08967
\(939\) 0 0
\(940\) 16.0000 0.521862
\(941\) 46.0000 1.49956 0.749779 0.661689i \(-0.230160\pi\)
0.749779 + 0.661689i \(0.230160\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) −4.00000 −0.130189
\(945\) 0 0
\(946\) 16.0000 0.520205
\(947\) 4.00000 0.129983 0.0649913 0.997886i \(-0.479298\pi\)
0.0649913 + 0.997886i \(0.479298\pi\)
\(948\) 0 0
\(949\) 2.00000 0.0649227
\(950\) 8.00000 0.259554
\(951\) 0 0
\(952\) −8.00000 −0.259281
\(953\) 30.0000 0.971795 0.485898 0.874016i \(-0.338493\pi\)
0.485898 + 0.874016i \(0.338493\pi\)
\(954\) 0 0
\(955\) −16.0000 −0.517748
\(956\) 0 0
\(957\) 0 0
\(958\) 16.0000 0.516937
\(959\) 40.0000 1.29167
\(960\) 0 0
\(961\) −15.0000 −0.483871
\(962\) −2.00000 −0.0644826
\(963\) 0 0
\(964\) 10.0000 0.322078
\(965\) 28.0000 0.901352
\(966\) 0 0
\(967\) 4.00000 0.128631 0.0643157 0.997930i \(-0.479514\pi\)
0.0643157 + 0.997930i \(0.479514\pi\)
\(968\) 5.00000 0.160706
\(969\) 0 0
\(970\) −20.0000 −0.642161
\(971\) 28.0000 0.898563 0.449281 0.893390i \(-0.351680\pi\)
0.449281 + 0.893390i \(0.351680\pi\)
\(972\) 0 0
\(973\) 48.0000 1.53881
\(974\) 4.00000 0.128168
\(975\) 0 0
\(976\) −2.00000 −0.0640184
\(977\) −6.00000 −0.191957 −0.0959785 0.995383i \(-0.530598\pi\)
−0.0959785 + 0.995383i \(0.530598\pi\)
\(978\) 0 0
\(979\) −56.0000 −1.78977
\(980\) −18.0000 −0.574989
\(981\) 0 0
\(982\) −36.0000 −1.14881
\(983\) −24.0000 −0.765481 −0.382741 0.923856i \(-0.625020\pi\)
−0.382741 + 0.923856i \(0.625020\pi\)
\(984\) 0 0
\(985\) 36.0000 1.14706
\(986\) 12.0000 0.382158
\(987\) 0 0
\(988\) −8.00000 −0.254514
\(989\) 0 0
\(990\) 0 0
\(991\) −48.0000 −1.52477 −0.762385 0.647124i \(-0.775972\pi\)
−0.762385 + 0.647124i \(0.775972\pi\)
\(992\) −4.00000 −0.127000
\(993\) 0 0
\(994\) 32.0000 1.01498
\(995\) 16.0000 0.507234
\(996\) 0 0
\(997\) −26.0000 −0.823428 −0.411714 0.911313i \(-0.635070\pi\)
−0.411714 + 0.911313i \(0.635070\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 234.2.a.c.1.1 1
3.2 odd 2 78.2.a.a.1.1 1
4.3 odd 2 1872.2.a.c.1.1 1
5.2 odd 4 5850.2.e.bb.5149.2 2
5.3 odd 4 5850.2.e.bb.5149.1 2
5.4 even 2 5850.2.a.d.1.1 1
8.3 odd 2 7488.2.a.bk.1.1 1
8.5 even 2 7488.2.a.bz.1.1 1
9.2 odd 6 2106.2.e.q.1405.1 2
9.4 even 3 2106.2.e.j.703.1 2
9.5 odd 6 2106.2.e.q.703.1 2
9.7 even 3 2106.2.e.j.1405.1 2
12.11 even 2 624.2.a.h.1.1 1
13.5 odd 4 3042.2.b.g.1351.1 2
13.8 odd 4 3042.2.b.g.1351.2 2
13.12 even 2 3042.2.a.f.1.1 1
15.2 even 4 1950.2.e.i.1249.1 2
15.8 even 4 1950.2.e.i.1249.2 2
15.14 odd 2 1950.2.a.w.1.1 1
21.20 even 2 3822.2.a.j.1.1 1
24.5 odd 2 2496.2.a.t.1.1 1
24.11 even 2 2496.2.a.b.1.1 1
33.32 even 2 9438.2.a.t.1.1 1
39.2 even 12 1014.2.i.d.823.1 4
39.5 even 4 1014.2.b.b.337.2 2
39.8 even 4 1014.2.b.b.337.1 2
39.11 even 12 1014.2.i.d.823.2 4
39.17 odd 6 1014.2.e.c.991.1 2
39.20 even 12 1014.2.i.d.361.1 4
39.23 odd 6 1014.2.e.c.529.1 2
39.29 odd 6 1014.2.e.f.529.1 2
39.32 even 12 1014.2.i.d.361.2 4
39.35 odd 6 1014.2.e.f.991.1 2
39.38 odd 2 1014.2.a.d.1.1 1
156.155 even 2 8112.2.a.v.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
78.2.a.a.1.1 1 3.2 odd 2
234.2.a.c.1.1 1 1.1 even 1 trivial
624.2.a.h.1.1 1 12.11 even 2
1014.2.a.d.1.1 1 39.38 odd 2
1014.2.b.b.337.1 2 39.8 even 4
1014.2.b.b.337.2 2 39.5 even 4
1014.2.e.c.529.1 2 39.23 odd 6
1014.2.e.c.991.1 2 39.17 odd 6
1014.2.e.f.529.1 2 39.29 odd 6
1014.2.e.f.991.1 2 39.35 odd 6
1014.2.i.d.361.1 4 39.20 even 12
1014.2.i.d.361.2 4 39.32 even 12
1014.2.i.d.823.1 4 39.2 even 12
1014.2.i.d.823.2 4 39.11 even 12
1872.2.a.c.1.1 1 4.3 odd 2
1950.2.a.w.1.1 1 15.14 odd 2
1950.2.e.i.1249.1 2 15.2 even 4
1950.2.e.i.1249.2 2 15.8 even 4
2106.2.e.j.703.1 2 9.4 even 3
2106.2.e.j.1405.1 2 9.7 even 3
2106.2.e.q.703.1 2 9.5 odd 6
2106.2.e.q.1405.1 2 9.2 odd 6
2496.2.a.b.1.1 1 24.11 even 2
2496.2.a.t.1.1 1 24.5 odd 2
3042.2.a.f.1.1 1 13.12 even 2
3042.2.b.g.1351.1 2 13.5 odd 4
3042.2.b.g.1351.2 2 13.8 odd 4
3822.2.a.j.1.1 1 21.20 even 2
5850.2.a.d.1.1 1 5.4 even 2
5850.2.e.bb.5149.1 2 5.3 odd 4
5850.2.e.bb.5149.2 2 5.2 odd 4
7488.2.a.bk.1.1 1 8.3 odd 2
7488.2.a.bz.1.1 1 8.5 even 2
8112.2.a.v.1.1 1 156.155 even 2
9438.2.a.t.1.1 1 33.32 even 2